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Motivation

e Nominal logic [Pitts 2003]: an extension of sorted first-order
logic that formalizes

— names, name-binding, and quantification over fresh names.

— via primitive concepts of swapping and freshness [Gabbay-
Pitts 1999]

e Problem: EXisting proof systems/axiomatizations are “overly
complex” (a subjective judgment)

e One difficulty: complex axiom schemes/rules for N-quantifier
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Motivation

Original approach [Pitts 2003]: an axiom scheme

Na.¢p <= Ja.a # NP (FV(WNa.¢) C {7})
defining N in terms of 4, A, and freshness #t.

Gives little insight into self-duality and symmetry properties
of

Syntactic side-condition makes checking uses painful

Gentzen-style rule systems often preferable to axiomatic def-
initions



Motivation

e [Gabbay,Pitts 1999], [Pitts 2003] proposed sequent rules

[La#H X, 0= [La#H X = ¢
FVag=y L = Va.g M

where a ¢ FV(I',vy) and FV(I,¢,WNa.¢p) C {Z}.

e Not much simpler than axiom scheme

e Not closed under substitution, so cut-elimination hard to
prove



Motivation

e Most recent idea [Gabbay, Cheney 2004]:

Ta#t o= Ma#t= ¢
F Vag =y L = Va.gp B

where a ¢ FV(I,4) and ¢ can be decomposed as ¢'(a,t)
where a ¢ FV(t) and ¢/(---) mentions only quantifiers/connectives.

e Closed under substitution, so cut-elimination straightforward

e but seems nondeterministic & side-conditions even more painful



Motivation

e Miller and Tiu's FOAVY logic includes local name contexts
and a self-dual quantifier V:

> M (o,x)pop= A > M= (o,z)>o
S ToovVed=AVL S T=oovee VE

where x € 3.

e [ hese rules are not much more complicated that VR, dL.

e Can we obtain similarly simple rules for N7



Motivation

e In aProlog [Cheney, Urban 2004] clauses can mention explicit
name symbols a,b,...:

p(3, X) :— G(3,X)
Clauses are interpreted as implicitly WW-quantified:
NavX.G@GE, X) D pE, X)

The V-quantifier is interpreted in proof search as ‘generate
a fresh name a, then proceed”

e Can we justify this interpretation using similar proof rules for
N



Motivation

e My approach: use special name symbols a and ‘freshness
contexts” > that store needed freshness information

Ha:l,0= Ha:.l = ¢
> T Vae=o M ¥ T Uag Mt

where a &€ 2.

e Closed under substitution, side conditions simpler (like VR,3L,VL/R)

e Management of freshness information “compartmentalized”
into 2--context and an additional rule.



Outline

e Quick overview of nominal logic

e T he sequent calculus NL~™

e Relating FOAY and nominal logic

e Conclusion



Nominal Logic: Syntax

e Names a, b inhabiting name-sorts A, A’

e Swapping (a b) - x exchanges two names

e Abstraction (a)x constructs “objects with one bound name”

e Freshness relation a # * means “x does not depend on a”

e I-quantifier quantifies over fresh names: WMa.¢ means ‘for
fresh names a, ¢ holds”
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Names: What are they?

e In this approach, names are a new syntactic class, distinct
from variables and from function or constant symbols

e Syntactically different name symbols always denote seman-
tically distinct names

e Names can be “semantically bound” in abstractions (a)x, but
also “syntactially bound” by V. WNa.¢

e (a)f(a,z) and (b)(b,z) are different nominal terms (and can
denote different values), while Na.p(a,xz) and Wb.p(b,x) are
a-equivalent formulas
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Theory of Swapping and Freshness

e Swapping
(ab)-axb (aa)-z~x (ab)-(ab)-z~=x

(@b)-c=c (ab): f(Z)=f((ab)-ZT)

e Freshness

a#d <= atd a#zANbH#zD(ab) -zrx

e Examples

a#br(ab)-a (ab)-f(a (b g(a))~ f(b,(a)b,g(b))
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Theory of Name-ADbstraction

e Intuitively, (a)x is “the value z with a distinguished bound
name a'.

