Generic capture-avoiding substitution

James Cheney

Binding Challenges workshop

April 24, 2005
My wish list

• Support for situations with unbound names and name generation (e.g. let-bound polymorphism, record fields, memory references, state ids, nonces.)

• Support for logics with unusual contexts of arbitrary “shape”, e.g., BI, separation logic

• Support for logics with unusual forms of quantification, e.g. Hoare logic, dynamic logic, nominal logic itself

• Support for unusual forms of binding, e.g. pattern matching
More challenges

- Proof terms in a sensible (e.g., predicative) constructive logic or functional programming language

- Formalized proofs mirror paper inductive proofs/recursive definitions

- Explainable to/usable by a 1st year grad student

- Support for capture-avoiding substitution
The challenge of capture-avoiding substitution

- “This generic programming stuff is neat and all, but it will never be able to deal with something really useful like capture-avoiding substitution, will it?” (SPJ, 2003, paraphrase)

- “This nominal stuff is interesting, if weird, but without HOAS’s implementation and theoretical support for substitution, how can it ever get off the ground?” (FP, 2004, paraphrase)

- Advanced abstract syntax techniques must support substitution.

- Generic programming techniques can help
Motivation

- Higher-order abstract syntax: second-class variables, $\alpha \beta \eta$-equivalence (formalized classically) provided by metalanguage
 - CAS provided for free at all types, but encodings difficult to analyze, intractable semantic problems

- Nominal (Gabbay-Pitts) syntax: first-class names, α-equivalence via swapping, freshness.
 - Analysis/semantics more straightforward, but CAS apparently must be written by hand for new types
Goal

• Provide capture-avoiding substitution “for free” in a real language

• by combining generic programming (GP) and nominal (NAS) techniques

• in a library that programmers can use to write real programs (or at least PL homework exercises or prototypes)

• and without needing expertise in GP or NAS!
In other words, I want to never ever again have to write (or read, or explain to others how to write, or tolerate, in any form) code like
let rec apply_s s t =
 let h = apply_s s in
 match t with
 | Name a -> Name a
 | Abs (a,e) -> Abs(a, h e)
 | App(c,es) -> App(c, List.map h es)
 | Susp(p,vs,x) -> (match lookup s x with
 Some tm -> apply_p p tm
 | None -> Susp(p,vs,x))
;;
let rec apply_s_g s g =
 let h1 = apply_s_g s in
 let h2 = apply_s_p s in
 match g with
 Gtrue -> Gtrue
| Gatomic(t) -> Gatomic(apply_s s t)
| Gand(g1,g2) -> Gand(h1 g1, h1 g2)
| Gor(g1,g2) -> Gor(h1 g1, h1 g2)
| Gforall(x,g) ->
 let x' = Var.rename x in
 Gforall(x', apply_s_g (join x (Susp(Perm.id, Univ, x'))) g)
| Gnew(x,g) ->
let x' = Var.rename x in
Gnew(x, apply_p_g (Perm.trans x x') g)
| Gexists(x,g) ->
 let x' = Var.rename x in
 Gexists(x', apply_s_g (join x (Susp(Perm.id,Univ,x'))) s) g)
| Gimplies(d,g) -> Gimplies(h2 d, h1 g)
| Gfresh(t1,t2) -> Gfresh(apply_s s t1, apply_s s t2)
| Gequals(t1,t2) -> Gequals(apply_s s t1, apply_s s t2)
| Geunify(t1,t2) -> Geunify(apply_s s t1, apply_s s t2)
| Gis(t1,t2) -> Gis(apply_s s t1, apply_s s t2)
| Gcut -> Gcut
| Guard (g1,g2,g3) -> Guard(h1 g1, h1 g2, h1 g3)
| Gnot(g) -> Gnot(h1 g)

