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A statistical problem

What is the average height of the MLSS lecturers?
Method: measure their heights, add them up and divide by N=20.

What is the average height f of people p in Cambridge C?

Ep∈C[f(p)] ≡ 1
|C|
∑
p∈C

f(p), “intractable”?

≈ 1
S

S∑
s=1

f
(
p(s)
)
, for random survey of S people {p(s)} ∈ C

Surveying works for large and notionally infinite populations.



Simple Monte Carlo

Statistical sampling can be applied to any expectation:

In general:∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Example: making predictions

p(x|D) =
∫
P (x|θ,D)P (θ|D) dθ

≈ 1
S

S∑
s=1

P (x|θ(s),D), θ(s) ∼ P (θ|D)

More examples: E-step statistics in EM, Boltzmann machine learning



Properties of Monte Carlo

Estimator:

∫
f(x)P (x) dx ≈ f̂ ≡ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Estimator is unbiased:

EP ({x(s)})

[
f̂
]

=
1
S

S∑
s=1

EP (x) [f(x)] = EP (x) [f(x)]

Variance shrinks ∝ 1/S:

varP ({x(s)})

[
f̂
]

=
1
S2

S∑
s=1

varP (x) [f(x)] = varP (x) [f(x)] /S

“Error bars” shrink like
√
S



A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4
∫∫

I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418



Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only

when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.

(NB Matlab’s quadl fails at zero tolerance)

Other lecturers are covering alternatives for higher dimensions.

No approx. integration method always works. Sometimes Monte Carlo is the best.



Eye-balling samples

Sometimes samples are pleasing to look at:

(if you’re into geometrical combinatorics)

Figure by Propp and Wilson. Source: MacKay textbook.

Sanity check probabilistic modelling assumptions:

Data samples MoB samples RBM samples



Monte Carlo and Insomnia

Enrico Fermi (1901–1954) took great

delight in astonishing his colleagues

with his remakably accurate predictions

of experimental results. . . he revealed

that his “guesses” were really derived

from the statistical sampling techniques

that he used to calculate with whenever

insomnia struck in the wee morning

hours!

—The beginning of the Monte Carlo method,

N. Metropolis



Sampling from a Bayes net

Ancestral pass for directed graphical models:

— sample each top level variable from its marginal

— sample each other node from its conditional

once its parents have been sampled

A B

C

D

E

Sample:

A ∼ P (A)
B ∼ P (B)
C ∼ P (C |A,B)
D ∼ P (D |B,C)
E ∼ P (D |C,D)

P (A,B,C,D,E) = P (A)P (B)P (C |A,B)P (D |B,C)P (E |C,D)



Sampling the conditionals

Use library routines for
univariate distributions
(and some other special cases)

This book (free online) explains how

some of them work

http://cg.scs.carleton.ca/~luc/rnbookindex.html



Sampling from distributions

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]



Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

p(y)

h(y)

y0

1

Figure from PRML, Bishop (2006)

h(y) =
∫ y
−∞ p(y

′) dy′

Draw mass to left of point:

u ∼ Uniform[0,1]

Sample, y(u) = h−1(u)

Although we can’t always compute and invert h(y)



Rejection sampling

Sampling underneath a P̃ (x)∝P (x) curve is also valid

koptQ̃(x)

P̃ (x)

kQ̃(x)

xx(1)

(xj , uj)

(xi, ui)

Draw underneath a simple

curve kQ̃(x) ≥ P̃ (x):

– Draw x ∼ Q(x)
– height u ∼ Uniform[0, kQ̃(x)]

Discard the point if above P̃ ,

i.e. if u > P̃ (x)



Importance sampling

Computing P̃ (x) and Q̃(x), then throwing x away seems wasteful

Instead rewrite the integral as an expectation under Q:∫
f(x)P (x) dx =

∫
f(x)

P (x)
Q(x)

Q(x) dx, (Q(x) > 0 if P (x) > 0)

≈ 1
S

S∑
s=1

f(x(s))
P (x(s))
Q(x(s))

, x(s) ∼ Q(x)

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.

Divide and multiply any integrand by a convenient distribution.



Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P̃ (x)/ZP∫
f(x)P (x) dx ≈ ZQZP

1
S

S∑
s=1

f(x(s))
P̃ (x(s))
Q̃(x(s))︸ ︷︷ ︸
r̃(s)

, x(s) ∼ Q(x)

≈
�
�
�
�
��1
S

S∑
s=1

f(x(s))
r̃(s)

�
�
��1
S

∑
s′ r̃

(s′)
≡

S∑
s=1

f(x(s))w(s)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
s r̃

(s)



Summary so far

• Sums and integrals, often expectations, occur frequently in statistics

• Monte Carlo approximates expectations with a sample average

• Rejection sampling draws samples from complex distributions

• Importance sampling applies Monte Carlo to ‘any’ sum/integral



Application to large problems
We often can’t decompose P (X) into low-dimensional conditionals

Undirected graphical models: P (x) = 1
Z
∏
i fi(x)

A B

C

D

E

Posterior of a directed graphical model

P (A,B,C,D |E) =
P (A,B,C,D,E)

P (E)

We often don’t know Z or P (E)



Application to large problems

Rejection & importance sampling scale badly with dimensionality

Example:

P (x) = N (0, I), Q(x) = N (0, σ2I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Variance of importance weights =
(

σ2

2−1/σ2

)D/2
− 1

Infinite / undefined variance if σ ≤ 1/
√

2



Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51



Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ, σ2)

• Accept with probability min

(
1,
P̃ (θ′|D)
P̃ (θ|D)

)
• Otherwise keep old parameters

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)



Markov chain Monte Carlo

Construct a biased random walk that explores target dist P ?(x)

Markov steps, xt ∼ T (xt←xt−1)

MCMC gives approximate, correlated samples from P ?(x)



Transition operators
Discrete example

P ? =

3/5
1/5
1/5

 T =

2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0

 Tij = T (xi←xj)

P ? is an invariant distribution of T because TP ?=P ?, i.e.∑
x

T (x′←x)P ?(x) = P ?(x′)

Also P ? is the equilibrium distribution of T :

To machine precision: T 100
0@1

0
0

1A =
0@3/5

1/5
1/5

1A = P ?

Ergodicity requires: TK(x′←x)>0 for all x′ : P ?(x′) > 0, for some K



Detailed Balance
Detailed balance means →x→x′ and →x′→x are equally probable:

T (x′← x)P ?(x) = T (x← x′)P ?(x′)

Detailed balance implies the invariant condition:∑
x

T (x′←x)P ?(x) = P ?(x′)

�
��

�
��
�
��

�
��

�
��*1∑

x

T (x←x′)

Enforcing detailed balance is easy: it only involves isolated pairs



Reverse operators

If T satisfies stationarity, we can define a reverse operator

T̃ (x←x′) ∝ T (x′←x)P ?(x) =
T (x′←x)P ?(x)∑
x T (x′←x)P ?(x)

=
T (x′←x)P ?(x)

P ?(x′)
.

Generalized balance condition:

T (x′←x)P ?(x) = T̃ (x←x′)P ?(x′)

also implies the invariant condition and is necessary.

Operators satisfying detailed balance are their own reverse operator.



Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(

1, P (x′)Q(x;x′)
P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P̃ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen to fulfill the other technical requirements

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x) min

 
1,

P (x′)Q(x; x′)
P (x)Q(x′; x)

!
= min

“
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
”

= P (x
′
)·Q(x; x

′
) min

 
1,

P (x)Q(x′; x)
P (x′)Q(x; x′)

!
= P (x

′
)·T (x←x

′
)



Matlab/Octave code for demo
function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);
samples = zeros(D, iters);

state = init;
Lp_state = log_ptilde(state);
for ss = 1:iters

% Propose
prop = state + sigma*randn(size(state));
Lp_prop = log_ptilde(prop);
if log(rand) < (Lp_prop - Lp_state)

% Accept
state = prop;
Lp_state = Lp_prop;

end
samples(:, ss) = state(:);

end



Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x) -0.5*x*x, 1e3, s));

sigma(0.1)
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99.8% accepts

sigma(1)
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68.4% accepts

sigma(100)
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0.5% accepts



Metropolis limitations

Q

P

L

Generic proposals use

Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required



Combining operators

A sequence of operators, each with P ? invariant:

x0 ∼ P ?(x)

x1 ∼ Ta(x1←x0)

x2 ∼ Tb(x2←x1)

x3 ∼ Tc(x3←x2)

· · ·

P (x1) =
∑
x0
Ta(x1←x0)P ?(x0) = P ?(x1)

P (x2) =
∑
x1
Tb(x2←x1)P ?(x1) = P ?(x2)

