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What is provenance?

• Generally:

• history, record of ownership, origins

• Computationally:

• metadata needed to understand process that 
created some result

• information that makes computation/data more 
"transparent", "trustworthy"



Why is provenance 
important?

• long-term record keeping

• debugging, data cleaning, error diagnosis

• scientific repeatability

• data & provenance required by some journals

• trust, accountability, transparency

• i.e., climategate-prevention
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Why is provenance 
semantics important?

• Most work on provenance is of the "follow 
your nose" school.

• Little attention to semantics, foundations.

• If this information is important, then its 
meaning should be clear.

• If its meaning is not clear, it is unlikely to 
have long-term value.



Causality

• Causality is frequently invoked as a motivation

• For example, Open Provenance Model (OPM) 
says:

•  “edges denote causal relationships linking the 
cause to the effect”

• This seems a bit cavalier 

• not made clear in what sense a provenance graph 
"describes" a computational process



Causality

• Causality has long been 
studied by philosophers

• Hume, many others

• More recently, also in AI/CS

• Halpern, Pearl, many others



This talk

• Quick review of

• Open Provenance Model-style graphs

• structural causal models

• Halpern-Pearl definition of "actual cause"

• Using causal models to interpret 
provenance graphs

• how they match and don't 



Warning

Irresponsible 
oversimplifications 

ahead!
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Functional 
interpretations

• We can interpret a provenance graph as a 
function in the obvious way

• assign functions to nodes (matching arities)

• Then a "correct provenance graph" 
describing a function is one that has the 
same interpretation.

• However, this is not very satisfying...
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Baking a cake: a simple 
causal model

4 Causality and the Semantics of Provenance
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Bake := (Batter∧Pan)⊕U3

Cake := Bake⊕U4

Figure 1: Top left: An OPM graph. Top right: the corresponding causal model. Bottom: a straight-line
code description of both processes. Variables U1,U2,U3,U4 are exogenous variables (error terms, inputs)
abstracting away unknown environmental influences that are not explicitly modeled.

Causal models are closely related to Bayesian networks, and causal models can also be given a
probabilistic interpretation. For example, to model a scenario where the oven explodes and destroys the
cake with probability 0.01, we can employ a probability distribution giving U3 the expected value 0.01.

In artificial intelligence, probabilistic causal models are used either to represent domain knowledge
that enables a system to reason about cause and effect, or as a representation of hypotheses about some
data whose behavior is believed to be causal. Bayesian inference can then be used to learn causal models
from data. This kind of inference is appropriate for data generated by controlled experiments where
a single parameter can be varied to identify cause-effect relationships, but can also be used to analyze
situations with less ideal experimental designs [24].

In this paper, however, we will consider only the deterministic form of causal models and focus
on their use as a semantic tool, not on inference of causal models. We will show how to interpret a
provenance graph as a causal model and relate syntactic and semantic techniques for reasoning about
causality in provenance graphs.

3 Provenance Graphs

For the purposes of this paper, we will employ a simplified model of OPM-style provenance graphs,
which we will just call provenance graphs. Fix a set of data values D, and a set of process names P.
Recall that a bipartite graph G = (V,W,E) is a (here, directed) graph with vertices V ∪W and edges
E ⊆ (V ×W )∪ (W ×V ). A provenance graph is a bipartite graph in which the vertices are labeled.
We call the vertices of V the artifacts and the call vertices of W the processes, and the artifact nodes
are labeled with data values and the process nodes are labeled with process names. Intuitively, an edge
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Success 
requires all ingredients 

(conjunction)
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U1 ... U4 represent 
unmodeled external factors 



Causal models

• M = (U,V,F)

• U is set of endogenous variables (nonmeasurable, 
external factors)

• V is set of exogenous variables (explicitly modeled/
measurable things)

• F is family of transfer functions FX, one for each X in V

• In AI, often use probabilistic interpretation, here 
we just consider discrete behavior
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Causal situation

• (M,σ) 

• A causal model M 

• values σ(X) for the variables 

• Describes "what actually happened"

• Needed to talk about "actual causes"
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Interventions

