
Generic capture-avoiding substitution

James Cheney

Binding Challenges workshop

April 24, 2005

1

My wish list

• Support for situations with unbound names and name generation (e.g.
let-bound polymorphism, record fields, memory references, state ids,
nonces.)

• Support for logics with unusual contexts of arbitrary “shape”, e.g., BI,
separation logic

• Support for logics with unusual forms of quantification, e.g. Hoare
logic, dynamic logic, nominal logic itself

• Support for unusual forms of binding, e.g. pattern matching

2

More challenges

• Proof terms in a sensible (e.g., predicative) constructive logic or func-
tional programming language

• Formalized proofs mirror paper inductive proofs/recursive definitions

• Explainable to/usable by a 1st year grad student

• Support for capture-avoiding substitution

3

The challenge of capture-avoiding substitution

• “This generic programming stuff is neat and all, but it will never be able
to deal with something really useful like capture-avoiding substitution,
will it?” (SPJ, 2003, paraphrase)

• “This nominal stuff is interesting, if weird, but without HOAS’s imple-
mentation and theoretical support for substitution, how can it ever get
off the ground?” (FP, 2004, paraphrase)

• Advanced abstract syntax techniques must support substitution.

• Generic programming techniques can help

4

Motivation

• Higher-order abstract syntax: second-class variables, αβη-equivalence
(formalized classically) provided by metalanguage

– CAS provided for free at all types, but encodings difficult to analyze,
intractable semantic problems

• Nominal (Gabbay-Pitts) syntax: first-class names, α-equivalence via
swapping, freshness.

– Analysis/semantics more straightforward, but CAS apparently must
be written by hand for new types

5

Goal

• Provide capture-avoiding substitution “for free” in a real language

• by combining generic programming (GP) and nominal (NAS) tech-
niques

• in a library that programmers can use to write real programs (or at
least PL homework exercises or prototypes)

• and without needing expertise in GP or NAS!

6

In other words, I want to never ever again have

to write (or read, or explain to others how to

write, or tolerate, in any form) code like

7

this.

let rec apply_s s t =

let h = apply_s s in

match t with

Name a -> Name a

| Abs (a,e) -> Abs(a, h e)

| App(c,es) -> App(c, List.map h es)

| Susp(p,vs,x) -> (match lookup s x with

Some tm -> apply_p p tm

| None -> Susp(p,vs,x))

;;

8

or this.

let rec apply_s_g s g =

let h1 = apply_s_g s in

let h2 = apply_s_p s in

match g with

Gtrue -> Gtrue

| Gatomic(t) -> Gatomic(apply_s s t)

| Gand(g1,g2) -> Gand(h1 g1, h1 g2)

| Gor(g1,g2) -> Gor(h1 g1, h1 g2)

| Gforall(x,g) ->

let x’ = Var.rename x in

Gforall(x’, apply_s_g (join x (Susp(Perm.id,Univ,x’)) s) g)

| Gnew(x,g) ->

9

let x’ = Var.rename x in

Gnew(x, apply_p_g (Perm.trans x x’) g)

| Gexists(x,g) ->

let x’ = Var.rename x in

Gexists(x’, apply_s_g (join x (Susp(Perm.id,Univ,x’)) s) g)

| Gimplies(d,g) -> Gimplies(h2 d, h1 g)

| Gfresh(t1,t2) -> Gfresh(apply_s s t1, apply_s s t2)

| Gequals(t1,t2) -> Gequals(apply_s s t1, apply_s s t2)

| Geunify(t1,t2) -> Geunify(apply_s s t1, apply_s s t2)

| Gis(t1,t2) -> Gis(apply_s s t1, apply_s s t2)

| Gcut -> Gcut

| Guard (g1,g2,g3) -> Guard(h1 g1, h1 g2, h1 g3)

| Gnot(g) -> Gnot(h1 g)

and apply_s_p s p =

let h1 = apply_s_g s in

let h2 = apply_s_p s in

match p with

Dtrue -> Dtrue

| Datomic(t) -> Datomic(apply_s s t)

| Dimplies(g,t) -> Dimplies(h1 g, h2 t)

| Dforall (x,p) ->

let x’ = Var.rename x in

Dforall (x’, apply_s_p (join x (Susp(Perm.id,Univ,x’)) s) p)

| Dand(p1,p2) -> Dand(h2 p1,h2 p2)

| Dnew(a,p) ->

let a’ = Var.rename a in

Dnew(a, apply_p_p (Perm.trans a a’) p)