P (x3) =
∑
x1
Tc(x3←x2)P ?(x2) = P ?(x3)

· · ·

— Combination TcTbTa leaves P ? invariant

— If they can reach any x, TcTbTa is a valid MCMC operator

— Individually Tc, Tb and Ta need not be ergodic



Gibbs sampling

A method with no rejections:

– Initialize x to some value

– Pick each variable in turn or randomly

and resample P (xi|xj 6=i)

z1

z2

L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.

b) Metropolis–Hastings ‘proposals’ P (xi|xj 6=i)⇒ accept with prob. 1
Apply a series of these operators. Don’t need to check acceptance.



Gibbs sampling

Alternative explanation:

Chain is currently at x

At equilibrium can assume x ∼ P (x)

Consistent with xj 6=i ∼ P (xj 6=i), xi ∼ P (xi |xj 6=i)

Pretend xi was never sampled and do it again.

This view may be useful later for non-parametric applications



“Routine” Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

P (xi|xj 6=i) ∝ P (xi,xj 6=i)

=
P (xi,xj 6=i)∑
x′i
P (x′i,xj 6=i) ← this sum is small and easy

• Continuous conditionals only univariate

⇒ amenable to standard sampling methods.

WinBUGS and OpenBUGS sample graphical models using these tricks



Summary so far

• We need approximate methods to solve sums/integrals

• Monte Carlo does not explicitly depend on dimension,

although simple methods work only in low dimensions

• Markov chain Monte Carlo (MCMC) can make local moves.

By assuming less, it’s more applicable to higher dimensions

• simple computations ⇒ “easy” to implement

(harder to diagnose).

How do we use these MCMC samples?



End of Lecture 1



Quick review
Construct a biased random walk that explores a target dist.

Markov steps, x(s) ∼ T (x(s)←x(s−1)
)

MCMC gives approximate,

correlated samples

EP [f ] ≈ 1
S

S∑
s=1

f(x(s))

Example transitions:

Metropolis–Hastings: T (x′←x) = Q(x′;x) min
(

1,
P (x′)Q(x;x′)
P (x)Q(x′;x)

)
Gibbs sampling: Ti(x′←x) = P (x′i |xj 6=i) δ(x′j 6=i − xj 6=i)



How should we run MCMC?

• The samples aren’t independent. Should we thin,

only keep every Kth sample?

• Arbitrary initialization means starting iterations are bad.

Should we discard a “burn-in” period?

• Maybe we should perform multiple runs?

• How do we know if we have run for long enough?



Forming estimates

Approximately independent samples can be obtained by thinning.

However, all the samples can be used.

Use the simple Monte Carlo estimator on MCMC samples. It is:

— consistent

— unbiased if the chain has “burned in”

The correct motivation to thin: if computing f(x(s)) is expensive



Empirical diagnostics

Rasmussen (2000)

Recommendations

For diagnostics:
Standard software packages like R-CODA

For opinion on thinning, multiple runs, burn in, etc.

Practical Markov chain Monte Carlo
Charles J. Geyer, Statistical Science. 7(4):473–483, 1992.
http://www.jstor.org/stable/2246094



Consistency checks

Do I get the right answer on tiny versions

of my problem?

Can I make good inferences about synthetic data

drawn from my model?

Getting it right: joint distribution tests of posterior simulators,

John Geweke, JASA, 99(467):799–804, 2004.

[next: using the samples]



Making good use of samples

Is the standard estimator too noisy?

e.g. need many samples from a

distribution to estimate its tail

We can often do some analytic calculations



Finding P (xi=1)
Method 1: fraction of time xi=1

P (xi=1) =
∑
xi

I(xi=1)P (xi) ≈ 1
S

S∑
s=1

I(x(s)
i ), x

(s)
i ∼ P (xi)

Method 2: average of P (xi=1|x\i)

P (xi=1) =
∑
x\i

P (xi=1|x\i)P (x\i)

≈ 1
S

S∑
s=1

P (xi = 1|x(s)
\i ), x(s)

\i ∼ P (x\i)

Example of “Rao-Blackwellization”. See also “waste recycling”.



