
Bisimulation and Coinduction for
Dummies

James Cheney

Programming Languages Interest Group

November 10, 2014

1



Motivation

• When we want to compare two systems, we often want to

abstract over their internal structure and consider whether

they provide the same behavior

• (e.g. observational equivalence for simple functional pro-

grams)

• The appropriate equivalence is sometimes not easy to define

compositionally in terms of subcomponents.

2



Examples

• Infinite / lazy streams

• Functional programs with I/O behavior

• Concurrent processes (CCS, π-calculus)

3



Bisimulation and Coinduction

• Bisimulation is a way to define when two systems “behave
the same”, independently of their internal structure

• Coinduction is a basic mathematical tool to define bisimu-
lation.

• Formally, coinduction is dual to induction, but typical uses
of induction have stronger properties than (dualized) typical
uses of coinduction

• So in practice, they have a very different “feel”

4



Review: Induction

• Theorem: All horses are of the same color.

• Proof:

– Base case: trivial.

– Inductive case: Suppose true for n horses. Consider a set

of n + 1 horses. Clearly, by induction, horses 1...n are of

the same color. Likewise, by induction, horses 2...n + 1

are of the same color. Obviously, the two sets overlap, so

all n+ 1 horses are of the same color.

5



But seriously...

• Mathematical induction is a basic tool for computer science

– particularly structural induction over syntax or rules

• Coinduction is also an important tool, but less well-known

– (and in some sense less accessible)

6



Basic observations

• Let (L,≤) be a complete lattice (e.g. powerset lattice or-
dered by ⊆)

– i.e. ≤ is a reflexive, transitive and antisymmetric relation
on L

– such that all least upper bounds and greatest lower bounds
exist

• A fixed point of F : L→ L is an element x such that F (X) =
X.

• We say F : L→ L is monotone if X ≤ Y implies F (X) ≤ F (Y )

7



Knaster-Tarski theorem

• Let F : L→ L be monotone

• There exists a least fixed-point

lfp(F ) =
∧
{x ∈ L | F (x) ≤ x}

aka the least pre-fixed point.

• Dually, there exists a greatest fixed-point

gfp(F ) =
∨
{x | x ≤ F (x)}

aka the greatest post-fixed point.

8



Induction

• When we define an object inductively, the object is the least

fixed-point of an appropriate operator on an appropriate
lattice (often left implicit)

• Example: F (X) = {[]} ∪ {a :: y | a ∈ A, y ∈ X} “defines”
List A, finite lists of A’s

• (Exercise: What is L?)

• The least fixed-point property justifies inductive proofs about
such objects

9



Example

• Assume [] ∈ P holds and for all a, y, we have y ∈ P ⇒ a :: y ∈
P

• Observe that

F (P ) = {[]} ∪ {a :: y | a ∈ A, y ∈ P} ⊆ P ∪ P = P

Hence, P is a pre-fixed point of F , so List A ⊆ P .

• (obviously by definition P ⊆ List A so they are equal.)

10



Aside: Continuity

• Often, F has stronger property such as continuity

• so we also know that lfp(F ) =
∨ω
i=0 F

n(⊥)

• But this is not needed for fixed point theory generally:

• transfinite induction (over ordinals) can involve non-continuous
operators

• Moreover, dual property (co-continuity) is rare for coinduc-
tive definitions

11



Labeled transition systems

• Consider labeled transition systems (LTSs)

(S,A, (→) ⊆ S ×A× S)

We write s
a→ t to indicate that from state s there is a tran-

sition labeled a to state t.

• Examples:

LTS1

s1 s2 s3
a a a ...

LTS2

s0

a

12



Inductive equivalence

• Consider the following rule as an inductive definition of “equiv-
alence” of states

∀a, s′.s a→ s′ ⇒ ∃t′.t a→ t′ ∧ s′ ≡ t′ ∀a, t′.t a→ t′ ⇒ ∃s′.s a→ s′ ∧ s′ ≡ t′

s ≡ t

• (Exercise: What is the base case?)

