
Adventures in XML
Updates

James Cheney
University of Edinburgh

Joint work with Michael Benedikt, Oxford

Problem

• Most databases change over time

• XQuery doesn’t handle this well

• Can write “query” that copies data & makes
small change

• but this can be awkward or inefficent

• and some “updates” only expressible with user
defined functions

Update languages

• SQL has update expressions distinct from
queries

• XML updates can’t be expressed easily/
efficiently using XQuery

• W3C developing XQuery Update Facility

• Goal: SQL-like updates for XML??

Problem

• XML/trees more complicated than tables

• Larger language design space

• Typechecking, static analysis ill-understood

Goal
• Want to predict effect of update on database

(schema)

• This isn’t addressed at all by standard (or any previous work)

• Problem statement:

• Given input schema and update, calculate output
schema that describes data after doing update

• Checking undecidable (and exact inference impossible)
for sufficiently rich language

• example: linear trees -> { anbn | n ≥ 0 }

Functional Updates for
XML

FLUX

• [C. ICFP '08]

• Goal: "functional" update language

• clear semantics

• straightforward typechecking

• Based on a "functionally" flavored database
update language (Liefke and Davidson
1999, Buneman, C. & Vansummeren 2008)

A high-level update

insert as last
into $doc/a
value <c/>;
delete $doc/a/b

foo
barfoo

doc

a a

b d b

c

d

b

c a

c

d

c
d

b

A low-level update

children[iter[a?
 children[left[insert <c/>]]
]];
children[iter[a?
 children[iter[b? delete]]
]]

foo
barfoo

doc

a a

b d b

c

d

b

c a

c

d

c
d

b

A low-level update

children[iter[a?
 children[left[insert <c/>]]
]];
children[iter[a?
 children[iter[b? delete]]
]]

foo
barfoo

doc

a a

b d b

c

d

b

c a

c

d

c
d

c
b

A low-level update

children[iter[a?
 children[left[insert <c/>]]
]];
children[iter[a?
 children[iter[b? delete]]
]]

foo
barfoo

doc

a a

b d b

c

d

b

c a

c

d

c
d

c
c

b

A low-level update

children[iter[a?
 children[left[insert <c/>]]
]];
children[iter[a?
 children[iter[b? delete]]
]]

foo

doc

a a

d b

c

d

b

c a

d

c
c

b

A low-level update

children[iter[a?
 children[left[insert <c/>]]
]];
children[iter[a?
 children[iter[b? delete]]
]]

doc

a a

d

c

d
c

c

b

An optimized low-level
update

children[iter[a?
 children[left[insert <c/>];
 iter[b? delete]]
]]

foo
barfoo

doc

a a

b d b

c

d

b

c a

c

d

c
d

b

An optimized low-level
update

children[iter[a?
 children[left[insert <c/>];
 iter[b? delete]]
]]

foo

doc

a a

d b

c

d

b

c a

d

c
b

An optimized low-level
update

children[iter[a?
 children[left[insert <c/>];
 iter[b? delete]]
]]

doc

a a

d

c

d
c

c

b

Core FLUX

• Updates:

• Queries e a sublanguage

• Recursive update procedures, queries

Core language

Updates (Core Flux, (C. PLAN-X 2007))

s ::= skip | s; s � | if e then s else s �

| let x = e in s

| insert e | delete | rename n

| snapshot x in s | φ?s | d [s] | P(�e)

φ ::= n | node() | text()
d ::= left | right | children | iter

Also include recursive updates/procedures
(straightforward).

Types

• XDuce-style regular expression types
(Hosoya et al. 2003, 2005)

• Main typing judgment:

Types and typechecking

XDuce-style regular expression types (Hosoya

et al. 2000, 2005)

α ::= bool | string | n[τ]

τ,σ ::= α | () | τ |τ � | τ, τ � | τ ∗ | X

Γ � {τ} s {τ �} — checks update modifies input

of type τ to output of type τ �
, given variables Γ

(cf. Hoare type theory, arrows)

Types and typechecking

XDuce-style regular expression types (Hosoya

et al. 2000, 2005)

α ::= bool | string | n[τ]