;;

or this.

let tymap onvar c tyT =

let rec walk c tyT = match tyT with

TyId(b) as tyT -> tyT

| TyVar(x,n) -> onvar c x n

| TyArr(tyT1,tyT2) -> TyArr(walk c tyT1,walk c tyT2)

| TyBool -> TyBool

| TyTop -> TyTop

| TyBot -> TyBot

| TyRecord(fieldtys) -> TyRecord(List.map (fun (li,tyTi) -> (li, walk c tyTi)) fieldtys)

| TyVariant(fieldtys) -> TyVariant(List.map (fun (li,tyTi) -> (li, walk c tyTi)) fieldtys)

| TyFloat -> TyFloat

| TyString -> TyString

10

| TyUnit -> TyUnit

| TyAll(tyX,tyT1,tyT2) -> TyAll(tyX,walk c tyT1,walk (c+1) tyT2)

| TyNat -> TyNat

| TySome(tyX,tyT1,tyT2) -> TySome(tyX,walk c tyT1,walk (c+1) tyT2)

| TyAbs(tyX,knK1,tyT2) -> TyAbs(tyX,knK1,walk (c+1) tyT2)

| TyApp(tyT1,tyT2) -> TyApp(walk c tyT1,walk c tyT2)

| TyRef(tyT1) -> TyRef(walk c tyT1)

| TySource(tyT1) -> TySource(walk c tyT1)

| TySink(tyT1) -> TySink(walk c tyT1)

in walk c tyT

let tmmap onvar ontype c t =

let rec walk c t = match t with

TmVar(fi,x,n) -> onvar fi c x n

| TmAbs(fi,x,tyT1,t2) -> TmAbs(fi,x,ontype c tyT1,walk (c+1) t2)

| TmApp(fi,t1,t2) -> TmApp(fi,walk c t1,walk c t2)

| TmTrue(fi) as t -> t

| TmFalse(fi) as t -> t

| TmIf(fi,t1,t2,t3) -> TmIf(fi,walk c t1,walk c t2,walk c t3)

| TmProj(fi,t1,l) -> TmProj(fi,walk c t1,l)

| TmRecord(fi,fields) -> TmRecord(fi,List.map (fun (li,ti) ->

(li,walk c ti))

fields)

| TmLet(fi,x,t1,t2) -> TmLet(fi,x,walk c t1,walk (c+1) t2)

| TmFloat _ as t -> t

| TmTimesfloat(fi,t1,t2) -> TmTimesfloat(fi, walk c t1, walk c t2)

| TmAscribe(fi,t1,tyT1) -> TmAscribe(fi,walk c t1,ontype c tyT1)

| TmInert(fi,tyT) -> TmInert(fi,ontype c tyT)

| TmFix(fi,t1) -> TmFix(fi,walk c t1)

| TmTag(fi,l,t1,tyT) -> TmTag(fi, l, walk c t1, ontype c tyT)

| TmCase(fi,t,cases) ->

TmCase(fi, walk c t,

List.map (fun (li,(xi,ti)) -> (li, (xi,walk (c+1) ti)))

cases)

| TmString _ as t -> t

| TmUnit(fi) as t -> t

| TmLoc(fi,l) as t -> t

| TmRef(fi,t1) -> TmRef(fi,walk c t1)

| TmDeref(fi,t1) -> TmDeref(fi,walk c t1)

