
Introduction Core language Type system Conclusion

Typechecking XML Updates

James Cheney

University of Edinburgh

Fun in the Afternoon IV
November 22, 2007

Introduction Core language Type system Conclusion

Some words of wisdom

When any new language design project is nearing
completion, there is always a mad rush to get new
features added before standardization. The rush is mad
indeed, because it leads into a trap from which there is
no escape. A feature which is omitted can always be
added later, when its design and its implications are well
understood. A feature which is included before it is fully
understood can never be removed later.

—C. A. R. Hoare, 1980

Introduction Core language Type system Conclusion

Why study (XML) updates?

XML query languages and transformation languages are good
at:

Selecting part of the document (XPath, XQuery)
Restructuring documents (XDuce, CDuce, XSLT)

But bad at:

Changing part of a document while leaving the rest unchanged

You can do it...

but it’s painful.

And probably not very efficient compared to in-place updates.

Introduction Core language Type system Conclusion

Current proposals

Current W3C draft XQuery Update Facility takes a direct
approach: add imperative, side-effecting update operations

It allows aliasing and side-effecting updates to aliased values.

This can get messy fast, e.g.:

for $x in $doc//*
for $y in $doc//*
return (do (insert $x into $y;

delete $x))

What does this do? What type(s) does it have?

Depends strongly on traversal order...
Unlike in XQuery, loop cannot necessarily be reordered.

Introduction Core language Type system Conclusion

Current proposals

Current W3C draft XQuery Update Facility takes a direct
approach: add imperative, side-effecting update operations

It allows aliasing and side-effecting updates to aliased values.

This can get messy fast, e.g.:

for $x in $doc//*
for $y in $doc//*
return (do (insert $x into $y;

delete $x))

What does this do? What type(s) does it have?

Depends strongly on traversal order...
Unlike in XQuery, loop cannot necessarily be reordered.

Introduction Core language Type system Conclusion

Wait a second...

Adding updates to XQuery naively seems to negate the
benefits of XQuery’s purely-functional design

Clear semantics
Unspecified evaluation order
Static typechecking
Optimizability based on equational laws

Does the world need another imperative language?

After all, SQL manages to support “in-place” updates without
aliasing, traversal order dependence, etc...

(Not that SQL is a paragon of language design either).

Introduction Core language Type system Conclusion

Introducing Flux

or, Functional Lightweight Updates for XML

I thought about calling it “Simple Updates for XML” but that
doesn’t yield as nice an acronym.

Introduction Core language Type system Conclusion

An example

Adding an author

UPDATE books/book BY
INSERT AFTER author
VALUE <author>Charles Dickens</author>

WHERE name = "Through the Looking-Glass"

Type:

books[book[author [string], title[string], year [string]]∗]
→ books[book[author [string]∗, title[string], year [string]]∗]

Introduction Core language Type system Conclusion

Core language

Core Flux consists of the following constructs:

Expressions e ::= · · ·
Tests φ ::= n | ∗ | bool | string
Directions d ::= left | right | children | iter
Statements s ::= skip | s; s ′ | if e then s else s ′

| let x = e in s | φ?s | d [s]
| insert e | delete | snapshot x in s

Expressions are (core) XQuery expressions (we used µXQ)

Tests allow us to examine the structure of the tree

Directions allow us to move somewhere else in the tree

Statements perform tests, moves, basic updates, or
combinations of updates

Introduction Core language Type system Conclusion

Core language: Expressions

Expressions are (core) XQuery expressions

e ::= () | e, e ′ | n[e] | w | x | let x = e in e ′

| true | false | if c then e else e ′ | e = e ′

| x | x/child | e :: n | for x ∈ e return e ′

We treat queries as a “black box”, reusing the µXQ core
language of Colazzo, Ghelli, Manghi and Sartiani (ICFP 2004)

Introduction Core language Type system Conclusion

Core language: Tests

Tests allow us to examine the structure of the tree

φ ::= n | ∗ | bool | string

n succeeds when we are at a tree labeled with n

∗ succeeds when we are at any tree node

bool, string succeed when we are at a (boolean, string) data
node

Corresponding statement φ?s means: “If test φ succeeds, do
s, otherwise do nothing.”

Introduction Core language Type system Conclusion

Core language: Directions

Directions allow us to move somewhere else in the tree

d ::= left | right | children | iter

left, right move to the beginning or end of the current
sequence.

children moves to the child sequence of the current tree
node

iter moves to each element of the current sequence, in
parallel.

d [u] means: “move according to d , then do u”

Introduction Core language Type system Conclusion

Core language: Statements

Statements perform tests, moves, basic updates, or
combinations of updates

s ::= skip | s; s ′ | if e then s else s ′

| let x = e in s | φ?s | d [s]
| insert e | delete | snapshot x in s

skip, sequence, if: standard

Introduction Core language Type system Conclusion

Core language: Statements

Statements perform tests, moves, basic updates, or
combinations of updates

s ::= skip | s; s ′ | if e then s else s ′

| let x = e in s | φ?s | d [s]
| insert e | delete | snapshot x in s

let: binds a variable x to the result of an XQuery expression e

let-bound variable values are immutable; semantically, this
makes a copy of e

This is important for avoiding aliasing.