and apply_s_p s p =
let h1 = apply_s_g s in
let h2 = apply_s_p s in
match p with
 Dtrue -> Dtrue
| Datomic(t) -> Datomic(apply_s s t)
| Dimplies(g,t) -> Dimplies(h1 g, h2 t)
| Dforall (x,p) ->
 let x’ = Var.rename x in
 Dforall (x’, apply_s_p (join x (Susp(Perm.id,Univ,x’)) s) p)
| Dand(p1,p2) -> Dand(h2 p1,h2 p2)
| Dnew(a,p) ->
 let a’ = Var.rename a in
 Dnew(a, apply_p_p (Perm.trans a a’) p)
;;
let tymap onvar c tyT =
 let rec walk c tyT = match tyT with
 TyId(b) as tyT -> tyT
 | TyVar(x,n) -> onvar c x n
 | TyArr(tyT1,tyT2) -> TyArr(walk c tyT1,walk c tyT2)
 | TyBool -> TyBool
 | TyTop -> TyTop
 | TyBot -> TyBot
 | TyRecord(fieldtys) -> TyRecord(List.map (fun (li,tyTi) -> (li, walk c tyTi)) fieldtys)
 | TyVariant(fieldtys) -> TyVariant(List.map (fun (li,tyTi) -> (li, walk c tyTi)) fieldtys)
 | TyFloat -> TyFloat
 | TyString -> TyString
or this.
| TyUnit -> TyUnit | TyAll(tyX,tyT1,tyT2) -> TyAll(tyX,walk c tyT1,walk (c+1) tyT2) |
| TyAll(tyX,tyT1,tyT2) -> TyAll(tyX,walk c tyT1,walk (c+1) tyT2) |
| TyNat -> TyNat |
| TySome(tyX,tyT1,tyT2) -> TySome(tyX,walk c tyT1,walk (c+1) tyT2) |
| TyAbs(tyX,knK1,tyT2) -> TyAbs(tyX,knK1,walk (c+1) tyT2) |
| TyApp(tyT1,tyT2) -> TyApp(walk c tyT1,walk c tyT2) |
| TyRef(tyT1) -> TyRef(walk c tyT1) |
| TySource(tyT1) -> TySource(walk c tyT1) |
| TySink(tyT1) -> TySink(walk c tyT1) |

in walk c tyT

let tmmap onvar ontype c t =
 let rec walk c t = match t with
 | TmVar(fi,x,n) -> onvar fi c x n
 | TmAbs(fi,x,tyT1,t2) -> TmAbs(fi,x,ontype c tyT1,walk (c+1) tyT2)
TmApp(fi, t1, t2) -> TmApp(fi, walk c t1, walk c t2)
TmTrue(fi) as t -> t
TmFalse(fi) as t -> t
TmIf(fi, t1, t2, t3) -> TmIf(fi, walk c t1, walk c t2, walk c t3)
TmProj(fi, t1, l) -> TmProj(fi, walk c t1, l)
TmRecord(fi, fields) -> TmRecord(fi, List.map (fun (li, ti) -> (li, walk c ti)) fields)
TmLet(fi, x, t1, t2) -> TmLet(fi, x, walk c t1, walk (c+1) t2)
TmFloat _ as t -> t
TmTimesfloat(fi, t1, t2) -> TmTimesfloat(fi, walk c t1, walk c t2)
TmAscribe(fi, t1, tyT1) -> TmAscribe(fi, walk c t1, ontype c tyT1)
TmInert(fi, tyT) -> TmInert(fi, ontype c tyT)
TmFix(fi, t1) -> TmFix(fi, walk c t1)
TmTag(fi, l, t1, tyT) -> TmTag(fi, l, walk c t1, ontype c tyT)
TmCase(fi,t,cases) ->
 TmCase(fi, walk c t,
 List.map (fun (li,(xi,ti)) -> (li, (xi,walk (c+1) ti)))
 cases)
TmString _ as t -> t
TmUnit(fi) as t -> t
TmLoc(fi,l) as t -> t
TmRef(fi,t1) -> TmRef(fi,walk c t1)
TmDeref(fi,t1) -> TmDeref(fi,walk c t1)
TmAssign(fi,t1,t2) -> TmAssign(fi,walk c t1,walk c t2)
TmError(_) as t -> t
TmTry(fi,t1,t2) -> TmTry(fi,walk c t1,walk c t2)
TmTAbs(fi,tyX,tyT1,t2) ->
 TmTAbs(fi,tyX,ontype c tyT1,walk (c+1) t2)
TmTApp(fi,t1,tyT2) -> TmTApp(fi,walk c t1,ontype c tyT2)
let typeShiftAbove d c tyT =
 tymap
 (fun c x n -> if x>=c then TyVar(x+d,n+d) else TyVar(x,n+d))
c tyT
let termShiftAbove d c t =
 tmmap
 (fun fi c x n -> if x>=c then TmVar(fi,x+d,n+d)
 else TmVar(fi,x,n+d))
 (typeShiftAbove d) t

c t

let termShift d t = termShiftAbove d 0 t

let typeShift d tyT = typeShiftAbove d 0 tyT

let bindingshift d bind =
 match bind with
 NameBind -> NameBind
 | TyVarBind(tyS) -> TyVarBind(typeShift d tyS)
VarBind(tyT) -> VarBind(typeShift d tyT)
TyAbbBind(tyT,opt) -> TyAbbBind(typeShift d tyT,opt)
TmAbbBind(t,tyT_opt) ->
 let tyT_opt' = match tyT_opt with
 None -> None
 | Some(tyT) -> Some(typeShift d tyT) in
 TmAbbBind(termShift d t, tyT_opt')

