
Tradeoffs in XML Database
Compression

James Cheney

University of Edinburgh

Data Compression Conference

March 30, 2006

Tradeoffs in XML Database Compression – p.1/22

XML Compression

XML: a format for tree-structured data

Increasingly used for large data collections (e.g.
bibliographic/scientific databases)

book

title author chapter chapter

text text

<book>
 <title>text</title>
 <author>text</author>
 <chapter><p>text</p></chapter>
 <chapter><p>text</p></chapter>
</book>

p p p p

text text text text

Verbose, so gzip or bzip2 usually used to compress
XML

Can XML-specific compression techniques do better?
Tradeoffs in XML Database Compression – p.2/22

Prior work

XMill (Liefke, Suciu 2000): first (serious) XML
compression work

transform XML document, then compress with
gzip/bzip2

XMLPPM (Cheney, DCC 2001): uses statistical
modeling, better compression than XMill but slower

SCMPPM (Adiego, de la Fuente, Navarro, DCC 2004),
XAUST (Hariharan, Shankar, CIAA 2005): use different
statistical models, report improvement over XMLPPM

Other approaches have been explored but statistical
methods have best performance

Tradeoffs in XML Database Compression – p.3/22

Motivation

Most experimental evaluations have focused only on
compression rate (and often only for large files)

Other relevant factors such as memory requirements,
rate of convergence neglected

Thus, experiments demonstrating improved
compression are valid, but don’t tell the whole story.

Goal of this talk: detailed comparison of memory vs
compression rate and rate of convergence

Focus on unstructured text compression behavior of
statistical XML compression models used in XMLPPM,
SCMPPM, and XAUST

Tradeoffs in XML Database Compression – p.4/22

Statistical models

Statistical text compression: compresses text by
building a model that predicts next symbol

Adaptive approach: interleave model building and
prediction/compression. Requires only one pass over
data, but has to “learn” model as it goes

a c a d a b ara b r

P(a) = .45
P(b) = .225
P(r) = .225
P(X) = 0.1

Model

001011101010010111

Tradeoffs in XML Database Compression – p.5/22

Statistical models

Statistical text compression: compresses text by
building a model that predicts next symbol

Adaptive approach: interleave model building and
prediction/compression. Requires only one pass over
data, but has to “learn” model as it goes

a c a d a b ara b r

P(a) = .45
P(b) = .225
P(r) = .225
P(X) = 0.1

Model

00101110101001011110110

Tradeoffs in XML Database Compression – p.6/22

Statistical models

Statistical text compression: compresses text by
building a model that predicts next symbol

Adaptive approach: interleave model building and
prediction/compression. Requires only one pass over
data, but has to “learn” model as it goes

a c a d a b ara b r

P(a) = .38
P(b) = .19
P(r) = .19
P(c) = .19
P(X) = 0.05

Model

00101110101001011110110

Tradeoffs in XML Database Compression – p.7/22

Approach #1: Multi-model

Idea: Switch between n models, one model M(e) per
element name e

Use M(e) to encode the text immediately under e

abc 456

A

B

C D
xyz 123

B

C D

"xyz"

"123"

"abc"

"456"

M(A)

M(B)

M(C)

M(D)

0101 11010 01110 11111

Used in SCMPPM, XAUST

I’ll call this the Structured Contexts Model (SCM)
approach

Tradeoffs in XML Database Compression – p.8/22

Approach #2: Single-model

Idea: Use a single model for text, but “prime” model
with element symbols

Priming symbols are “free” since can be inferred from
tree context (this is part of the fixed cost we’re ignoring)

Model

abc 456

A

B

C D
xyz 123

B

C D

(00) (01) (02) "xyz" (03) "123" (02) "abc" (03) "456"

A = 00 B = 01 C = 02 D = 03

where (00), (01) etc are priming symbols for various
element tags

Used in XMLPPM, so I’ll call it the XMLPPM approach

Tradeoffs in XML Database Compression – p.9/22

Prior experiments

XMLPPM: wide variety of XML documents, max size
<1MB, used 1MB memory for statistical models

When limit reached, statistical model restarts

SCMPPM: used large TREC documents with 8
elements, very little structure; statistical models used
1MB each (maximum of 8MB for TREC)

XAUST: used large documents such as DBLP; no
memory upper limit

Tradeoffs in XML Database Compression – p.10/22

Flaws in prior experiments

XMLPPM: didn’t consider large documents, memory
variation

SCMPPM, XAUST: didn’t consider small documents,
memory variation

Can’t tell whether reported compression gain is due
to using more memory or more accurate modeling
SCM approach may allocate much more memory
than it ever uses
SCM approach may eventually attain much better
compression, but may converge very slowly
(benefiting only large files)