| TmAssign(fi,t1,t2) -> TmAssign(fi,walk c t1,walk c t2)

| TmError(_) as t -> t

| TmTry(fi,t1,t2) -> TmTry(fi,walk c t1,walk c t2)

| TmTAbs(fi,tyX,tyT1,t2) ->

TmTAbs(fi,tyX,ontype c tyT1,walk (c+1) t2)

| TmTApp(fi,t1,tyT2) -> TmTApp(fi,walk c t1,ontype c tyT2)

| TmZero(fi) -> TmZero(fi)

| TmSucc(fi,t1) -> TmSucc(fi, walk c t1)

| TmPred(fi,t1) -> TmPred(fi, walk c t1)

| TmIsZero(fi,t1) -> TmIsZero(fi, walk c t1)

| TmPack(fi,tyT1,t2,tyT3) ->

TmPack(fi,ontype c tyT1,walk c t2,ontype c tyT3)

| TmUnpack(fi,tyX,x,t1,t2) ->

TmUnpack(fi,tyX,x,walk c t1,walk (c+2) t2)

in walk c t

let typeShiftAbove d c tyT =

tymap

(fun c x n -> if x>=c then TyVar(x+d,n+d) else TyVar(x,n+d))

c tyT

let termShiftAbove d c t =

tmmap

(fun fi c x n -> if x>=c then TmVar(fi,x+d,n+d)

else TmVar(fi,x,n+d))

(typeShiftAbove d)

c t

let termShift d t = termShiftAbove d 0 t

let typeShift d tyT = typeShiftAbove d 0 tyT

let bindingshift d bind =

match bind with

NameBind -> NameBind

| TyVarBind(tyS) -> TyVarBind(typeShift d tyS)

| VarBind(tyT) -> VarBind(typeShift d tyT)

| TyAbbBind(tyT,opt) -> TyAbbBind(typeShift d tyT,opt)

| TmAbbBind(t,tyT_opt) ->

let tyT_opt’ = match tyT_opt with

None->None

| Some(tyT) -> Some(typeShift d tyT) in

TmAbbBind(termShift d t, tyT_opt’)

(* -- *)

(* Substitution *)

let termSubst j s t =

tmmap

(fun fi j x n -> if x=j then termShift j s else TmVar(fi,x,n))

(fun j tyT -> tyT)

j t

let termSubstTop s t =

termShift (-1) (termSubst 0 (termShift 1 s) t)

let typeSubst tyS j tyT =

tymap

(fun j x n -> if x=j then (typeShift j tyS) else (TyVar(x,n)))

j tyT

let typeSubstTop tyS tyT =

typeShift (-1) (typeSubst (typeShift 1 tyS) 0 tyT)

let rec tytermSubst tyS j t =

tmmap (fun fi c x n -> TmVar(fi,x,n))

(fun j tyT -> typeSubst tyS j tyT) j t

let tytermSubstTop tyS t =

termShift (-1) (tytermSubst (typeShift 1 tyS) 0 t)

Never.

11

I mean it.

12

In an ideal world...

13

In the binding-free case

• In the case of no binding, substitution is entirely algebraic

• Think of groups/rings/fields/algebras K[X1, . . . , Xn] over generators
X1, . . . , Xn

• Suppose h : {X1, . . . , Xn} → K′.

• There is a homomorphic extension h◦ : K[X1, . . . , Xn]→ K′ satisfy-
ing h(Xi) = h◦(xi) for each Xi.

14

Focus on initial Σ-algebras

• Let’s focus on initial Σ-algebras,

• that is, algebras over some uninterpreted signature Σ

• that is, sets of terms.

• Closed terms TΣ, terms TV
Σ over variables V

• Homomorphic extension unique.

15

Duh

• It’s easy to write down the unique endomorphism generated by h in a
term algebra over

Σ = (c, . . . , fn, . . .)

