Task Variant Allocation in Distributed Robotics

José Cano1, David White2, Alejandro Bordallo1, Ciaran McCreesh2, Patrick Prosser2, Jeremy Singer2, Vijay Nagarajan1

1School of Informatics, University of Edinburgh, UK 2School of Computing Science, University of Glasgow, UK

Summary

- We consider the problem of assigning software processes (or tasks) to hardware processors in distributed robotics environments.
- We introduce the notion of a task variant, which supports the adaptation of software to specific hardware configurations.
- We formalise the problem of assigning task variants to processors as a mathematical model.
- We propose three solution methods to the problem: Constraint Programming, a Greedy Heuristic and a Local Search Metaheuristic.
- We demonstrate the use of task variants with a case study, where constraint programming improves the local search metaheuristic and the greedy heuristic by an average of 16\% and 41\% respectively.

Task Variants

<table>
<thead>
<tr>
<th>Variant</th>
<th>Task</th>
<th>Benefit</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Better exploitation of the available HW resources!!!

Problem and solution methods

Maximise QoS & Minimise CPU

Constraints

- Constraint Programming
- Local Search Metaheuristic
- Greedy Heuristic

Evaluation

Greedy Heuristic
Local Search
Constraint Programming

Robotics: Science and Systems Conference (RSS), Ann Arbor, USA, June 2016