(* Substitution *)

let termSubst j s t =
 tmmap
 (fun fi j x n -> if x=j then termShift j s else TmVar(fi,i))
 (fun j tyT -> tyT)
let termSubstTop s t =
 termShift (-1) (termSubst 0 (termShift 1 s) t)

let typeSubst tyS j tyT =
 tymap
 (fun j x n -> if x=j then (typeShift j tyS) else (TyVar(x,n)))
 j tyT

let typeSubstTop tyS tyT =
 typeShift (-1) (typeSubst (typeShift 1 tyS) 0 tyT)

let rec tytermSubst tyS j t =
 tmmap (fun fi c x n -> TmVar(fi,x,n))
(fun j tyT -> typeSubst tyS j tyT) j t

let tytermSubstTop tyS t =
 termShift (-1) (tytermSubst (typeShift 1 tyS) 0 t)
Never.
I mean it.
In an ideal world...
In the binding-free case

- In the case of no binding, substitution is entirely algebraic

- Think of groups/rings/fields/algebras $K[X_1, \ldots, X_n]$ over generators X_1, \ldots, X_n

- Suppose $h : \{X_1, \ldots, X_n\} \rightarrow K'$.

- There is a homomorphic extension $h^\circ : K[X_1, \ldots, X_n] \rightarrow K'$ satisfying $h(X_i) = h^\circ(x_i)$ for each X_i.
Focus on initial Σ-algebras

- Let’s focus on initial Σ-algebras,

- that is, algebras over some uninterpreted signature Σ

- that is, *sets of terms*.

- Closed terms T_Σ, terms T_{Σ}^V over variables V

- Homomorphic extension unique.
• It’s easy to write down the unique endomorphism generated by h in a term algebra over

$$\Sigma = (c, \ldots, f^n, \ldots)$$

• To wit:

\[
\begin{align*}
 h : V & \to T^V_{\Sigma} \quad \iff \quad h^\circ : T^V_{\Sigma} \to T^V_{\Sigma} \\
 h^\circ(c) & = c \\
 h^\circ(f^n(t_1, \ldots, t_n)) & = f^n(h^\circ(t_1), \ldots, h^\circ(t_n)) \\
 h^\circ(X) & = h(X) \quad (X \in V)
\end{align*}
\]

• This function is almost completely uninteresting.
Now what if we have a sorted Σ-algebra

$$\Sigma = (\{S_1, \ldots, S_n\}, c : S, \ldots, f : S_1 \times \cdots \times S_n \to S, \ldots)$$

Then we have

$$h : V(S) \to T_V^\Sigma(S) \quad \mapsto \quad h_S^\circ : T_V^\Sigma(S) \to T_V^\Sigma(S)$$

$$h_S^\circ(c) = c \quad (c : S)$$

$$h_S^\circ(f(t_1, \ldots, t_n)) = f(h_{S_1}^\circ(t_1), \ldots, h_{S_n}^\circ(t_n)) \quad (f : S_1 \times \cdots \times S_n \to S)$$

$$h_S^\circ(X) = h(X) \quad (X : S \in V)$$

Only interesting part: the types
For a particular Σ-algebra, we can easily code up substitution in, say, Haskell.

In fact, for a given term structure, there is one interesting case, the rest are structural recursions:

\[
\begin{align*}
\text{subst} & :: (V \rightarrow T) \rightarrow (T \rightarrow T) \\
\text{subst } f \ (\text{Var } x) & = f \ x \\
\text{subst } f \ C & = C \\
\text{subst } f \ (F \ (t_1, \ldots, t_n)) & = F \ (\text{subst } f \ t_1, \ldots, \text{subst } f \ t_n) \\
\ldots
\end{align*}
\]
• For a particular sorted Σ-algebra, we can less easily code up substitution in, say, Haskell.