Introduction Core language Type system Conclusion

Core language: Statements

Statements perform tests, moves, basic updates, or
combinations of updates

s ::= skip | s; s ′ | if e then s else s ′

| let x = e in s | φ?s | d [s]
| insert e | delete | snapshot x in s

insert e: inserts expression e at current position

delete: deletes current selection

test φ?s, move d [s] already discussed

Introduction Core language Type system Conclusion

Core language: Statements

Statements perform tests, moves, basic updates, or
combinations of updates

s ::= skip | s; s ′ | if e then s else s ′

| let x = e in s | φ?s | d [s]
| insert e | delete | snapshot x in s

snapshot: binds x to current value of the context.

Note: Like let-bound variables, snapshot variables are
immutable.

snapshot is the only way to read from the mutable store

Introduction Core language Type system Conclusion

Semantics

Values are trees/forests:

t ::= string | bool | a[f]

f ::= () | t, f

Semantics of values, updates is purely value-based

We do not even mention “node ids”

Semantics straightforward; rather than bore you with details,
here’s a graphical example

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a a

c a

b

c

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a a

c a

b

c

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a a

c a

b

c

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a

b

a

c a

b

c

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a

b

a

c a

b

c

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a

b

a

b c a

b

c

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a

b

a

b c a

b

c

Introduction Core language Type system Conclusion

Example

Example update

children[iter[a?children[left [insert b[]]]]]

root

a

b

a

b c a

b

c

Introduction Core language Type system Conclusion

Static typing

Flux core operations can all be statically typed

We use XDuce-style regular expression types

τ ::= string | bool | a[τ] | τ, τ ′ | τ |τ ′ | τ∗ | ε

with inclusion-based subtyping

Key idea: To typecheck an iter[u] operation at τ , typecheck
u at each singleton tree component of τ , and combine the
results

Examples:

iter[a?left [insert b]] : (a[c])∗ | (a, b)∗ ⇒ (b, a[c])∗ | (b, a, b)∗

iter[a?children[delete]] : (a[c])∗ | (a, b)∗ ⇒ (a[])∗ | (a, b)∗

Introduction Core language Type system Conclusion

Static typing

Judgment Γ `1 {τ} u {τ ′}: u updates singular input τ to
output τ ′ given variables typed by Γ

Judgment Γ `∗ {τ} u {τ ′} similar, but expects a sequence of
type τ

Children

Γ `∗ {τ} s {τ ′}
Γ `1 {n[τ]} children[s] {n[τ ′]}

Snapshot

Γ, x :τ `a {τ} s {τ ′}
Γ `a {τ} snapshot x in s {τ ′}

a ∈ {1, ∗}

Introduction Core language Type system Conclusion

Static typing

Γ `iter {τ} s {τ ′} an auxiliary judgment, meaning “iterating
s changes τ to τ ′”

Here, α is “atomic” (n[τ], bool, string)

Iteration

Γ `iter {τ} s {τ ′}
Γ `∗ {τ} iter[s] {τ ′}

Γ `1 {α} s {τ}
Γ `iter {α} s {τ}

Γ `iter {()} s {()}
Γ `iter {τ1} s {τ ′

1} Γ `iter {τ2} s {τ ′
2}

Γ `iter {τ1, τ2} s {τ ′
1, τ

′
2}

...

Introduction Core language Type system Conclusion

Static typing

For test typechecking, α <: φ means that some value of type
α matches test φ

Test

α <: φ Γ `1 {α} s {τ}
Γ `1 {α} φ?s {τ}

α 6<: φ

Γ `1 {α} φ?s {α}

Atomic updates

Insert/delete

Γ ` e : τ
Γ `∗ {()} insert e {τ} Γ `∗ {τ} delete {()}

Introduction Core language Type system Conclusion

Static typing

Subtyping is by regular (tree) language inclusion.

Can re-use Hosoya, Vouillon and Pierce’s subtyping algorithm.

Type soundness holds (proof not hard).

Currently, consider type checking with respect to fixed input
type

This is reasonable for DB applications because schema usually
given in advance

Type inference/principal typing would be nice to have though.

Introduction Core language Type system Conclusion

Deciding typechecking

In the presence of subtyping/subsumption, typechecking is no
longer syntax-directed, and an expression may have many
types.

Usual solution: Define an algorithmic system that is syntax
directed and restricts the use of subsumption

Show that arbitrary derivations can be normalized to
algorithmic ones by “permuting subsumption downwards”

For Flux, this mostly works.

But straightforward induction fails for Γ `iter {τ} s {τ ′}
judgment

Requires a trickier “semantic” argument (considering
structure of regular expression types)

Introduction Core language Type system Conclusion

Related Work

Liefke, Davidson [SSDBM 1999] — introduced an update
language for complex object databases that heavily influenced
Flux

Collazzo, Ghelli, Manghi, Sartiani [ICFP 2004] — defined
µXQ and type system which we have re-used

Many “imperative XQuery” approaches to updates (XQuery!,
XQueryP, XQueryU, XQuery Update Facility).

Zarfaty/Gardner/Calcagno - Logics for reasoning about
low-level (DOM-like) operations on XML-like trees.

My update type system is reminiscent of “arrows” (and also
Hoare Type THeory); maybe some formal relationship

Introduction Core language Type system Conclusion

Conclusions

Flux is work in progress

Presented a high-level update language

Discussed core language with sound type system and
decidable typechecking

Hope I’ve convinced you that we can have updates without
the full complications of imperative programming.

	Introduction
	Core language
	Type system
	Conclusion

