Causality and the semantics of provenance

James Cheney DCM 2010 July 9, 2010

What is provenance?

- Generally:
 - history, record of ownership, origins
- Computationally:
 - metadata needed to understand process that created some result
 - information that makes computation/data more "transparent", "trustworthy"

Why is provenance important?

- long-term record keeping
- debugging, data cleaning, error diagnosis
- scientific repeatability
 - data & provenance required by some journals
- trust, accountability, transparency
 - i.e., climategate-prevention

Goal: Semantic foundations for provenance

Goal: Semantic foundations for provenance

http://www.flickr.com/photos/schneertz/679692806/

Why is provenance semantics important?

- Most work on provenance is of the "follow your nose" school.
- Little attention to semantics, foundations.
- If this information is important, then its meaning should be clear.
- If its meaning is not clear, it is unlikely to have long-term value.

Causality

- Causality is frequently invoked as a motivation
- For example, Open Provenance Model (OPM) says:
 - "edges denote causal relationships linking the cause to the effect"
- This seems a bit cavalier
 - not made clear in what sense a provenance graph "describes" a computational process

Causality

- Causality has long been studied by philosophers
 - Hume, many others

- More recently, also in AI/CS
 - Halpern, Pearl, many others

This talk

- Quick review of
 - Open Provenance Model-style graphs
 - structural causal models
 - Halpern-Pearl definition of "actual cause"
- Using causal models to interpret provenance graphs
 - how they match and don't

Cake

Baking a cake: The OPM way

Baking a cake: The OPM way

Functional interpretations

- We can interpret a provenance graph as a function in the obvious way
 - assign functions to nodes (matching arities)
- Then a "correct provenance graph" describing a function is one that has the same interpretation.
- However, this is not very satisfying...

Mix := $(Water \land Sugar \land Eggs \land Flour \land Butter) \oplus U_1$

- *Batter* := $Mix \oplus U_2$
 - *Bake* := $(Batter \land Pan) \oplus U_3$
 - *Cake* := $Bake \oplus U_4$

 $Mix := (Water \land Sugar \land Eggs \land Flour \land Butter) \oplus U_1$

Mix := $(Water \land Sugar \land Eggs \land Flour \land Butter) \oplus U_1$

- Batter := $Mix \oplus U_2$
 - *Bake* := $(Batter \land Pan) \oplus U_3$
 - *Cake* := $Bake \oplus U_4$

U₁ ... U₄ represent unmodeled external factors

Causal models

- M = (U, V, F)
 - U is set of endogenous variables (nonmeasurable, external factors)
 - V is set of exogenous variables (explicitly modeled/ measurable things)
 - F is family of transfer functions F_X , one for each X in V
- In AI, often use probabilistic interpretation, here we just consider discrete behavior

Causal situation

- (M,σ)
 - A causal model M
 - values $\sigma(X)$ for the variables
- Describes "what actually happened"
- Needed to talk about "actual causes"

Interventions

- Causal models allow interventions
 - considering ramifications of hypothetical / counterfactual possibilities at any stage
- Formally, $M_{[X:=x]}$ (or just M_x) is "M with X set to x"
 - **re-evaluate** anything that depends on X
 - **disconnect** anything that feeds into X

Actual causes

Halpern-Pearl (2005) give a definition of actual cause

Definition 2 (Actual cause). Let (M, σ) be a causal situation. Let \vec{X} be a subset of V and $Y \in V$, and suppose $\vec{x} = \sigma(\vec{X})$ and $y = \sigma(Y)$. Suppose that:

1. $\sigma(\vec{X}) = \vec{x}$ and $\sigma(Y) = y$.

2. Some set of variables $W \subseteq V - X$ and values $\vec{x}' \in D$, and $\vec{w}' \in D$ exist such that:

(a) $Y \neq y$ holds in $M_{\vec{x}',\vec{w}'}$

(b) Y = y holds in $M_{\vec{x},\vec{w}',\vec{z}}$ for all $Z \subseteq V - (X \cup W)$, where \vec{z} are the values of \vec{Z} in M.

Then we say that $\vec{X} = \vec{x}$ is a *weak cause* of Y = y. Moreover, if no proper subset of $\vec{X} = \vec{x}$ is a weak cause, then $\vec{X} = \vec{x}$ is an *actual cause* of Y = y.

Don't look directly at it! Easier via pictures

Causal interpretations of provenance graphs

- Seems appropriate to interpret provenance as causal models
- Or, more generally, **causal functions**
 - functions that support both ordinary evaluation and **intervention**
- Definition of actual cause, etc. can be formulated abstractly using causal functions

Causal interpretations vs. functional interpretations

- Causal interpretations are "richer"
 - more internal structure
 - built-in definition of "actual cause"
- Still not perfect
 - Causal models can't easily model hypotheticals that change "structure" of process
 - Ideas from Bayes nets, causal literature may help
 - but I'm way out of my depth there.

Inference over provenance graphs

• Datalog-style rules

x wasDerivedFrom y := x wasGeneratedBy $p \land p$ used y

- $p \text{ wasTriggeredBy } q :- p \text{ used } x \wedge x \text{ wasGeneratedBy } q$
- *x* wasDerivedFrom⁺ y := x wasDerivedFrom $y \lor (x$ wasDerivedFrom $z \land z$ wasDerivedFrom⁺ y)

 $p \text{ wasTriggeredBy}^+ q :- p \text{ wasTriggeredBy} q \lor (p \text{ wasTriggeredBy} r \land r \text{ wasTriggeredBy}^+ q)$

- These talk about "syntax" (edges) of provenance graph, not "semantics"
 - (OPM does not specify **any** interpretation)

Some prior complexity results

- Eiter-Lukasiewicz (2002, 2004, 2006):
 - determining "actual cause" relationships is (at least) NP-hard
 - can be PTIME for simple classes of models
- Hence, deciding whether a "used" edge is really an actual cause is nontrivial.
- Transitive inference rules for provenance graphs complete, but not sound

Future work

- Really, this is a first step
 - provenance of "straight-line code"
- Many other possible approaches to provenance semantics
 - e.g. modeling linearity/resource sensitive situations
 - e.g. stream/concurrent programming models

Conclusions

- There is a **strong analogy** between causal models and provenance graphs
 - Provenance graphs can be interpreted fruitfully as "causal functions"
 - Edges in graph are not always "actual cause" relationships in particular situations
- Further study needed to understand how to represent provenance of richer computational models