• To wit:

h : V → TV
Σ 7→ h◦ : TV

Σ → TV
Σ

h◦(c) = c
h◦(fn(t1, . . . , tn)) = fn(h◦(t1), . . . , h◦(tn))

h◦(X) = h(X) (X ∈ V)

• This function is almost completely uninteresting.

16

Duh (II)

• Now what if we have a sorted Σ-algebra

Σ = ({S1, . . . , Sn}, c : S, . . . , f : S1 × · · · × Sn → S, . . .)

• Then we have

h : V (S)→ TV
Σ(S) 7→ h◦S : TV

Σ(S)→ TV
Σ(S)

h◦S(c) = c (c : S)
h◦S(f(t1, . . . , tn)) = f(h◦S1

(t1), . . . , h
◦
Sn

(tn)) (f : S1 × · · · × Sn → S)

h◦S(X) = h(X) (X : S ∈ V)

• Only interesting part: the types

17

Duh (III)

• For a particular Σ-algebra, we can easily code up substitution in, say,
Haskell.

• In fact, for a given term structure, there is one interesting case, the rest
are structural recursions:

subst :: (V → T)→ (T → T)

subst f (Var x) = f x

subst f C = C

subst f (F (t1 , ..., tn)) = F (subst f t1 , ..., subst f tn)

...

18

Duh (IV)

• For a particular sorted Σ-algebra, we can less easily code up substi-
tution in, say, Haskell.

subst S S :: (V S → T S)→ (T S → T S)
subst S S f (SVar x) = f x
subst S S f C = C
subst S S f (F (t1 , ..., tn)) = F (subst S1 f t1 , ..., subst Sn f tn)
...

subst S T :: (V S → T S)→ (T T → T T)
subst S T f D = D
subst S T f (G (t1 , ..., tn)) = G (subst S1 f t1 , ..., subst Sn f tn)
...

19

Snag

• Two problems: we need to write mn functions to substitute m substi-
tutable types into n types in which variables can appear

• Most cases are “the same”, just not in an easy to express way

• To add insult to injury, need to use a different function name for each
pair of types involved.

• (For this reason, usually consider substitution for at most 2-3 kinds of
things.)

20

Type classes to the rescue?

• Haskell’s powerful type class feature at least lets us overload the name
subst .

class Subst v t u where

subst :: (v → t)→ u → u

• Intuitively, Subst v t u = “t substitutable for v in u”

• But mn cases still need to be written.

21

Generic programming to the rescue

• Generic programming (in the context of typed functional languages)
means writing concise definitions of functions that work for any type.

• Popular approaches based on generalizing maps, folds, etc.

• Most advanced GP features provided in/for Haskell

• Straightforward to implement algebraic substitution using existing GP
techniques.

22

That’s all well and good, but...

23

A bigger snag

• If you have name-binding, apparently this all breaks.

data Exp = Var V | App Exp Exp | Lam V Exp

subst a t (Var v) = if a ≡ b then return t else return (Var b)
subst a t (App t1 t2) = do t1 ′ ← subst a t t1

t2 ′ ← subst a t t2

return (App t1 ′ t2 ′)
subst a t (Lam v t1) = do v ′ ← gensym v

t1 ′ ← subst v (Var w) t1

t1 ′′ ← subst a t t1 ′

return (Lam v ′ t1 ′′)

Back to the drawing board!

24

What about HOAS?

• In a functional language, can encode languages with bound variables
using function types.

• Then capture-avoiding substitution becomes function application

• The theory of HOAS + CAS is nonalgebraic; recursion/induction with
HOAS is a very hard current (+ last 10-15 years) research area.

• Whatever its merits, HOAS not practical in typical current functional
languages because functions can’t be “decomposed”

25

Nominal abstract syntax to the rescue?

• Nominal abstract syntax (i.e. Gabbay-Pitts FM syntax of binding via
swapping and freshness) purports to be compatible with inductive/algebraic
reasoning

• Can it be incorporated into a “real” language? Yes—FreshML, αProlog

• Does capture-avoiding substitution fit into this framework? um possi-
bly...