Processing samples

This is easy

I =
∑
x

f(xi)P (x) ≈ 1
S

S∑
s=1

f(x(s)
i ), x(s) ∼ P (x)

But this might be better

I =
∑
x

f(xi)P (xi|x\i)P (x\i) =
∑
x\i

(∑
xi

f(xi)P (xi|x\i)
)
P (x\i)

≈ 1
S

S∑
s=1

(∑
xi

f(xi)P (xi|x(s)
\i )
)
, x(s)

\i ∼ P (x\i)

A more general form of “Rao-Blackwellization”.



Summary so far

• MCMC algorithms are general and often easy to implement

• Running them is a bit messy. . .

. . . but there are some established procedures.

• Given the samples there might be a choice of estimators

Next question:

Is MCMC research all about finding a good Q(x)?



Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:∫

f(x)P (x) dx =
∫
f(x)P (x, v) dx dv

≈ 1
S

S∑
s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate



Swendsen–Wang (1987)

Seminal algorithm using auxiliary variables

Edwards and Sokal (1988) identified and generalized the

“Fortuin-Kasteleyn-Swendsen-Wang” auxiliary variable joint

distribution that underlies the algorithm.



Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝
{

1 P̃ (x) ≥ u
0 otherwise

= “Uniform on the slice”



Slice sampling

Unimodal conditionals

x

u

(x, u)

x

u

(x, u)

x

u

(x, u)

• bracket slice

• sample uniformly within bracket

• shrink bracket if P̃ (x) < u (off slice)

• accept first point on the slice



Slice sampling

Multimodal conditionals

x

u

(x, u)

P̃ (x)

• place bracket randomly around point

• linearly step out until bracket ends are off slice

• sample on bracket, shrinking as before

Satisfies detailed balance, leaves p(x|u) invariant



Slice sampling

Advantages of slice-sampling:

• Easy — only require P̃ (x) ∝ P (x) pointwise

• No rejections

• Step-size parameters less important than Metropolis

More advanced versions of slice sampling have been developed.

Neal (2003) contains many ideas.



Hamiltonian dynamics

Construct a landscape with gravitational potential energy, E(x):

P (x) ∝ e−E(x), E(x) = − logP ∗(x)

Introduce velocity v carrying kinetic energy K(v) = v>v/2

Some physics:

• Total energy or Hamiltonian, H = E(x) +K(v)

• Frictionless ball rolling (x, v)→(x′, v′) satisfies H(x′, v′) = H(x, v)

• Ideal Hamiltonian dynamics are time reversible:

– reverse v and the ball will return to its start point



Hamiltonian Monte Carlo
Define a joint distribution:

• P (x, v) ∝ e−E(x)e−K(v) = e−E(x)−K(v) = e−H(x,v)

• Velocity is independent of position and Gaussian distributed

Markov chain operators

• Gibbs sample velocity

• Simulate Hamiltonian dynamics then flip sign of velocity

– Hamiltonian ‘proposal’ is deterministic and reversible

q(x′, v′;x, v) = q(x, v;x′, v′) = 1
– Conservation of energy means P (x, v) = P (x′, v′)
– Metropolis acceptance probability is 1

Except we can’t simulate Hamiltonian dynamics exactly



Leap-frog dynamics

a discrete approximation to Hamiltonian dynamics:

vi(t+ ε
2) = vi(t)− ε

2
∂E(x(t))
∂xi

xi(t+ ε) = xi(t) + εvi(t+ ε
2)

pi(t+ ε) = vi(t+ ε
2)− ε

2
∂E(x(t+ ε))

∂xi

• H is not conserved

• dynamics are still deterministic and reversible

• Acceptance probability becomes min[1, exp(H(v, x)−H(v′, x′))]



Hamiltonian Monte Carlo

The algorithm:

• Gibbs sample velocity ∼ N (0, I)

• Simulate Leapfrog dynamics for L steps

• Accept new position with probability

min[1, exp(H(v, x)−H(v′, x′))]

The original name is Hybrid Monte Carlo, with reference to the

“hybrid” dynamical simulation method on which it was based.



Summary of auxiliary variables

— Swendsen–Wang

— Slice sampling

— Hamiltonian (Hybrid) Monte Carlo

A fair amount of my research (not covered in this tutorial) has been

finding the right auxiliary representation on which to run standard

MCMC updates.