Not enough data to draw any conclusions about relative
merits of these approaches

Tradeoffs in XML Database Compression – p.11/22

Text is the dominant factor

Most of the “interesting” content of most XML
documents is unstructured text

gzip xmlppm

file struct total %struct struct total %struct

DBLP 9.9MB 52.4MB 19% 667KB 33.4MB 2.0%

Medline 2.7MB 20.2MB 14% 539KB 13.7MB 3.9%

XMark 4.1MB 38.1MB 11% 287KB 27.6MB 1.0%

PSD 13.6MB 108MB 12% 2.5MB 79.6MB 3.1%

Existing techniques already compress structure well
(less than 1–20% of document)

So, in this work, focus only on modeling/compression of
unstructured text in XML

Compressing the structure is treated as a small fixed
cost

Tradeoffs in XML Database Compression – p.12/22

Experimental methodology

Three experiments:
1. Memory vs. compression rate: for a wide range of

model sizes, measured compression rate vs.
memory used

2. Convergence rate: compressed prefixes of large
files, and measured prefix length vs. compression
rate

3. Memory footprint (not shown): for a wide range of
model sizes, measured memory allocated vs.
memory used

Tradeoffs in XML Database Compression – p.13/22

Experiments

Used two large “typical” data sets:
DBLP (bibliography, 300MB uncompressed)
PSD (protein sequence database, 717MB
uncompressed).

Tested plain PPM, XMLPPM, SCM, and a “hybrid” (not
shown)

Further details in paper

Tradeoffs in XML Database Compression – p.14/22

Memory use vs. compression rate

0.5

0.6

0.7

0.8

0.9

1

1 10 100

B
it

ra
te

(b
pc

)

Memory used (MB)

DBLP

ppm
xmlppm

scm

Tradeoffs in XML Database Compression – p.15/22

Memory use vs. compression rate

0.7

0.8

0.9

1

1.1

1.2

1 10 100

B
it

ra
te

(b
pc

)

Memory used (MB)

PSD

ppm
xmlppm

scm

Tradeoffs in XML Database Compression – p.16/22

Memory use vs. compression rate

For DBLP, improvement for SCM is minor (5%), needs
over 40MB to achieve this.

For PSD, SCM can perform around 10% better,
improves after 10MB.

Why?
Small XMLPPM models benefit from sharing
common statistics
But large SCM models benefit from specialization

Tradeoffs in XML Database Compression – p.17/22

Convergence rate

0.5

1

1.5

2

2.5

3

1000 1e+06 1e+09

B
it

ra
te

(b
pc

)

Input size (bytes)

DBLP

ppm
xmlppm

scm

Tradeoffs in XML Database Compression – p.18/22

Convergence rate

0.5

1

1.5

2

2.5

3

3.5

1000 1e+06 1e+09

B
it

ra
te

(b
pc

)

Input size (bytes)

PSD

ppm
xmlppm

scm

Tradeoffs in XML Database Compression – p.19/22

Convergence rate

Overall trend: SCM performs worse early, but eventually
better

Why?
because SCM separates text under different
elements, each model learns any common text
separately
but because XMLPPM lumps all text into a single
model, eventually it does worse because of
averaging

Tradeoffs in XML Database Compression – p.20/22

Conclusions

The SCM approach does provide better compression...

provided you give it lots of memory and lots of data
Of course, for “archiving” XML DBs (DBLP, PSD,
etc), this is fine!

However, the XMLPPM approach is better for small
documents or using small amounts of memory

This may make it preferable for on-the-fly
compression of XML “messages”
webpages, RDF, RSS feeds, SOAP RPCs
Or low-memory devices such as PDAs, mobile
phones

Tradeoffs in XML Database Compression – p.21/22

Meta-conclusions

XML compression research is still wide open area

However, so far experiments have focused on
compression rate and ignored other factors

More generally, standards for benchmarking and
evaluating XML compression systems needed!

Source code should also be made available to allow
repeatability

http://xmlppm.sourceforge.net

Tradeoffs in XML Database Compression – p.22/22

	XML Compression
	Prior work
	Motivation
	Statistical models
	Statistical models
	Statistical models
	Approach #1: Multi-model
	Approach #2: Single-model
	Prior experiments
	Flaws in prior experiments
	Text is the dominant factor
	Experimental methodology
	Experiments
	Memory use vs. compression rate
	Memory use vs. compression rate
	Memory use vs. compression rate
	Convergence rate
	Convergence rate
	Convergence rate
	Conclusions
	Meta-conclusions