\[
\begin{align*}
\text{subst}_S & S : (V_S \rightarrow T_S) \rightarrow (T_S \rightarrow T_S) \\
\text{subst}_S f (S\text{Var } x) &= f x \\
\text{subst}_S f C &= C \\
\text{subst}_S f (F (t_1, \ldots, t_n)) &= F (\text{subst}_S f t_1, \ldots, \text{subst}_S f t_n) \\
\cdots & \\
\text{subst}_T & T : (V_S \rightarrow T_S) \rightarrow (T_T \rightarrow T_T) \\
\text{subst}_T f D &= D \\
\text{subst}_T f (G (t_1, \ldots, t_n)) &= G (\text{subst}_T f t_1, \ldots, \text{subst}_T f t_n) \\
\cdots
\end{align*}
\]
Snag

- Two problems: we need to write mn functions to substitute m substitutable types into n types in which variables can appear.

- Most cases are “the same”, just not in an easy to express way.

- To add insult to injury, need to use a different function name for each pair of types involved.

- (For this reason, usually consider substitution for at most 2-3 kinds of things.)
Type classes to the rescue?

- Haskell’s powerful *type class* feature at least lets us overload the name `subst`.

```haskell
class Subst v t u where
    subst :: (v -> t) -> u -> u
```

- Intuitively, `Subst v t u` = “`t` substitutable for `v` in `u`”

- But *mn* cases still need to be written.
Generic programming to the rescue

- **Generic programming** (in the context of typed functional languages) means *writing concise definitions of functions that work for any type.*

- Popular approaches based on generalizing maps, folds, etc.

- Most advanced GP features provided in/for Haskell

- Straightforward to implement algebraic substitution using existing GP techniques.
That’s all well and good, but...
A bigger snag

- If you have name-binding, apparently this all breaks.

<table>
<thead>
<tr>
<th></th>
<th>data $Exp = Var V \mid App;Exp;Exp \mid Lam;V;Exp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$subst;a;t;(Var;v)$</td>
<td>$=;\textbf{if};a;\equiv;b;\textbf{then};return;t;\textbf{else};return;(Var;b)$</td>
</tr>
</tbody>
</table>
| $subst\;a\;t\;(App\;t1\;t2)$ | $=\;\textbf{do}\;t1' \leftarrow subst\;a\;t\;t1$
 $t2' \leftarrow subst\;a\;t\;t2$
 $return\;(App\;t1'\;t2')$ |
| $subst\;a\;t\;(Lam\;v\;t1)$ | $=\;\textbf{do}\;v' \leftarrow gensym\;v$
 $t1' \leftarrow subst\;v\;(Var\;w)\;t1$
 $t1'' \leftarrow subst\;a\;t\;t1'\;$
 $return\;(Lam\;v'\;t1'')$ |

Back to the drawing board!
What about HOAS?

- In a functional language, can encode languages with bound variables using function types.

- Then *capture-avoiding substitution becomes function application*

- The theory of HOAS + CAS is nonalgebraic; recursion/induction with HOAS is a very hard current (+ last 10-15 years) research area.

- Whatever its merits, *HOAS not practical in typical current functional languages* because functions can’t be “decomposed”
Nominal abstract syntax to the rescue?

• Nominal abstract syntax (i.e. Gabbay-Pitts FM syntax of binding via swapping and freshness) purports to be compatible with inductive/algebraic reasoning

• Can it be incorporated into a “real” language? Yes—FreshML, αProlog

• Does capture-avoiding substitution fit into this framework? um possibly...

• Is it still algebraic enough to define generically? Claim yes.
We identify V_S with sets of names A_S in NAS, one per sort.

Suppose we have a “nominal Σ-algebra” with function symbol sorts like

$$f : \langle V \rangle S \to S, g : S \times \langle V \rangle \langle V \rangle S \to T, \ldots$$

where $\langle V \rangle S$ is the sort of things $\langle a \rangle x$ consisting of a value x of type S with one bound name a of type V (a.k.a. “abstraction”)

Suppose also: For some sorts S, know a “variable” function symbol $v_S : V \to S$ embedding names as things of type S.

Nominal algebra (TODO)
Nominal homomorphism theorem

- A nominal homomorphism ought be a finitely supported function satisfying:

\[h(\langle a \rangle x) = \langle a \rangle h(x) \quad a \neq h \]

for any “fresh” \(a \) not mentioned in \(h \)

- A “homomorphism theorem” (hopefully true) for nominal algebras:

Pre-Theorem 1. For any finitely supported \(h : V \rightarrow T^V \Sigma(S) \) there exists a unique homomorphism \((h'_S : T^V \Sigma(S') \rightarrow T^V \Sigma(S') \mid S' \in Sorts) \) extending \(h \).
Nominal capture-avoiding substitution

- Let

\[h_{[x \mapsto t]}(y) = \begin{cases}
 t & (x = y) \\
 y &
\end{cases} \]

- Claim: For all “reasonable” encodings of languages with binding, \([x \mapsto t] \) defined as \([x \mapsto t]u = h \circ (u) \) is capture-avoiding substitution.

