Category Theory for Dummies (I)

James Cheney

Programming Languages Discussion Group

March 12, 2004

Not quite everything you've ever wanted to know...

- You keep hearing about category theory.
- Cool-sounding papers by brilliant researchers (e.g. Wadler's "Theorems for free!")
- But it's scary and incomprehensible.
- And Category Theory is not even taught here.
- Goal of this series: Familarity with basic ideas, not expertise

Outline

- Categories: Why are they interesting?
- Categories: What are they? Examples.
- Some familiar properties expressed categorically
- Some basic categorical constructions

Category theory

- An abstract theory of "structured things" and "structure preserving function-like things".
- Independent of the *concrete representation* of the things and functions.
- An alternative foundation for mathematics? (Lawvere)
- Closely connected with computation, types and logic.
- Forbiddingly complex notation for even simple ideas.

A mathematician's eye view of the world

Algebra	Topology	Logic
Groups, Rings,	Topological Spaces	Formulas
Homomorphisms	Continuous Functions	Implication
Set Theory		

A category theorist's eye view of the world

My view (not authoritative):

- Category theory helps organize thought about a collection of related things
- and identify patterns that recur over and over.
- It may suggest interesting ways of looking at them
- but does not necessarily help understand the things being studied (and may get in the way).

What is a category?

Some structures

- Sets A
- Vector spaces of vectors over \mathbb{R} : $(V, + : V \times V \rightarrow V, \cdot : \mathbb{R} \times V \rightarrow V)$
- ML types int, $\tau \times \tau', \tau \rightarrow \tau', \tau$ list

Some classes of functions

- Set functions $f : A \to B = \{(x, f(x)) \mid x \in A\}$
- Matrices $M: V \to W$ with

$$M(\alpha \cdot_V x +_V \beta \cdot_V y) = \alpha \cdot_W f(x) +_W \beta \cdot_W f(y)$$

• Function terms $\lambda x : A.e : A \rightarrow B$

Composition

- Functions are closed under composition (when domain and range match)
- I.E., if $f : A \to B$ and $g : B \to C$ then $g \circ f : A \to C$ is a function too.
- For sets $g \circ f = \{(x, g(f(x))) \mid x \in A\}.$
- For matrices $g \circ f = g \cdot f$ (matrix multiply).
- For ML-terms, $g \circ f = \lambda x : A.g(f(x))$.

Identity

- For every structure A, there is an identity function, let's write it id_A : A → A.
- For sets, $id_A = \{(x, x) \mid x \in A\}$.
- For matrices, $id_V = I$, the identity matrix over V.
- For any ML type τ , $id_{\tau} = \lambda x : \tau \to \tau$.

Facts

• Composition is associative:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

• id_A is a unit for composition: if $f: A \to B$,

$$id_B \circ f = f = f \circ id_A$$

Surprise!

- You now know the definition of a category $\mathcal{C} = (\mathcal{C}, \rightarrow, id, \circ)$
 - 1. C is a collection of objects.
 - 2. If A, B are in C, then $A \to B$ is a collection of arrows f from A to B.
 - 3. $id_A : A \to A$ and whenever $f : A \to B, g : B \to C$, then $g \circ f : A \to C$.
 - 4. \circ is associative, and id_A is a unit with respect to \circ .
- Note: Objects and arrows can be anything.

Diagrams

• Equations can be expressed using commutative diagrams:

• Idea: every pair of paths with same source and target are equal.

Examples

- Set is the category of sets and set functions.
- Vec is the category of vector spaces and matrices.
- ML is the category of ML types and function terms.
- These examples are misleading: They all have more in common than just the category structure.

Numbers as categories

- $\bullet~0$ is a category. It's empty.
- 1 is a category:

• 2 is a category, etc:

Some weird categories

- A monoid $(M, \epsilon : M, \cdot : M \times M \to M)$ is a set with an associative operation \cdot with unit ϵ .
- In fact, a monoid is basically a category with one object.
 - It has one object M, and each element $x\in M$ is an arrow $x:M\rightarrow M$
 - $-id_M = \epsilon$ is a unit, $x \circ y = x \cdot y$ is associative
- And a category with only one object is basically a monoid.

Some weird categories

- Similarly, any graph G can be used to construct a category:
 - Objects are vertices.
 - Arrows are *paths* (sequences of edges).
- Lesson: Objects are not always "really sets", and arrows not always "really functions".
- So what works in Set doesn't necessarily work in all categories. Not even close.

Categorical properties

Categorical properties

- A categorical property is something that can be defined in the language of category theory
- without reference to the underlying mathematical structure (if any).
- That is, in terms of objects, arrows, composition, identity (and equality)
- Why? Categorical properties are meaningful in *any* category

Inverses

- "Having an inverse" is one of the most basic properties of functions.
- In \mathcal{C} , $f: A \to B$ has an inverse $g: B \to A$ if

$$f \circ g = id_A \qquad g \circ f = id_B$$

Isomorphism

- Invertible functions are called *isomorphisms*, and A, B are isomorphic $(A \cong B)$ if there is an isomorphism in $A \to B$ (or vice versa).
- In Set, $A \cong B$ if |A| = |B|.
- In Vec, $V \cong W$ if dim(V) = dim(W).
- \bullet What about ML?

int \cong int $\tau \times \tau' \cong \tau' \times \tau$ $\tau \to \tau_1 \times \tau_2 \cong (\tau \to \tau_1) \times (\tau \to \tau_2)$

Isomorphic = "Really the Same"

- Isomorphic objects are interchangeable as far as you can tell in $\ensuremath{\mathcal{C}}.$
- In category theory, "unique" almost always means "unique up to isomorphism".
- Category theorists **love** proving that two very different-looking things are isomorphic.

One-to-One Functions, Monomorphisms and an Evil Pun

- In Set, a function is 1-1 if f(x) = f(y) implies x = y.
- Equivalently, if $f \circ g = f \circ h$ then g = h (why?)
- In C, $f : A \to B$ is monomorphic if this is the case.
- Mnemonic for remembering that one-to-one functions are monomorphisms: mono a mono.
- You may groan. But you will not forget.

Onto Functions and Epimorphisms

- In Set, a function $f : A \to B$ is onto if for every $y \in B$ there is an $x \in A$ with y = f(x).
- Equivalently, if $g \circ f = h \circ f$ then g = h (why?)
- In C, $f : A \to B$ is *epimorphic* if this is the case.
- I have no evil pun for this.

Next

- Functors: Structure-preserving maps between categories
- Universal constructions: units, voids, products, sums, exponentials.
- Functions between functors: when are two "implementations of polymorphic lists" equivalent? when are two semantics equivalent?
- Even scarier stuff.