e Considered equal up to “safe” renaming (a-equivalence)

(a)x = (byx <= (ax~bAhz=y)V(a#HFyAxz=x(ab)- y)

e For example,

= (a)a = (b)b 7 (a)f(a,b) = (b) f(b,a)
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Sequent Calculus

e Judgments use context > expressing both typing and fresh-
ness information

> = | X, xS | Z#aA

e Associate contexts with freshness constraint sets |X|:

=2 |Z,2:8=|Z| |[S#aAl=|T|ufa#t|Z+t:S)

e Auxiliary rule for extracting freshness information:

a#te|X| T:Ta#t=1
> =4 -7
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Freshness Principle

e Fresh names can always be chosen.

SHa: [ = o
S T=9 ' GG¢gn)

e An example derivation using (F') and (X#):

a## € |X, rHal Z,az#a:a#xéa#azz
2 . x#Ha. - = aF#Hzx
Z,m#a:-#ﬂa.a#waR
2.,x .= da.a#H#x £
> :-=>‘v’a:.§|a.a#chR

#
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Equivariance Principle

e Constants fixed by name-swapping

(ab)-cxc

e Functions commute with name-swapping

(a b)- f(#) ~ f((a b)-1)

e [ruth preserved by name-swapping

>:0,p((abd)-#) =4
> :IMLp(t) = C

EV
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VI-Quantifier Rules

e Our rules:

SHa:l, =1 2Hal = ¢
ST oo™ s ToaMae™M Gex)

e Intuitively, to either prove or use a V-quantified formula, in-
stantiate it to a completely fresh name and proceed.

e Previous systems have used complex syntactic side-conditions
to do this.
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Denotational Semantics?

e T hat's another talk. Sorry!

e An incomplete semantics can be inherited from Pitts’ nominal
logic semantics

e A complete semantics is known [Cheney 2004], working on
publication
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Examples

e A simple theorem: VMa.Nb.a # b

Z#a#b:a#bia#bz#
> Hatb - =a#b >
Z:-:>I/Ia,b.a#bVIR

e Another theorem: Wa,b.p(a) D p(b)

> #a#b : p(b) = p(b)
> #a#b: (a b)-p(a) = p(b) ‘];xéoms
> #a#b : p(a) = p(b) AR2 SR
> - = WNa,b.p(a) D p(b) )
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Examples

e A non-theorem: Wa.p(a,a) = WNa,b.p(a,b)

> #a#tb#ta’ - p(d’,a’) = p(a,b)
> : WNa.p(a,a) = Wa,b.p(a,b)

NR2 VL

e Another non-theorem: Wa.p(a,y) = Va.p(x,vy).

>, z#a  pa,y) = p(z,y)
> : WNa.p(a,y) = Va.p(x,y) ML, VR
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Failure??

e Observe that failure can be difficult to detect because of
equivariance...

Z:(ab)-(;b)-PiQ
> :(ab)-P=Q
2> . P=qQ

e [ his problem was already present in other formalizations.

e Future work: deciding AP D V@, where P, are freshness,
equality, or atomic formulas.
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Formal properties

e \Weakening, invertibility, contraction properties
Lemma 1 (Weakening).If>X : [ = ¢ then X : [,y = ¢.

Lemma 2 (Invertibility). The WL and VR rules are invert-
ible:

—IfxX:IMWNap = ¢ then Z#Ha: My = ¢ (forag )

— IfX .,y = WNa.p then Z#a: I,y = ¢ (forag )

Lemma 3 (Contraction). If > : M, ¢,y = ¢ then < : I,y =
O.
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Formal properties

e Equivariance was only assumed for atomic formulas, but
more general rules are admissible.

