Category Theory for Dummies (I)

James Cheney
Programming Languages Discussion Group

March 12, 2004

Not quite everything you've ever wanted to know...

- You keep hearing about category theory.
- Cool-sounding papers by brilliant researchers (e.g. Wadler's "Theorems for free!")
- But it's scary and incomprehensible.
- And Category Theory is not even taught here.
- Goal of this series: Familarity with basic ideas, not expertise

Outline

- Categories: Why are they interesting?
- Categories: What are they? Examples.
- Some familiar properties expressed categorically
- Some basic categorical constructions

Category theory

- An abstract theory of "structured things" and "structure preserving function-like things".
- Independent of the concrete representation of the things and functions.
- An alternative foundation for mathematics? (Lawvere)
- Closely connected with computation, types and logic.
- Forbiddingly complex notation for even simple ideas.

A mathematician's eye view of the world

A category theorist's eye view of the world

My view (not authoritative):

- Category theory helps organize thought about a collection of related things
- and identify patterns that recur over and over.
- It may suggest interesting ways of looking at them
- but does not necessarily help understand the things being studied (and may get in the way).

What is a category?

Some structures

- Sets A
- Vector spaces of vectors over $\mathbb{R}:(V,+: V \times V \rightarrow V, \cdot: \mathbb{R} \times V \rightarrow$ V)
- ML types int, $\tau \times \tau^{\prime}, \tau \rightarrow \tau^{\prime}, \tau$ list

Some classes of functions

- Set functions $f: A \rightarrow B=\{(x, f(x)) \mid x \in A\}$
- Matrices $M: V \rightarrow W$ with

$$
M\left(\alpha \cdot{ }_{V} x+{ }_{V} \beta \cdot{ }_{V} y\right)=\alpha \cdot{ }_{W} f(x)+_{W} \beta \cdot{ }_{W} f(y)
$$

- Function terms $\lambda x: A . e: A \rightarrow B$

Composition

- Functions are closed under composition (when domain and range match)
- I.E., if $f: A \rightarrow B$ and $g: B \rightarrow C$ then $g \circ f: A \rightarrow C$ is a function too.
- For sets $g \circ f=\{(x, g(f(x))) \mid x \in A\}$.
- For matrices $g \circ f=g \cdot f$ (matrix multiply).
- For ML-terms, $g \circ f=\lambda x: A . g(f(x))$.

Identity

- For every structure A, there is an identity function, let's write it $i d_{A}: A \rightarrow A$.
- For sets, $i d_{A}=\{(x, x) \mid x \in A\}$.
- For matrices, $i d_{V}=I$, the identity matrix over V.
- For any ML type $\tau, i d_{\tau}=\lambda x: \tau . x: \tau \rightarrow \tau$.

Facts

- Composition is associative:

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

- $i d_{A}$ is a unit for composition: if $f: A \rightarrow B$,

$$
i d_{B} \circ f=f=f \circ i d_{A}
$$

Surprise!

- You now know the definition of a category $\mathcal{C}=(\mathcal{C}, \rightarrow, i d, \circ)$

1. \mathcal{C} is a collection of objects.
2. If A, B are in \mathcal{C}, then $A \rightarrow B$ is a collection of arrows f from A to B.
3. $i d_{A}: A \rightarrow A$ and whenever $f: A \rightarrow B, g: B \rightarrow C$, then $g \circ f: A \rightarrow C$.
4. \circ is associative, and $i d_{A}$ is a unit with respect to \circ.

- Note: Objects and arrows can be anything.

Diagrams

- Equations can be expressed using commutative diagrams:

- Idea: every pair of paths with same source and target are equal.

Examples

- Set is the category of sets and set functions.
- Vec is the category of vector spaces and matrices.
- ML is the category of ML types and function terms.
- These examples are misleading: They all have more in common than just the category structure.

Numbers as categories

- $\mathbf{0}$ is a category. It's empty.
- 1 is a category:

- 2 is a category, etc:

$$
\mathrm{id}_{0} \bigcirc 0 \longrightarrow 1 \bigcirc \mathrm{id}_{1}
$$

Some weird categories

- A monoid ($M, \epsilon: M, \cdot: M \times M \rightarrow M$) is a set with an associative operation with unit ϵ.
- In fact, a monoid is basically a category with one object.
- It has one object M, and each element $x \in M$ is an arrow $x: M \rightarrow M$
$-i d_{M}=\epsilon$ is a unit, $x \circ y=x \cdot y$ is associative
- And a category with only one object is basically a monoid.

Some weird categories

- Similarly, any graph G can be used to construct a category:
- Objects are vertices.
- Arrows are paths (sequences of edges).
- Lesson: Objects are not always "really sets", and arrows not always "really functions".
- So what works in Set doesn't necessarily work in all categories. Not even close.

Categorical properties

Categorical properties

- A categorical property is something that can be defined in the language of category theory
- without reference to the underlying mathematical structure (if any).
- That is, in terms of objects, arrows, composition, identity (and equality)
- Why? Categorical properties are meaningful in any category

Inverses

- "Having an inverse" is one of the most basic properties of functions.
- In $\mathcal{C}, f: A \rightarrow B$ has an inverse $g: B \rightarrow A$ if

$$
f \circ g=i d_{A} \quad g \circ f=i d_{B}
$$

Isomorphism

- Invertible functions are called isomorphisms, and A, B are isomorphic $(A \cong B)$ if there is an isomorphism in $A \rightarrow B$ (or vice versa).
- In Set, $A \cong B$ if $|A|=|B|$.
- In Vec, $V \cong W$ if $\operatorname{dim}(V)=\operatorname{dim}(W)$.
- What about ML?

$$
\mathrm{int} \cong \mathrm{int} \quad \tau \times \tau^{\prime} \cong \tau^{\prime} \times \tau \quad \tau \rightarrow \tau_{1} \times \tau_{2} \cong\left(\tau \rightarrow \tau_{1}\right) \times\left(\tau \rightarrow \tau_{2}\right)
$$

Isomorphic $=$ "Really the Same"

- Isomorphic objects are interchangeable as far as you can tell in \mathcal{C}.
- In category theory, "unique" almost always means "unique up to isomorphism".
- Category theorists love proving that two very different-looking things are isomorphic.

One-to-One Functions, Monomorphisms and an Evil Pun

- In Set, a function is 1-1 if $f(x)=f(y)$ implies $x=y$.
- Equivalently, if $f \circ g=f \circ h$ then $g=h$ (why?)
- In $\mathcal{C}, f: A \rightarrow B$ is monomorphic if this is the case.
- Mnemonic for remembering that one-to-one functions are monomorphisms: mono a mono.
- You may groan. But you will not forget.

Onto Functions and Epimorphisms

- In Set, a function $f: A \rightarrow B$ is onto if for every $y \in B$ there is an $x \in A$ with $y=f(x)$.
- Equivalently, if $g \circ f=h \circ f$ then $g=h$ (why?)
- In $\mathcal{C}, f: A \rightarrow B$ is epimorphic if this is the case.
- I have no evil pun for this.

Next

- Functors: Structure-preserving maps between categories
- Universal constructions: units, voids, products, sums, exponentials.
- Functions between functors: when are two "implementations of polymorphic lists" equivalent? when are two semantics equivalent?
- Even scarier stuff.

