A Simpler Proof Theory for Nominal Logic

James Cheney

University of Edinburgh

FOSSACS 2005

April 6, 2005

- Nominal logic [Pitts 2003]: an extension of sorted first-order logic that formalizes
 - names, name-binding, and quantification over fresh names.
 - via primitive concepts of swapping and freshness [Gabbay-Pitts 1999]
- Problem: Existing proof systems/axiomatizations are "overly complex" (a subjective judgment)
- One difficulty: complex axiom schemes/rules for И-quantifier

• Original approach [Pitts 2003]: an axiom scheme

$$\forall a. \phi \iff \exists a. a \# \vec{x} \land \phi \qquad (FV(\forall a. \phi) \subseteq \{\vec{x}\})$$
 defining $\forall A$ in terms of $\exists A$, A , and freshness $\#$.

- \bullet Gives little insight into self-duality and symmetry properties of $\ensuremath{\mathsf{M}}$
- Syntactic side-condition makes checking uses painful
- Gentzen-style rule systems often preferable to axiomatic definitions

• [Gabbay, Pitts 1999], [Pitts 2003] proposed sequent rules

$$\frac{\Gamma, a \# \vec{x}, \phi \Rightarrow \psi}{\Gamma, \forall a. \phi \Rightarrow \psi} \forall L \qquad \frac{\Gamma, a \# \vec{x} \Rightarrow \phi}{\Gamma \Rightarrow \forall a. \phi} \forall R$$

where $a \notin FV(\Gamma, \psi)$ and $FV(\Gamma, \psi, \mathsf{V} a.\phi) \subseteq \{\vec{x}\}.$

- Not much simpler than axiom scheme
- Not closed under substitution, so cut-elimination hard to prove

• Most recent idea [Gabbay, Cheney 2004]:

$$\frac{\Gamma, a \# \vec{t}, \phi \Rightarrow \psi}{\Gamma, \mathsf{V} a. \phi \Rightarrow \psi} \mathsf{V} L \qquad \frac{\Gamma, a \# \vec{t} \Rightarrow \phi}{\Gamma \Rightarrow \mathsf{V} a. \phi} \mathsf{V} R$$

where $a \notin FV(\Gamma, \psi)$ and ϕ can be decomposed as $\phi'(a, \vec{t})$ where $a \notin FV(\vec{t})$ and $\phi'(\cdots)$ mentions only quantifiers/connectives.

- Closed under substitution, so cut-elimination straightforward
- but seems nondeterministic & side-conditions even more painful

• Miller and Tiu's $FO\lambda^{\nabla}$ logic includes *local name contexts* and a self-dual quantifier ∇ :

$$\frac{\Sigma : \Gamma, (\sigma, x) \triangleright \phi \Rightarrow \mathcal{A}}{\Sigma : \Gamma, \sigma \triangleright \nabla x. \phi \Rightarrow \mathcal{A}} \nabla L \qquad \frac{\Sigma : \Gamma \Rightarrow (\sigma, x) \triangleright \phi}{\Sigma : \Gamma \Rightarrow \sigma \triangleright \nabla x. \phi} \nabla R$$

where $x \notin \Sigma$.

- These rules are not much more complicated that $\forall R, \exists L$.
- Can we obtain similarly simple rules for И?

• In α Prolog [Cheney, Urban 2004] clauses can mention explicit name symbols a, b, . . .:

$$p(\vec{\mathsf{a}}, \vec{X}) := G(\vec{\mathsf{a}}, \vec{X})$$

Clauses are interpreted as *implicitly* Vi∀-quantified:

И
$$ec{\mathsf{a}}.orall ec{X}.G(ec{\mathsf{a}},ec{X})\supset p(ec{\mathsf{a}},ec{X})$$

The *U*-quantifier is interpreted in proof search as "generate a fresh name a, then proceed"

 Can we justify this interpretation using similar proof rules for N?

ullet My approach: use special name symbols a and "freshness contexts" Σ that store needed freshness information

$$\frac{\Sigma \# \mathbf{a} : \Gamma, \phi \Rightarrow \psi}{\Sigma : \Gamma, \mathsf{Na}.\phi \Rightarrow \psi} \, \mathsf{N}L \qquad \frac{\Sigma \# \mathbf{a} : \Gamma \Rightarrow \phi}{\Sigma : \Gamma \Rightarrow \mathsf{Na}.\phi} \, \mathsf{N}R$$

where a $\notin \Sigma$.