τ,σ ::= α | () | τ |τ � | τ, τ � | τ ∗ | X

Γ � {τ} s {τ �} — checks update modifies input

of type τ to output of type τ �
, given variables Γ

(cf. Hoare type theory, arrows)

Atomic updates
Typechecking updates

Atomic updates

Γ � e : τ
Γ � {()} insert e {τ}

Γ � {τ} delete {()}

Γ � {m[τ]} rename n {n[τ]}

Iteration
Typechecking updates

Iteration

Γ �iter {τ} s {τ �}
Γ � {τ} iter[s] {τ �}

Γ �iter {()} s {()}
Γ � {α} s {τ}

Γ �iter {α} s {τ}
Γ �iter {τ1} s {τ �

1} Γ �iter {τ2} s {τ �
2}

Γ �iter {τ1, τ2} s {τ �
1, τ

�
2}

...

High-level language

• Core updates: easy to typecheck, painful to
write

• Alternative syntax:

Source update syntax

Based (loosely) on W3C’s proposed XQuery
Update Facility 1.0

Upd ::= INSERT (BEFORE|AFTER) Path VALUE Expr
| INSERT AS (FIRST|LAST) INTO Path VALUE Expr
| DELETE [FROM] Path
| RENAME Path TO Lab
| REPLACE [IN] Path WITH Expr
| UPDATE Path BY Stmt

Path ::= . | Lab | node() | text()
| Path/Path | Var AS Path | Path[Expr]

Paths: child-only XPath

Some results

• Soundness: type system correctly predicts
schema after update

• High-level language & type system with
sound and complete translation to core

• translation typechecks iff source typechecks

• "Dead code" analysis

• warning if a sub-update is statically == "skip"

Aftermath

• Hasn't influenced W3C, XML DB comm.

• FLUX is less expressive

• But maybe more optimizable?

• More work could be done on this

• XQuery is already big & complicated

• "Why should updates be any simpler?"

Typechecking for
W3C's update language

Example

• W3C proposal has counterintuitive (?)
semantics

• does not do what you (probably) expect

delete $x//a,
insert <foo>bar</foo>
 before $x//a

Example

delete $x//a,
insert <foo>bar</foo>
 before $x//a

/

c a

a b a

First collect updates

delete $x//a,
insert <foo>bar</foo>
 before $x//a

/

c a

a b a

/

c a

a b a

First collect updates

delete $x//a,
insert <foo>bar</foo>
 before $x//a

/

c a

a b a

/

c a

a b a

/

c a

a b afoo

foo

foo

Then reorder &
apply

delete $x//a,
insert <foo>bar</foo>
 before $x//a

/

c a

a b a

/

c a

a b a

/

c a

a b afoo

foo

foo

Then reorder &
apply

delete $x//a,
insert <foo>bar</foo>
 before $x//a

/

c a

a b a

/

c

b foo

foo

foo

Then reorder &
apply

delete $x//a,
insert <foo>bar</foo>
 before $x//a

/

c a

a b a

/

c foo

foo

A trivial sound solution

• Ignore the update and input schema and
produce output schema that says that
output can have any structure.

• It’s sound...

• But not very exciting.

• Can we do better?

Overview of our
approach

• Step 0: Calculate result types for queries

• Step 1: Calculate effects of updates

• Step 2: Apply effects to input schema,
“altering” it to output schema

Overview of our
approach

• Step 0: Calculate result types for queries

• Step 1: Calculate effects of updates

• Step 2: Apply effects to input schema,
“altering” it to output schema

• We’ll focus on step 2

• We consider “flat” schemas

• (close to tree automata)

• Flat types are of the form

• Flat rules are of the form

• Schemas are sets of rules + “root” type

Schemas

τ ::= () | T | τ1, τ2 | τ1|τ2 | τ∗

S → a[τ]

Effects

• Characterize behavior of updates

• Syntax:

• Statically approximate run-time pending
update list

• (largely the same as query typechecking)

Ω ::= ∅ | Ω ∪ Ω� | insert(τ, d, T) | delete(T) | · · ·
d ::= into | into as first | into as last | before | after

Effects

• Characterize behavior of updates

• Syntax:

• Statically approximate run-time pending
update list

Ω ::= ∅ | Ω ∪ Ω� | insert(τ, d, T) | delete(T) | · · ·
d ::= into | into as first | into as last | before | after