• Is it still algebraic enough to define generically? Claim yes.

26

Nominal algebra (TODO)

• We identify VS with sets of names AS in NAS, one per sort.

• Suppose we have a “nominal Σ-algebra” with function symbol sorts
like

f : 〈V 〉S → S, g : S × 〈V 〉〈V 〉S → T, . . .

where 〈V 〉S is the sort of things 〈a〉x consisting of a value x of type S

with one bound name a of type V (a.k.a. “abstraction”)

• Suppose also: For some sorts S, know a “variable” function symbol
vS : V → S embedding names as things of type S.

27

Nominal homomorphism theorem

• A nominal homomorphism ought be a finitely supported function sat-
isfying:

h(〈a〉x) = 〈a〉h(x) a # h

for any “fresh” a not mentioned in h

• A “homomorphism theorem” (hopefully true) for nominal algebras:

Pre-Theorem 1. For any finitely supported h : V → TV Σ(S) there
exists a unique homomorphism (h′◦S : TV Σ(S′) → TV Σ(S′)|S′ ∈
Sorts) extending h.

28

Nominal capture-avoiding substitution

• Let

h[x 7→t](y) =

{
t (x = y)
y

• Claim: For all “reasonable” encodings of languages with binding, [x 7→
t] defined as [x 7→ t]u = h◦(u) is capture-avoiding substitution.

• Why? Because for abstractions, we require

[a 7→ t](〈b〉x) = 〈b〉[a 7→ t]x

for b # a, t.

29

Example: Lambda

• A nominal Σ algebra Λα for untyped λ terms:

vΛ : V → Λα @ : Λα × Λα → Λα λ : 〈V 〉Λα → Λα

Encoding of ordinary λ terms Λ:

pxq = vΛ(x) pt uq = @(ptq, puq) pλx.tq = 〈x〉ptq

• Define α-equivalence ≡α: Λ× Λ and CAS {x 7→ t} “as usual”

30

Some more pre-theorems

• Believe this to be the case given appropriate definitions:

Pre-Theorem 2. Λ/≡α is a nominal Σ algebra and p·q : Λ/≡α → Λα

is a nom. Σ algebra isomorphism.

• Then it follows immediately that

Corollary 1 (Adequacy). For any x, t, u:

p{x 7→ u}tq = [x 7→ puq]ptq

31

So we’re done... right?

• This shows in principle that we can get CAS in a nice algebraic way.

• At this point, mathematicians generally call it a day and go home.

• But I’m a computer scientist.

• I want an implementation that does all the work for me

• This takes a bit of doing.

32

I have implemented this and it works.

33

FreshLib

• FreshLib is a small Haskell class library

• It implements NAS/swapping/freshness/≈α for all “nominal” types, in-
cluding user-defined ones and “name” and “abstraction” types

• It provides CAS and FV functions “for free”, if you specify the variable
constructor of a type.

• Almost no boilerplate code needs to be written by user for new datatypes.

34

Scrap your nameplate

Here is the specification of Λ in FreshLib.

data Exp = Var Name | App Exp Exp | Lam (Name \\\Exp)

instance HasVar Exp where

is var (Var x) = Just x

is var = Nothing

plus a few imports and other things.

35

Scrap more nameplate

Here’s System F.

data Exp = Var Name | App Exp Exp | Lam (Name \\\Exp)

| TApp Exp Ty | TLam (Name \\\Ty)

data Ty = TVar Name | FnTy Ty Ty | AllTy (Name \\\Ty)

instance HasVar Exp where

is var (Var x) = Just x

is var = Nothing

instance HasVar Ty where

is var (TVar x) = Just x

is var = Nothing

36

The scrapping continues

Here’s LF.