Lemma 4 (Admissibility of EVL).If >~ : ,(a db) -y = ¢
then > . [,9 = ¢.

Lemma 5 (Admissibility of EVR).If X : ',y = (a b) - ¢
then > . 1,9 = ¢.

Subtle point in proof: left and right equivariance are mutually
recursive (because of implication)

Zir,(ab)°¢1=>(ab)°¢23R
>:I=(ab)-(¢1 D ¢2)
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Formal properties

e hyp rule only assumed for atomic formulas, but generalized
form admissible.

Lemma 6 (Admissibility of hyp*). The rule

ES

ST, d = ¢ WP
is admissible.

Proof relies on EV L for N-case:

> #a#b : ¢(b) = o(b) hyp*moms
2#ta#b T, (ab)-¢(a) = o(b) 07
> #a#tb (T, ¢9(a) = ¢(b)
> T Vad= Va.p VR
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Formal properties

e Cut-elimination

Theorem 7. If X : ¢ =Y and = : "= ¢ then I'," = ¢

Proof follows standard techniques of permuting cuts upward.

e [ he proof is straightforward, but relies on the previous prop-
erties
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Cut-elimination: interesting case

e Given a principal V-cut,

H#Ha:l = ¢ >H#Ha.l,0=1
ST = Ua.g M Z:I_,I/Ia.qb:>wl/|€
ST = 4 c

permute the cut upward using the freshness principle:

>Hal ¢ X#Ha:l, o=
SHa [ = 4 cut
2 [ = F
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Applications

e Syntactic proof of consistency

e Proof of conservativity relative to Pitts’ system

e Sound and complete translation from FO)Y to NL=
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Translation from FO)Y to nominal logic

e FOMV [Miller, Tiu 2003]: a logic with local name contexts o
and a self-dual local name quantifier Vz.¢:

> r,(a,m)>¢:>AVL > . I_:>(c7,a:)>¢VR
> : o> Vz.p= A > . =o>Vz.0 (r & X,0)

e [Gabbay, Cheney 2004] gave a sound but not complete trans-
lation to a nominal logic variant

e Incomplete because 1 admits “weakening’”, “exchange’, but
V does not.
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Examples of old translation

e translation of “weakening principle”

Vrp <= p (underivable)

Na.p <— p (derivable!)

e translation of “exchange principle”
Vz,y.p(x,y) < Vy,z.p(x,y) (underivable)
IS

Na,b.p(n(a),n(b)) <= Wb,a.p(n(a),n(b)) (derivablel!)
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Examples of nhew translation

e translation of “weakening principle”

Vrp <= p (underivable)

Na.p[a] < p]] (underivable)

e translation of “exchange principle”
Vz,y.p(x,y) < Vy,z.p(x,y) (underivable)
IS

Na, b.pla,b](n(a),n(b)) <= Wb, a.p[b,a](n(a),n(b)) (underivable)
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Details of translation

[c>C]] = C
[o>=¢] = —fo>q]
[cro@y] = [o>eé] ®[o>y]
[o>Vx.¢] = Vh.ev(h) D [lo> ¢plho/x]]
[o>3x.¢] = Fh.ev(h) A [lo> ¢lho/x]]
fo>Vz.0] = [o,z> qbﬂ
[o>pt] = W&.p[o]t

(Ce{T, 1}

(® € {A,V,D})
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Details of translation

f[c>C] = C (Ce{T, 1}
[o>=¢] = —[o>q]
[cro@y] = [oro]l @ [or>y] (® € {A,V,D})
[o>Vz.¢] = Vh.ev(h) D [o> ¢lho/x]]
[o>3dx.¢] = Fh.ev(h) A [lo> ¢lho/x]]
fo>Vz.0] = [o,z> qbﬂ
[o>pt] = W&.plo]t