T is a type name

Effects

• Characterize behavior of updates

• Syntax:

• Statically approximate run-time pending
update list

Ω ::= ∅ | Ω ∪ Ω� | insert(τ, d, T) | delete(T) | · · ·
d ::= into | into as first | into as last | before | after

 is a regular
expression type
τ

Effect inference

• We calculate a (conservative) upper bound
on effect of update on given schema

• Inferred effect:

delete $x//a,
insert <foo>bar</foo>
 before $x//a

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

where Foo -> foo[string]

• Given input schema

Schema alteration

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

• Given input schema and effect

Schema alteration

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

• Given input schema and effect

• Want to calculate output schema

Schema alteration

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

Foo -> foo[string]

S’ -> d[T’,(Foo*,U’)]

T’ -> c[(Foo*,A’)*]

U’ -> a[(B’,(Foo*,A’))*]?

A’ -> a[]?

B’ -> b[]

• Make “fresh” copy of old schema types

Stage 0: Copy the
schema

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

Foo -> foo[string]

S’ -> d[T’,U’]

T’ -> c[A’*]

U’ -> a[(B’,A’)*]

A’ -> a[]

B’ -> b[]

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

• Make “fresh” copy of old schema types

Stage 0: Copy the
schema

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

Foo -> foo[string]

S’ -> d[T’,U’]

T’ -> c[A’*]

U’ -> a[(B’,A’)*]

A’ -> a[]

B’ -> b[]

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

Also any new types
needed for data created

by update!

• Inserts happen first:

Stage 1: Inserts

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

Foo -> foo[string]

S’ -> d[T’,(Foo*,U’)]

T’ -> c[(Foo*,A’)*]

U’ -> a[(B’,(Foo*,A’))*]

A’ -> a[]

B’ -> b[]

• Inserts happen first:

Stage 1: Inserts

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

Foo -> foo[string]

S’ -> d[T’,(Foo*,U’)]

T’ -> c[(Foo*,A’)*]

U’ -> a[(B’,(Foo*,A’))*]

A’ -> a[]

B’ -> b[]

Effects don’t say
how many times insert

might happen

Stage 2,3: replace,
rename

• Replace and rename operations happen
after inserts but before deletes.

• There aren’t any replace/rename ops in this
example.

• So we’ll skip this step.

• Deletes happen last:

Stage 4: Deletes

{delete(A), delete(U),
 insert(Foo, before, A),
 insert(Foo, before, U)}

S -> d[T,U]

T -> c[A*]

U -> a[(B,A)*]

A -> a[]

B -> b[]

Foo -> foo[string]

S’ -> d[T’,(Foo*,U’)]

T’ -> c[(Foo*,A’)*]

U’ -> a[(B’,(Foo*,A’))*]?

A’ -> a[]?

B’ -> b[]

Cleanup

• Get rid of unneeded old types

Foo -> foo[string]

S’ -> d[T’,(Foo*,U’)]

T’ -> c[(Foo*,A’)*]

U’ -> a[(B’,(Foo*,A’))*]?

A’ -> a[]?

B’ -> b[]

Correctness
• Judge correctness w.r.t semantics of updates

• Problem: W3C proposal lacks formal
semantics

• So we defined a semantics too

• Uses standard ideas from operational semantics

• Lots of cases, need to model “store” and memory
allocation

• See paper for details

Related work

• Typechecking XML queries

• Colazzo et al. [JFP 2006], Colazzo & Sartiani
[ICTCS 2010]

• XML query-update independence problem

• Benedikt & C. [VLDB 09-10], others

• XML update analysis/optimization

• Ghelli et al. [TODS 2008, SIGMOD 2008]

Future work

• Improving precision of typechecking,
independence analysis

• Other type-based optimizations?

• Formalizing typechecking & other algorithms
(Nominal Isabelle?)

• Checking validity of update optimizations

• Combining typechecking with more precise
static analysis of paths

Conclusions

• Presented two different approaches to
typechecking XML updates

• FLUX: simple semantics/typechecking, but not
expressive enough for some applications

• W3C proposal for XML updates is
complicated

• Semantics ill-understood, and probably deserves
further study