• Causal models allow interventions

• considering ramifications of hypothetical / 
counterfactual possibilities at any stage

• Formally, M[X:=x] (or just Mx) is "M with X 
set to x" 

• re-evaluate anything that depends on X

• disconnect anything that feeds into X
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Actual causes

• Halpern-Pearl (2005) give a definition of 
actual cause 

• Don't look directly at it! Easier via pictures

J. Cheney 7

M is a directed graph whose vertices are inputs or events of M and such that FX depends only on the values
corresponding to parent vertices of X in G. We restrict attention to causal models whose underlying graph
is acyclic (these are sometimes called “recursive” models in the structural-models literature). For each
acyclic causal model there is a unique least causal graph (up to isomprphism) expressing all and only the
true dependencies of the functions FX .

A valuation is simply a V -indexed tuple of values in D, or σ : DV . We say a valuation is consistent
with M if for each X we have F(X)(σ) = σ(X). A causal model paired up with a (consistent) valuation
is called a (consistent) causal situation.

Interventions are a distinctive feature of causal models. Given a model M, we can form another
model M[X :=x] by fixing the value of vertex X to x and making the value of X independent of its former
inputs. This reflects the fact that although the causal model represents the behavior of a closed system,
we can reach into the system (at least as a thought experiment) and change X to a value of our choice.

Definition 1. If M = (V,U,F) is a causal model, then the result of setting X to x in M is M[X :=x] =
(V,U,F ′), where:

F ′
Y (σ) =

{
x | X = Y
FY (σ) | X "= Y

If the appropriate variable X is clear from context, we may write just Mx instead of MX :=x]; similarly, for
a sequence of interventions !X :=!x we may just write M!x for M[!X :=!x].

We also review Halpern and Pearl’s definition of “actual cause”.

Definition 2 (Actual cause). Let (M,σ) be a causal situation. Let !X be a subset of V and Y ∈ V , and
suppose!x = σ(!X) and y = σ(Y ). Suppose that:

1. σ(!X) =!x and σ(Y ) = y.

2. Some set of variables W ⊆V −X and values!x′ ∈ D, and !w′ ∈ D exist such that:
(a) Y "= y holds in M!x′,!w′

(b) Y = y holds in M!x,!w′,!z for all Z ⊆V − (X ∪W ), where!z are the values of !Z in M.

Then we say that !X =!x is a weak cause of Y = y. Moreover, if no proper subset of !X =!x is a weak cause,
then !X =!x is an actual cause of Y = y.

The definition of actual cause deserves explanation. Briefly, the idea is that an actual cause must
first describe the true state of affairs (part 1). Secondly, there must be a way to change the value of Y
by changing the values of X (possibly plus some other variables W ), and there must not be a way of
changing the value of Y by fixing the values of X =!x, W = !w′ and setting any other variables to their
original values. (In fact, the variables Z are usually between X and Y .)

For additional discussion we must refer the reader to Halpern and Pearl [15]. The discussion of actual
causes later in this paper does not depend heavily on the details of this definition.

5 Causal interpretations of provenance graphs

Given a fixed interpretation of the process identifiers of a provenance graph G = (V,W,E), we can define
a causal model and a valuation (MG,σG). Suppose V = U ′ 'V ′ where U ′ is the set of input nodes in G
(that is, artifact nodes not generated by any process). Let MG = (U ′,V ′ ∪W,F), where we define Fv(σ)
for v ∈ V ′ as the (unique) value of σ(p) where p is the process node that generates v′, and Fp(σ) is the
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Causal interpretations 
of provenance graphs

• Seems appropriate to interpret provenance 
as causal models

• Or, more generally, causal functions

• functions that support both ordinary evaluation 
and intervention

• Definition of actual cause, etc. can be 
formulated abstractly using causal functions



Causal interpretations vs. 
functional interpretations
• Causal interpretations are "richer"

• more internal structure

• built-in definition of "actual cause"

• Still not perfect

• Causal models can't easily model hypotheticals that 
change "structure" of process

• Ideas from Bayes nets, causal literature may help

• but I'm way out of my depth there.