- Why? Because for abstractions, we require

\[[a \mapsto t](\langle b \rangle x) = \langle b \rangle [a \mapsto t]x \]

for \(b \not= a, t \).
Example: Lambda

- A nominal Σ algebra Λ_α for untyped λ terms:

 $v_\Lambda : V \to \Lambda_\alpha \quad \odot : \Lambda_\alpha \times \Lambda_\alpha \to \Lambda_\alpha \quad \lambda : \langle V \rangle \Lambda_\alpha \to \Lambda_\alpha$

 Encoding of ordinary λ terms Λ:

 $\varrho x = v_\Lambda(x) \quad \varrho t u = \odot(\varrho t, \varrho u) \quad \varrho \lambda x. t = \langle x \rangle \varrho t$

- Define α-equivalence $\equiv_\alpha : \Lambda \times \Lambda$ and CAS $\{x \mapsto t\}$ “as usual”
Some more pre-theorems

- Believe this to be the case given appropriate definitions:

 Pre-Theorem 2. Λ/\equiv_α is a nominal Σ algebra and $\lceil \cdot \rceil : \Lambda/\equiv_\alpha \to \Lambda_\alpha$ is a nom. Σ algebra isomorphism.

- Then it follows immediately that

 Corollary 1 (Adequacy). For any x, t, u:

 $$\lceil \{x \mapsto u\} t \rceil = [x \mapsto \lceil u \rceil] \lceil t \rceil$$
So we’re done... right?

- This shows *in principle* that we can get CAS in a nice algebraic way.

- At this point, mathematicians generally call it a day and go home.

- But I’m a computer scientist.

- I want an implementation *that does all the work for me*

- This takes a bit of doing.
I have implemented this and it works.
FreshLib

- FreshLib is a small Haskell class library

- It implements NAS/swapping/freshness/\approx_α for all “nominal” types, including user-defined ones and “name” and “abstraction” types

- It provides CAS and FV functions “for free”, if you specify the variable constructor of a type.

- Almost no boilerplate code needs to be written by user for new datatypes.
Scrap your nameplate

Here is the specification of $ \Lambda $ in \textit{FreshLib}.

\begin{verbatim}
data Exp = Var Name | App Exp Exp | Lam (Name \\ Exp)
instance HasVar Exp where
 is_var (Var x) = Just x
 is_var _ = Nothing
\end{verbatim}

plus a few imports and other things.
Here’s System F.

```
data Exp = Var Name | App Exp Exp | Lam (Name \ Exp) 
       | TApp Exp Ty | TLam (Name \ Ty)

data Ty = TVar Name | FnTy Ty Ty | AllTy (Name \ Ty)

instance HasVar Exp where
  is_var (Var x) = Just x
  is_var _       = Nothing

instance HasVar Ty where
  is_var (TVar x) = Just x
  is_var _       = Nothing
```
The scrapping continues

Here’s LF.

\[
\begin{align*}
\textbf{data} & \; \text{Exp} = \; \text{Cnst} \; \text{String} \; \mid \; \text{Var} \; \text{Var} \; \mid \; \text{App} \; \text{Exp} \; \text{Exp} \; \mid \; \text{Lam} \; (\text{Var} \downarrow \text{Exp}) \\
\textbf{data} & \; \text{Ty} = \; \text{TCnst} \; \text{String} \; \mid \; \text{PiTy} \; \text{Ty} \; (\text{Var} \downarrow \text{Ty}) \; \mid \; \text{TVApp} \; \text{Ty} \; \text{Exp} \\
& \quad \mid \; \text{TVar} \; \text{Name} \; \mid \; \text{TApp} \; \text{Ty} \; \text{Ty} \; \mid \; \text{TLam} \; \text{Kind} \; (\text{Name} \downarrow \text{Ty}) \\
\textbf{data} & \; \text{Kind} = \; \text{KType} \; \mid \; \text{KPi} \; \text{Kind} \; (\text{Name} \downarrow \text{Kind}) \\
\textbf{instance} & \; \text{HasVar} \; \text{Exp} \; \text{where} \\
& \quad \text{is_var} \; (\text{Var} \; x) = \; \text{Just} \; x \\
& \quad \text{is_var} \; _{} = \; \text{Nothing} \\
\textbf{instance} & \; \text{HasVar} \; \text{Ty} \; \text{where} \\
& \quad \text{is_var} \; (\text{TVar} \; x) = \; \text{Just} \; x \\
& \quad \text{is_var} \; _{} = \; \text{Nothing}
\end{align*}
\]
Yet more scrapping