Example benefits:

Population methods to give better mixing and exploit parallel hardware

Being robust to bad random number generators

Removing step-size parameters when slice sample doesn’t really apply



Finding normalizers is hard

Prior sampling: like finding fraction of needles in a hay-stack

P (D|M) =
∫
P (D|θ,M)P (θ|M) dθ

=
1
S

S∑
s=1

P (D|θ(s),M), θ(s) ∼ P (θ|M)

. . . usually has huge variance

Similarly for undirected graphs:

P (x) =
P ∗(x)
Z , Z =

∑
x

P ∗(x)

I will use this as an easy-to-illustrate case-study



Benchmark experiment

Training set RBM samples MoB samples

RBM setup:
— 28× 28 = 784 binary visible variables

— 500 binary hidden variables

Goal: Compare P (x) on test set, (PRBM(x) = P ∗(x)/Z)



Simple Importance Sampling

Z =
∑
x

P ∗(x)
Q(x)

Q(x) ≈ 1
S

S∑
s=1

P ∗(x(s))
Q(x)

, x(s) ∼ Q(x)

x(1)= , x(2)= , x(3)= ,

x(4)= , x(5)= , x(6)= ,. . .

Z = 2D
∑
x

1
2D
P ∗(x) ≈ 2D

S

S∑
s=1

P ∗(x(s)), x(s) ∼ Uniform



“Posterior” Sampling

Sample from P (x) =
P ∗(x)
Z ,

[
or P (θ|D) =

P (D|θ)P (θ)
P (D)

]

x(1)= , x(2)= , x(3)= ,

x(4)= , x(5)= , x(6)= ,. . .

Z =
∑
x

P ∗(x) Z “≈”
1
S

S∑
s=1

P ∗(x)
P (x)

= Z



Finding a Volume

→ x↓
P ∗(x)

Lake analogy and figure from MacKay textbook (2003)



Annealing / Tempering

e.g. P (x;β) ∝ P ∗(x)β π(x)(1−β)

β = 0 β = 0.01 β = 0.1 β = 0.25 β = 0.5 β = 1

1/β = “temperature”



Using other distributions

Chain between posterior and prior:

e.g. P (θ;β) =
1
Z(β)

P (D|θ)βP (θ)

β = 0 β = 0.01 β = 0.1 β = 0.25 β = 0.5 β = 1

Advantages:

• mixing easier at low β, good initialization for higher β?

• Z(1)
Z(0)

=
Z(β1)
Z(0)

· Z(β2)
Z(β1)

· Z(β3)
Z(β2)

· Z(β4)
Z(β3)

· Z(1)
Z(β4)

Related to annealing or tempering, 1/β = “temperature”



Parallel tempering

Normal MCMC transitions + swap proposals on P (X) =
∏
β

P (X;β)

P (x)

Pβ1(x)

Pβ2(x)

Pβ3(x)

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

Problems / trade-offs:

• obvious space cost

• need to equilibriate larger system

• information from low β diffuses up by slow random walk



Tempered transitions

Drive temperature up. . .

x̂0 ∼ P (x)

P (X) :

x̂0

x̂1

x̂2

x̂K−1

x̄K

x̌K−1

x̌2

x̌1

x̌0

T̂β1

T̂β2

T̂βK
ŤβK

Ťβ2

Ťβ1

. . . and back down

Proposal: swap order of points so final point x̌0 putatively ∼ P (x)

Acceptance probability:

min

[
1,

Pβ1(x̂0)
P (x̂0)

· · · PβK(x̂K−1)
PβK−1

(x̂0)
PβK−1

(x̌K−1)
PβK(x̌K−1)

· · · P (x̌0)
Pβ1(x̌0)

]



Annealed Importance Sampling

x0 ∼ p0(x)

P (X) : x0 x1 x2 xK−1 xK
T̃1 T̃2 T̃K

xK ∼ pK+1(x)

Q(X) : x0 x1 x2 xK−1 xK
T1 T2 TK

P(X) =
P ∗(xK)
Z

K∏
k=1

T̃k(xk−1; xk), Q(X) = π(x0)
K∏
k=1

Tk(xk; xk−1)

Then standard importance sampling of P(X) = P∗(X)
Z with Q(X)



Annealed Importance Sampling

Z ≈ 1
S

S∑
s=1

P∗(X)
Q(X)

Q↓ ↑P
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Summary on Z

Whirlwind tour of roughly how to find Z with Monte Carlo

The algorithms really have to be good at exploring the distribution

These are also the Monte Carlo approaches to watch for general use

on the hardest problems.

Can be useful for optimization too.

See the references for more.
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