Inference over 
provenance graphs

• Datalog-style rules

• These talk about "syntax" (edges) of 
provenance graph, not "semantics"

• (OPM does not specify any interpretation)

J. Cheney 9

approximates f globally, but for each choice of u there is a graph that describes the causal function
x,y !→ f (u;x,y).

As with the functional case, we might also expect a causal model to have partial explanatory power
for other input settings. Specifically, we define the predictive power of P( f ) as the relation:

!u !!u′ ⇐⇒ ∀τ.!P( f )(!u)"τ(!u′) = fτ(!u′)

In other words,!u !!u′ holds when the causal model generated from the provenance of!u is still a faithful
model of the behavior of f at !u′ under arbitrary interventions.

For this definition of predictive power, local and global approximation correspond to reflexivity and
totality of !. As with the functional case, we can compare provenance semantics by their predictive
power.

6 Inferences about causality in provenance

The OPM standard also describes inferences on provenance graphs. These inferences are formalized as
Datalog-style inference rules that allow us to infer new edges from existing edges. For our provenance
graphs, the relevant rules from the OPM standard include:

x wasDerivedFrom y :− x wasGeneratedBy p∧ p used y
p wasTriggeredBy q :− p used x∧ x wasGeneratedBy q

x wasDerivedFrom+ y :− x wasDerivedFrom y∨ (x wasDerivedFrom z∧ z wasDerivedFrom+ y)
p wasTriggeredBy+ q :− p wasTriggeredBy q∨ (p wasTriggeredBy r∧ r wasTriggeredBy+ q)

For example, if process p “used” artifact x which “was generated by” process q, then we infer that p
“was triggered by” q. However it is important to note that the terms “used”, “was generated by” and
“influenced” are simply different edge labels whose relationship is being axiomatized by the Datalog
rules — there is no connection in the standard to the causal-model interpretation of provenance graphs
introduced in this paper.

We want to give these edge relations meaning in terms of the causal model interpretation, and use this
as a basis for judging the correctness of inferences. In particular, we would like the edges to correspond
to “actual causes”, as they are expected to do in OPM.

Consider a naive interpretation in which we interpret p used x as meaning that x = σ(x) was part of an
actual cause of p = σ(p) in MG, and likewise interpret x wasGeneratedBy p as meaning that p = σ(p)
was part of a actual cause of x = σ(x) in MG. However, this is a little too naive, since it is possible
for X = x to actually cause Y = y and Y = y to actually cause Z = z, while in OPM graphs, the used
and wasGeneratedBy edges should not have this behavior. We can fix this by further constraining these
relations to hold only when there is no other actual cause “between” p and x. Using these definitions
of the basic edges, we can safely extrapolate meanings for the other edges using the Datalog rules: for
example, x wasDerivedFrom y means that Y = y is part of an actual cause of X = x and there is no other
artifact strictly between x and y, and wasDerivedFrom+ is the transitive closure, which (for a finite causal
model) is equivalent to saying that Y = y is part of an actual cause of X = x without any constraints. (We
leave these observations as conjectures for now.)

However, there is an important problem with the above idea: namely, we have defined the meanings
of the edges in terms of the definition of actual cause, not in terms of the presence or absence of edges in
M. Although every actual cause relationship corresponds to an edge, not every edge syntactically present



Some prior 
complexity results

• Eiter-Lukasiewicz (2002, 2004, 2006):

• determining "actual cause" relationships is (at least) 
NP-hard

• can be PTIME for simple classes of models

• Hence, deciding whether a "used" edge is 
really an actual cause is nontrivial.

• Transitive inference rules for provenance 
graphs complete, but not sound



Future work

• Really, this is a first step

• provenance of "straight-line code"

• Many other possible approaches to 
provenance semantics

• e.g. modeling linearity/resource sensitive 
situations

• e.g. stream/concurrent programming models



Conclusions

• There is a strong analogy between causal 
models and provenance graphs

• Provenance graphs can be interpreted fruitfully as 
"causal functions"

• Edges in graph are not always "actual cause" 
relationships in particular situations

• Further study needed to understand how to 
represent provenance of richer computational  
models