The \(\pi \)-calculus:

\[
\textbf{data} \quad \text{Proc} \quad = \quad \text{Tau} \mid \text{Plus Proc Proc} \mid \text{Par Proc Proc} \mid \text{Repl Proc} \\
\mid \text{In Name (Name \(\parallel \) Proc)} \mid \text{Out Name Name Proc} \\
\mid \text{Res (Name \(\parallel \) Proc)} \mid \text{Match Name Name}
\]

\[
\textbf{data} \quad \text{Trans} \quad = \quad \text{TTau Proc Proc} \\
\mid \text{TIn Proc Name (Name \(\parallel \) Proc)} \\
\mid \text{TBOOut Proc Name (Name \(\parallel \) Proc)} \\
\mid \text{TFOOut Proc Name Name Proc}
\]

Note: \(\text{HasVarName} \) already has an instance (\(\text{CAS} \) of name for name always makes sense)
How it works

- Types $Name$, $Name$: a: represent names, name-abstractions.

- Class Nom: provides swapping, freshness, α-equivalence

- Class $HasVar$: says what case of user-defined type acts as variable of that type.

- Class $Subst$, $FreeVars$: substitution and free variable sets

- Class instances & SYB library used to automatically extend to new datatypes (hot off the press)
Demo

- Details and implementation at

 http://homepages.inf.ed.ac.uk/jcheney/FreshLib.html

- Also implemented in αProlog (by hacking CAS operator into the language)

 http://homepages.inf.ed.ac.uk/jcheney/projects/aprolog.html
What’s next
Free variable sets

- This is also a homomorphism, but onto a nom. Σ algebra of sets of names.

- It can be (and has been) implemented as a generic function too.
Multiple name types

- Right now only one name type $Name$ allowed.

- This is bad because bindings can “interfere” causing undesired effects.

- Working on this, but appears tricky.
Nonstandard binding

- Nonstandard = binding some distinguished names of one term within another

- E.G. $\Gamma \vdash e : T$, case e of $p(x, y) \rightarrow e'$

- Handle using class $BType$ with methods $bound :: a \rightarrow [Name]$ and $equiv :: a \rightarrow a \rightarrow MaybePerm$

- Bound: says what names are bound. Equiv: says when two a’s are equal up to a permutation.
Making substitution pure

- In FreshML, \textit{subst} is a “pure” (side-effect free) function.

- In FreshLib, \textit{subst} is not, so monadic.

- Peyton Jones and Thompson suggest a way around this (used in Haskell inliner)

- Their idea: Track set of names in scope, use hashing to guess a fresh name when needed.

- They say it works surprisingly well.
Why not FreshML?

- FreshML provides even better built-in support for NAS!

- But FreshML (and ML family generally) have almost no support for GP techniques.

- Haskell type classes + generics give us 90% of what FreshML does with much less relative coding effort.

- It might be easy to hack built-in generic CAS into FreshML (it was in αProlog).
Theory

- I know this works, but the theory should be worked out.

- if it hasn’t been already.
Theoretical support

- Theoretical support (e.g., “free” substitution lemmas) is a key advantage of HOAS.

- Future direction: can generic CAS be integrated into theorem provers?

- Can proofs of substitution principles be derived automatically?

- This would, I believe, establish NAS as competitive alternative to HOAS beyond any question.
Conclusion

- Support for capture avoiding substitution is one apparent advantage of higher-order abstract syntax over other approaches.

- In NAS, however, CAS can be treated algebraically extending standard techniques from universal algebra.

- Type classes and generic programming techniques for Haskell can be used to provide NAS and CAS “for free”, as a black-box library

- Interesting extensions appear possible, current work.
Plug

- Details and implementation at

 http://homepages.inf.ed.ac.uk/jcheney/FreshLib.html

- Also implemented in αProlog (by hacking CAS operator into the language)

 http://homepages.inf.ed.ac.uk/jcheney/projects/aprolog.html