• This correctly relates states that have the same finite ob-
servations

• But what about infinite / cyclic behavior (LTS1 vs. LTS2)?

s1 6≡ s0

13



Coinduction

• When we define an object coinductively, the object is the
greatest fixed-point of an appropriate operator on an ap-
propriate lattice (often left implicit)

• Example: F (X) = {[]} ∪ {a :: y | a ∈ A, x ∈ X} defines the set
of finite or infinite streams of A’s, or Stream A.

• (Exercise: What is L?)

• The greatest fixed point property justifies coinductive rea-
soning principles for such objects

14



Example

• Let’s prove that 010101... is an infinite stream.

• First attempt: Let P = {010101...}. Try to show P ⊆ F (P ).
Not true; after removing initial 0, we have 101010... which
is not in P .

• Second attempt: Let P = {010101...,101010...}. Then we
can show that P ⊆ F (P ):

F (P ) = {[]} ∪ {a :: y | a ∈ {0,1}, y ∈ P}
= {[]} ∪ {1010101...,0010101...,1101010...,0101010...}
⊇ {010101...,101010...}

15



Example

• Consider the following rule as a coinductive definition of

“equivalence” of states

∀a, s′.s a→ s′ ⇒ ∃t′.t a→ t′ ∧ s′ ∼ t′ ∀a, t′.t a→ t′ ⇒ ∃s′.s a→ s′ ∧ s′ ∼ t′

s ∼ t

• This correctly relates states that have the same observations

and step to “equivalent” states

• This correctly handles cyclic/infinite behavior (e.g. LTS1 vs.

LTS2)

s1 ∼ s0

16



More formally

• For any LTS (S,A,→), we can define a bisimulation to be

any relation R such that for all (s, t) ∈ R:

– for all a ∈ A, s′ ∈ S such that s
a→ s′, there exists t′ ∈ S

such that t
a→ t′ and (s′, t′) ∈ R

– and dually: for all a ∈ A, t′ ∈ S such that t
a→ t′, there

exists s′ ∈ S such that s
a→ s′ and (s′, t′) ∈ R

• Bisimilarity (∼) is the union of all bisimulations:

(∼) =
⋃
{R | R is a bisimulation}

17



Trace equivalence

• Another natural-seeming equivalence on LTSs:

• Let traces(s) be the set of all possible (finite or infinite)

transition sequences startng at s.

• Example: traces(si) = {aω} = traces(s0) in LTS1, LTS2

• Define s =tr t to mean traces(s) = traces(t)

• Example: s0 =tr s1 = · · · =tr si

18



Bisimulation vs. trace equivalence

• Trace equivalence is a bisimulation

• but different from bisimilarity (in the presence of nondeter-
minsm):

a

b c

a

b c

a

• Top states have the same traces {ab, ac} but are not bisimilar

19



Bisimilarity and fixed points

• There is an associated monotone closure operator on P (S ×
S):

F (X) = {(s, t) | ∀s′, a.s a→ s′ ⇒ ∃t′.t a→ t′ ∧ (s′, t′) ∈ X}
∪ {(s, t) | ∀t′, a.t a→ t′ ⇒ ∃s′.s a→ s′ ∧ (s′, t′) ∈ X}

• and ∼ is its greatest fixed point.

• Key point: bisimilarity is a bisimulation.

• Hence, the greatest fixed point property justifies proof by
coinduction for bisimilarity.

20



Proof by coinduction

• Suppose we want to show s0 ∼ t0.

• Since bisimilarity is the union of all bisimulations, suffices to:

1. define a single relation R such that (s0, t0) ∈ R

2. prove (s, t) ∈ R and s
a→ s′ implies ∃t′.t a→ t′ ∧ (s′, t′) ∈ R

3. and dually (s, t) ∈ R and t
a→ t′ implies ∃s′.s a→ s′∧(s′, t′) ∈ R

• Since R is a bisimulation, we conclude (s0, t0) ∈ R ⊆ (∼), i.e.
s0 ∼ t0

21



Example, continued

• Proof by coinduction that s1 ∼ s0:

• Let R = {(si, s) | i ∈ N}

• Show that whenever (s, t) ∈ R, we have:

– ∀a, s′.s a→ s′ ⇒ ∃t′.t a→ t′ ∧ (s′, t′) ∈ R

– and dually ∀a, t′.t a→ t′ ⇒ ∃s′.s a→ s′ ∧ (s′, t′) ∈ R

• Often (but not always) one part is “obvious by construction”
and the other nontrivial

22



Example, continued

• Suppose (s, t) ∈ R and let a, s′ be given with s
a→ s′.

