
Category Theory for Dummies (I)

James Cheney

Programming Languages Discussion Group

March 12, 2004

1

Not quite everything you’ve ever wanted to

know...

• You keep hearing about category theory.

• Cool-sounding papers by brilliant researchers (e.g. Wadler’s
“Theorems for free!”)

• But it’s scary and incomprehensible.

• And Category Theory is not even taught here.

• Goal of this series: Familarity with basic ideas, not expertise

2

Outline

• Categories: Why are they interesting?

• Categories: What are they? Examples.

• Some familiar properties expressed categorically

• Some basic categorical constructions

3

Category theory

• An abstract theory of “structured things” and “structure
preserving function-like things”.

• Independent of the concrete representation of the things and
functions.

• An alternative foundation for mathematics? (Lawvere)

• Closely connected with computation, types and logic.

• Forbiddingly complex notation for even simple ideas.

4

A mathematician’s eye view of the world

Algebra

Groups, Rings,...

Homomorphisms

Topology

Topological Spaces

Continuous Functions

Logic

Formulas

Implication

Set Theory

5

A category theorist’s eye view of the world

Algebra

Groups, Rings,...

Homomorphisms

Topology

Topological Spaces

Continuous Functions

Logic

Formulas

Implication

Category Theory

Objects

Arrows

6

My view (not authoritative):

• Category theory helps organize thought about a collection of

related things

• and identify patterns that recur over and over.

• It may suggest interesting ways of looking at them

• but does not necessarily help understand the things being

studied (and may get in the way).

7

What is a category?

8

Some structures

• Sets A

• Vector spaces of vectors over R: (V,+ : V ×V → V, · : R×V →
V)

• ML types int, τ × τ ′, τ → τ ′, τ list

9

Some classes of functions

• Set functions f : A → B = {(x, f(x)) | x ∈ A}

• Matrices M : V → W with

M(α ·V x +V β ·V y) = α ·W f(x) +W β ·W f(y)

• Function terms λx : A.e : A → B

10

Composition

• Functions are closed under composition (when domain and
range match)

• I.E., if f : A → B and g : B → C then g ◦ f : A → C is a
function too.

• For sets g ◦ f = {(x, g(f(x))) | x ∈ A}.

• For matrices g ◦ f = g · f (matrix multiply).

• For ML-terms, g ◦ f = λx : A.g(f(x)).

11

Identity

• For every structure A, there is an identity function, let’s write

it idA : A → A.

• For sets, idA = {(x, x) | x ∈ A}.

• For matrices, idV = I, the identity matrix over V .

• For any ML type τ , idτ = λx : τ.x : τ → τ .

12

Facts

• Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

• idA is a unit for composition: if f : A → B,

idB ◦ f = f = f ◦ idA

13

Surprise!

• You now know the definition of a category C = (C,→, id, ◦)

1. C is a collection of objects.

2. If A, B are in C, then A → B is a collection of arrows f

from A to B.

3. idA : A → A and whenever f : A → B, g : B → C, then
g ◦ f : A → C.

4. ◦ is associative, and idA is a unit with respect to ◦.

• Note: Objects and arrows can be anything.

14

Diagrams

• Equations can be expressed using commutative diagrams:

A B

B C

f

g o f h o g

h

A A

B B

id

f f

id

f

B

A

g

• Idea: every pair of paths with same source and target are

equal.

15

Examples

• Set is the category of sets and set functions.

• Vec is the category of vector spaces and matrices.

• ML is the category of ML types and function terms.

• These examples are misleading: They all have more in com-

mon than just the category structure.

16

Numbers as categories

• 0 is a category. It’s empty.

• 1 is a category:

0 id0

• 2 is a category, etc:

0id0 1 id1

17

Some weird categories

• A monoid (M, ε : M, · : M × M → M) is a set with an asso-

ciative operation · with unit ε.

• In fact, a monoid is basically a category with one object.

– It has one object M , and each element x ∈ M is an arrow

x : M → M

– idM = ε is a unit, x ◦ y = x · y is associative

• And a category with only one object is basically a monoid.

18

Some weird categories

• Similarly, any graph G can be used to construct a category:

– Objects are vertices.

– Arrows are paths (sequences of edges).

• Lesson: Objects are not always “really sets”, and arrows not

always “really functions”.

• So what works in Set doesn’t necessarily work in all cate-

gories. Not even close.

19

Categorical properties

20

Categorical properties

• A categorical property is something that can be defined in

the language of category theory

• without reference to the underlying mathematical structure

(if any).

• That is, in terms of objects, arrows, composition, identity

(and equality)

• Why? Categorical properties are meaningful in any category

21

Inverses

• “Having an inverse” is one of the most basic properties of
functions.

• In C, f : A → B has an inverse g : B → A if

f ◦ g = idA g ◦ f = idB

A B

A B

id id

f

g

f

BA

22

Isomorphism

• Invertible functions are called isomorphisms, and A, B are

isomorphic (A ∼= B) if there is an isomorphism in A → B (or

vice versa).

• In Set, A ∼= B if |A| = |B|.

• In Vec, V ∼= W if dim(V) = dim(W).

• What about ML?

int ∼= int τ×τ ′ ∼= τ ′×τ τ → τ1×τ2
∼= (τ → τ1)×(τ → τ2)

23

Isomorphic = “Really the Same”

• Isomorphic objects are interchangeable as far as you can tell

in C.

• In category theory, “unique” almost always means “unique

up to isomorphism”.

• Category theorists love proving that two very different-looking

things are isomorphic.

24

One-to-One Functions, Monomorphisms and an

Evil Pun

• In Set, a function is 1-1 if f(x) = f(y) implies x = y.

• Equivalently, if f ◦ g = f ◦ h then g = h (why?)

• In C, f : A → B is monomorphic if this is the case.

• Mnemonic for remembering that one-to-one functions are
monomorphisms: mono a mono.

• You may groan. But you will not forget.

25

Onto Functions and Epimorphisms

• In Set, a function f : A → B is onto if for every y ∈ B there

is an x ∈ A with y = f(x).

• Equivalently, if g ◦ f = h ◦ f then g = h (why?)

• In C, f : A → B is epimorphic if this is the case.

• I have no evil pun for this.

26

Next

• Functors: Structure-preserving maps between categories

• Universal constructions: units, voids, products, sums, expo-

nentials.

• Functions between functors: when are two “implementations

of polymorphic lists” equivalent? when are two semantics

equivalent?

• Even scarier stuff.

27