Note: Translation is homomorphic on propositional connectives
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Details of translation

f[c>C] = C (Ce{T, 1}
[o>=¢] = —fo>q]
[cro@¢] = [o>d] @ [o>y] (® € {A,V,D})
fo>Ve.¢g] = Vh.ev(h) D [[o> ¢plho/x]]l
[o>3x.¢] = Fh.ev(h) A lo> ¢lho/x]]
fo>Vz.0] = [o,z> qbﬂ
[o>pt] = W&.p[o]t

Note: We lift V,d to make local context dependence explicit

(Here ev(h) =Va : Aa # h)
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Details of translation

f[c>C] = C (Ce{T, 1}
[o>=¢] = —fo>q]
[cro@y] = [o>eé] ®[o>y] (® € {A,V,D})
[o>Vx.¢] = Vh.ev(h) D [lo> ¢plho/x]]
[o>3x.¢] = Fh.ev(h) A [lo> ¢lho/x]]
fo>Vz.0] = [o,z> qbﬂ
[o>pt] = WN&.p[o]t

Note: We delay using N for V by storing V-quantified names in
local context.

34



Details of translation

f[c>C] = C (Ce{T, 1}
[o>=¢] = —fo>q]
[cro@y] = [o>eé] ®[o>y] (® € {A,V,D})
[o>Vz.¢] = Vh.ev(h) D [o> ¢lho/x]]
[o>3x.¢] = Fh.ev(h) A [lo> ¢lho/x]]
fo>Vz.0] = [o,z> qbﬂ
[o>pt] = W&.plolt

Note: We translate local contexts to I-quantified names

Note also: We also parameterize translated atomic formulas by
list of local names.
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Idea of proof

e Identify a normal form for NL derivations

e Prove that all normal forms represent FOMNY proofs

e Prove that all derivations of translated FOMY sequents can
be normalized.

e Many details omitted here.
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Some details

e “First normal form”: derivation consists only of W, hyp, or
equational,freshness, or equivariance laws.

e Example: [X : I, z>p = x> p] derivable as

*

> . [, Nx.plx] = VNx.p[x] hyp
which expands to 1NF.

Proposition 8. [~ : " = A] isin INF ifandonly ifX : I = A
is an initial sequent (i.e., Ae ).

By induction on derivations (using knowledge of translation).
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More details

e “Second normal form'" : derivation starts with a logical rule.

e If the first rule is V (or 3) then it must be followed by corre-
sponding D (or A) on the same formula.

Proposition 9. A translated sequent has a 2NF derivation if
and only if there exists a FO\V logical rule instance

Ji - Jn
> =4
such that the translations [J1], ..., [Jn] are also derivable.
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More details

e SO far so good. The hard part is proving that that translated
derivations have normal forms.

Proposition 10. If [J]] has a NL= derivation, then it has a
INF or 2NF derivation.
The proof is by complicated induction on a strengthened

induction hypothesis.

Theorem 11. If [J] is derivable in NL=, then J is derivable
in FO\V.
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Related work

e Many spatial/tree/graph/concurrency logics now incorporat-
ing N (e.g., [Caires, Cardelli 2002])

e [Gabbay, Cheney 2004]: presented an alternative system with
N-rules using more complex syntactic side-conditions

e [Schopp, Stark 2004]: develop a dependent type theory with
names & binding using similar (but more general) bunched
contexts

e [Miculan, Yemane 2005] describe an (incomplete) denota-
tional semantics of FO\V.
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Future work

Uniform proof semantics of hominal logic programming

Semantics of FO\Y

A truly simple proof theory?

A simple type theory?
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Conclusions

e Presented a proof theory for nominal logic that uses explicit
name symbols and structured contexts to deal with

e We argue that this approach is ‘simpler” / “easier to use”;
this is subjective

e Re-proved existing results (cut-elimination, consistency, con-
servativity)

e In addition, proved a nontrivial new result (embedding of
FOMY).
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