• Then clearly s = si and s′ = si+1 for some i.

• Likewise, clearly t = s0, and observe that s0
a→ s0.

• Observe that (si+1, s0) ∈ R. QED for the first part.

23



Example, continued

• Suppose (s, t) ∈ R and let a, t′ be given with t
a→ t′.

• Then clearly t = s0 = t′.

• Likewise, clearly s = si for some i, and recall that si
a→ si+1

for each i.

• Observe that (si+1, s0) ∈ R. QED for the second part.

24



Similarities and differences

• Induction and coinduction: both involve “local” checks

• Induction involves showing that property/set is closed under
rules “forward”, hence it contains inductively defined set

• Coinduction involves guessing a property/set and showing
that it is closed under rules “backwards”, hence it is con-
tained in coinductively defined set

• Induction (continuous): Each state has a finite “rank”

• Coinduction: There is usually no inherent notion of “rank”

25



A little history

He [i.e., David Park] came down during breakfast one morning car-
rying my CCS book and said [“]there’s something wrong!”. So I
prepared to defend myself. He pointed out the non coinductive way
that I had set up observation equivalence, as the limit of a decreas-
ing ω-chain of relations, which didn’t quite reach the maximal fixed
point.

After about 10 minutes I reali[z]ed he was right, and through that
day I got excited about the coinductive proof technique.

That was what David meant by [“]something’s wrong”. Not only
had I missed the (fixed!) point—which I had reali[z]ed—but also
my proof technique (involving induction on the iteration of the func-
tions) for establishing instances of the equivalences was clumsy. I
immediately saw that he had liberated me from a misconception, and
that the whole theory was going to look very much better by using
maximal fixed points and (what I now recogni[z]e as) coinduction.
[...]

26



That same day we went for a walk in the hills around Edinburgh,
and the express purpose was to agree what the pre-fixed points
and the maximal fixed point should be called. We thought of a
lot of words; David at one point liked [“]mimicry”, which I vetoed.
I think [“]bisimulation” was my suggestion; in any case, we both
liked it, partly because we could use that word for the pre-fixed
points and [“]bisimilarity” for the maximal fixed point itself. I think
David demurred because there are five syllables; but we then thought
that they were a lot easier to pronounce than the three syllables of
[“]mimicry”!

— Robin Milner (in Sangiorgi [2009])



But that’s not all!

• There are many different variations on this theme:

– e.g. “weak bisimulation” (allows ignoring “silent” transi-

tions)

– early/late bisimulation in π-calculus

– barbed equivalences, testing equivalences

– many more!

• Beyond scope of this talk

27



Bisimulation and coinduction in other contexts

• Modal logic/games: existence of bisimulation = existence of
winning strategy

• Databases: graph bisimulation can be a useful substitute for
subgraph isomorphism (and easier to check)

• Bisimulation also appears in e.g. equivalence of symmet-
ric/edit lenses

• Algebras/coalgebras further generalize inductive/coinductive
ideas (as I understand it)

28



Conclusion

• Goal of the talk: just give a taste of the main ideas of bisim-

ulation and coinduction

• Fully exploring these, e.g. in context of π-calculus or CCS,

could be a whole course of its own

• Hopefully, however, this gave you some pointers to where to

look if bisimulation/coinduction appear relevant to your work

29



Sources/further reading

• Davide Sangiorgi. 2009. On the origins of bisimulation and

coinduction. ACM Trans. Program. Lang. Syst. 31, 4,

Article 15 (May 2009), 41 pages.

• Introduction to Bisimulation and Coinduction, Davide San-

giorgi, Cambridge University Press, 2012

30


