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1 Introduction
To provide a demonstration of what MCMC can actually be used for, and to add a bit of
interest, we will be solving a full probabilistic modelling task. This document fully describes
the model, although most people won’t have time to fully understand and implement it
during the practical. Instead, code for the model’s joint probability distribution is provided.

I have also provided code for two standard MCMC samplers. Don’t feel you should imple-
ment these yourself. Note that Matlab’s stats toolbox also provides (different) implementa-
tions of both samplers. If you really want to write a sampler, a suggestion is given later.

Your main tasks will be: 1) writing code to drive a standard sampler given a joint probability
distribution and 2) investigating to what extent the samplers are working.

Download the code and data from:
http://www.cs.toronto.edu/˜murray/teaching/09mlss/

2 Problem introduction
We will be solving a data-analysis problem inspired by Bovy et al. (2009).

Motivation: Some galaxies and stars have dynamics following very large scale orbits. Over
the course of an experiment they will only move a very small way around their orbit: we
effectively just see their current position and velocity. Given this ‘snapshot’ we would like to
infer the physical properties of the system.

The simplest version of this problem involves seeing a 1-dimensional projection of a system
in which objects are oscillating around a very massive ‘black hole’. We will assume that each
object is undergoing ‘simple harmonic motion’ (SHM). Each object has an unknown ampli-
tude An and phase φn associated with it. What we can measure is each object’s position xn
and a velocity vn. From these we would like to infer the position m and resonant frequency
ω associated with the black hole.

The system is described by:

xn = m+An sin(ωt+ φn)
vn = An ω cos(ωt+ φn)

(1)

Observed: {xn, vn}Nn=1

Unobserved: m,ω, {φn, An}Nn=1

We assume that our experiment is not conducted at any special time, so without loss of
generality we can assert that our snapshot of the dynamics was taken at time t=0.

Notice that if we knew the properties of the black hole, {m,ω}, then we could solve Equa-
tion (1) for all remaining unknowns (at t=0):

An =
√

(xn −m)2 + (vn/ω)2

φ = atan2
(
xn −m, vn/ω

)
.

(2)

The website provides position and velocity observations of 50 objects. Again, the task is to
infer the postion, m, and resonant frequency, ω, of the black hole.
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3 The model and its parameter posterior
This section defines a hierarchical Bayesian model. If you take my final model specification
on trust, you should be able to build a sampler without following all the details. If you have
time, please do explore your own versions of the model.

The way to solve most inference problems starts with writing down a joint probability con-
taining at least our observations and variables of interest. Assuming the position and reso-
nant frequency of the black hole were chosen independently:

p(logω,m, {xn, vn}) = p({xn, vn} | logω,m) p(logω) p(m).

Unless you have specific knowledge of my fictional black hole, I suggest you put wide uni-
form priors on m and logω.

We can rewrite the likelihood term based on the fact that each (xn, vn) pair is a deterministic
transformation of (logAn, φn). Computing An and φn from the data using Equation (2),

p(xn, vn |ω,m) =

∣∣∣∣∣∣
∂xn

∂ logAn

∂xn

∂φn

∂vn

∂ logAn

∂vn

∂φn

∣∣∣∣∣∣
−1

p(logAn, φn)

=
∣∣−A2

n ω sin2(φn)−A2
n ω cos2(φn)

∣∣−1
p(logAn, φn)

=
1

A2
n ω

p(logAn, φn).

This makes it easier to specify what the likelihood is. It isn’t obvious (to me) what sorts of
positions and velocities would result from taking a snapshot from a randomly oscillating
system. However, I can express the belief that if the bodies formed independently and aren’t
interacting much then all the phases are independent and uniform:

p(φn) =
1
2π
. (3)

The prior on amplitudes is harder. For a single body I would pick a uniform prior on logAn
covering a large range. However, my joint prior for all the amplitudes is not

p
(
{logAn}Nn=1

)
=
∏
n

1
logAmax − logAmin

. (4)

If we were told some amplitudes we would change our beliefs about future amplitude. We
wouldn’t change our beliefs using the prior in Equation (4), which asserts that we know what
distribution the amplitudes come from (we don’t). Instead we need to build a hierarchical
model and infer the distribution over amplitudes along with the properties of the black hole:

p
(
{logAn}Nn=1

)
=
∫

dθ p(θ)
∏
n

p(logAn | θ)

The family of possible densities p(logAn | θ) should be flexible to allow learning the true
amplitude density given enough data. For the purposes of this practical I am asserting that
you should use a mixture of two Gaussians.

p(logAn | θ) = π1N (logAn; µ1, σ
2
1) + (1− π1)N (logAn; µ2, σ

2
2)

θ ≡ {π1, µ1, µ2, log σ1, log σ2}.
(5)

Put broad uniform priors on all parameters in θ. Even though if you had more time you may
want to add some more structure.

Having — finally — defined our model, the posterior distribution over all the unknowns is:

p(logω,m, θ | {xn, vn}) ∝ p(logω,m, θ, {xn, vn})

∝ p(logω) p(m) p(θ)
N∏
n=1

[
1

A2
n ω

p(logAn | θ)
]
.

(6)

where An is a function of the observations, see (2). Apart from p(logAn | θ), defined in (5),
set all other priors to uniform distributions with sensible widths.
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4 Markov chain Monte Carlo sampling
Write code to sample from the posterior distribution in Equation (6) using the provided
MCMC code and log pstar.m, which evaluates (6) up to a constant. This will require writ-
ing a function taking a single vector argument containing the parameters that you wish to
sample. A handle to this function, @function name, can then be passed to the samplers.

If you are keen to implement actual MCMC code yourself, here is an idea: implement a
version of Metropolis that updates each parameter one at a time. The slice sampling code
already updates one parameter at a time, while my Metropolis code adds a spherical pertur-
bation to the whole parameter vector.

One thing you might want to think about is initialization. Depending on the sampler, you
may have “burn in” problems if you set the first state of the Markov chain to be very far from
the bulk of the posterior. Are there very simple ways of setting initial values by looking at the
data or computing some simple statistics? Is good initialization necessary for this problem?

Use Matlab’s plot to plot the time series of individual parameters and one parameter
against another. You can also use hist to look at an approximation to the marginal pos-
terior of a parameter. Create estimates with an expression of your uncertainty for ω and m.

5 Questions

MCMC sampling:

1. What is the effect of Metropolis’s step-size parameter?

2. Is the way you initialize the chain critical for Metropolis and/or slice sampling?

3. What are the relative advantages of slice-sampling and Metropolis? Can you say good
and bad things about both of them?

4. Why have I taken logs of quantities like ω and A? Need I have bothered? Does taking
logs affect the model and/or the sampler?

5. The true values are ω=875.2 and m=31.79. Are your posterior beliefs consistent with
this? If not, what do you think went wrong with the sampling, modelling or both?

The model: for anyone who manages to get onto thinking about the model.

1. Do you believe the uniform independent priors for the phases, φn? How might you
check whether this is reasonable for a given dataset, or evaluate alternatives?

2. Is the hierarchical prior necessary; is the prior of Equation (4) really so bad?

3. What effect does changing the details of the hierarchical model have? How might you
check the assumptions made, or evaluate alternatives?

4. Various quantities have broad uniform priors. Is this reasonable? What would happen
(if anything) in the limit where the widths of priors were made infinite?
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