data Exp = Cnst String | Var Var | App Exp Exp | Lam (Var \\\Exp)
data Ty = TCnst String | PiTy Ty (Var \\\Ty) | TVApp Ty Exp

| TVar Name | TApp Ty Ty | TLam Kind (Name \\\Ty)
data Kind = KType | KPi Kind (Name \\\Kind)
instance HasVar Exp where

is var (Var x) = Just x

is var = Nothing

instance HasVar Ty where

is var (TVar x) = Just x

is var = Nothing

37

Yet more scrapping

The π-calculus:

data Proc = Tau | Plus Proc Proc | Par Proc Proc | Repl Proc

| In Name (Name \\\Proc) | Out Name Name Proc

| Res (Name \\\Proc) | Match Name Name

data Trans = TTau Proc Proc

| TIn Proc Name (Name \\\Proc)

| TBOut Proc Name (Name \\\Proc)

| TFOut Proc Name Name Proc

Note: HasV arName already has an instance (CAS of name for name
always makes sense)

38

How it works

• Types Name, Name : a: represent names, name-abstractions.

• Class Nom: provides swapping, freshness, α-equivalence

• Class HasV ar: says what case of user-defined type acts as variable
of that type.

• Class Subst, FreeV ars: substitution and free variable sets

• Class instances & SYB library used to automatically extend to new
datatypes (hot off the press)

39

Demo

• Details and implementation at

http://homepages.inf.ed.ac.uk/jcheney/FreshLib.html

• Also implemented in αProlog (by hacking CAS operator into the lan-
guage)

http://homepages.inf.ed.ac.uk/jcheney/projects/aprolog.html

40

What’s next

41

Free variable sets

• This is also a homomorphism, but onto a nom. Σ algebra of sets of
names.

• It can be (and has been) implemented as a generic function too.

42

Multiple name types

• Right now only one name type Name allowed.

• This is bad because bindings can “interfere” causing undesired effects.

• Working on this, but appears tricky.

43

Nonstandard binding

• Nonstandard = binding some distinguished names of one term within
another

• E.G. Γ ` e : T , case e of p(x, y)→ e′

• Handle using class BType with methods bound :: a → [Name] and
equiv :: a→ a→MaybePerm

• Bound: says what names are bound. Equiv: says when two a’s are
equal up to a permutation.

44

Making substitution pure

• In FreshML, subst is a “pure” (side-effect free) function.

• In FreshLib, subst is not, so monadic.

• Peyton Jones and Thompson suggest a way around this (used in Haskell
inliner)

• Their idea: Track set of names in scope, use hashing to guess a fresh
name when needed.

• They say it works surprisingly well.

45

Why not FreshML?

• FreshML provides even better built-in support for NAS!

• But FreshML (and ML family generally) have almost no support for GP
techniques.

• Haskell type classes + generics give us 90% of what FreshML does
with much less relative coding effort.

• It might be easy to hack built-in generic CAS into FreshML (it was in
αProlog).

46

Theory

• I know this works, but the theory should be worked out.

• if it hasn’t been already.

47

Theoretical support

• Theoretical support (e.g., “free” substitution lemmas) is a key advan-
tage of HOAS.

• Future direction: can generic CAS be integrated into theorem provers?

• Can proofs of substitution principles be derived automatically?

• This would, I believe, establish NAS as competitive alternative to HOAS
beyond any question.

48

Conclusion

• Support for capture avoiding substitution is one apparent advantage of
higher-order abstract syntax over other approaches.

• In NAS, however, CAS can be treated algebraically extending standard
techniques from universal algebra.

• Type classes and generic programming techniques for Haskell can be
used to provide NAS and CAS “for free”, as a black-box library

• Interesting extensions appear possible, current work.

49

Plug

• Details and implementation at

http://homepages.inf.ed.ac.uk/jcheney/FreshLib.html

• Also implemented in αProlog (by hacking CAS operator into the lan-
guage)

http://homepages.inf.ed.ac.uk/jcheney/projects/aprolog.html

50