- Closed under substitution, side conditions simpler (like $\forall R, \exists L, \nabla L/R$)
- Management of freshness information "compartmentalized" into Σ -context and an additional rule.

Outline

- Quick overview of nominal logic
- ullet The sequent calculus NL^{\Rightarrow}
- ullet Relating $FO\lambda^{
 abla}$ and nominal logic
- Conclusion

Nominal Logic: Syntax

- Names a, b inhabiting name-sorts A, A'
- Swapping (a b) x exchanges two names
- Abstraction $\langle a \rangle x$ constructs "objects with one bound name"
- Freshness relation a # x means "x does not depend on a"
- M-quantifier quantifies over fresh names: $\text{Ma.}\phi$ means "for fresh names a, ϕ holds"

Names: What are they?

- In this approach, names are a new syntactic class, distinct from variables and from function or constant symbols
- Syntactically different name symbols always denote semantically distinct names
- Names can be "semantically bound" in abstractions $\langle a \rangle x$, but also "syntactially bound" by \mathcal{N} : \mathcal{N} a. ϕ
- $\langle a \rangle f(a,x)$ and $\langle b \rangle (b,x)$ are different nominal terms (and can denote different values), while Ma.p(a,x) and Mb.p(b,x) are α -equivalent formulas

Theory of Swapping and Freshness

Swapping

$$(a \ b) \cdot a \approx b \quad (a \ a) \cdot x \approx x \quad (a \ b) \cdot (a \ b) \cdot x \approx x$$

$$(a \ b) \cdot c \approx c \quad (a \ b) \cdot f(\vec{x}) = f((a \ b) \cdot \vec{x})$$

Freshness

$$a \# a' \iff a \not\approx a' \quad a \# x \land b \# x \supset (a \ b) \cdot x \approx x$$

Examples

$$a \# b \approx (a b) \cdot a \quad (a b) \cdot f(a, \langle b \rangle a, g(a)) \approx f(b, \langle a \rangle b, g(b))$$

Theory of Name-Abstraction

- Intuitively, $\langle {\bf a} \rangle x$ is "the value x with a distinguished bound name a".
- Considered equal up to "safe" renaming (α -equivalence)

$$\langle a \rangle x \approx \langle b \rangle x \iff (a \approx b \land x \approx y) \lor (a \# y \land x \approx (a \ b) \cdot y)$$

• For example,

$$\models \langle a \rangle a \approx \langle b \rangle b \qquad \not\models \langle a \rangle f(a,b) \approx \langle b \rangle f(b,a)$$

Sequent Calculus

ullet Judgments use context Σ expressing both typing and freshness information

$$\Sigma ::= \cdot \mid \Sigma, x : S \mid \Sigma \#a : A$$

• Associate contexts with freshness constraint sets $|\Sigma|$:

$$|\cdot| = \varnothing \quad |\Sigma, x:S| = |\Sigma| \quad |\Sigma \# a:A| = |\Sigma| \cup \{a \# t \mid \Sigma \vdash t : S\}$$

Auxiliary rule for extracting freshness information:

$$\frac{\mathsf{a} \# t \in |\Sigma| \quad \Sigma : \Gamma, \mathsf{a} \# t \Rightarrow \psi}{\Sigma : \Gamma \Rightarrow \psi} \Sigma \#$$

Freshness Principle

Fresh names can always be chosen.

$$\frac{\Sigma \# \mathsf{a} : \Gamma \Rightarrow \psi}{\Sigma : \Gamma \Rightarrow \psi} F \quad (\mathsf{a} \not\in \Sigma)$$

• An example derivation using (F) and $(\Sigma \#)$:

$$\frac{\mathbf{a} \ \# \ x \in |\Sigma, x\#\mathbf{a}| \quad \overline{\Sigma}, x\#\mathbf{a} : \mathbf{a} \ \# \ x \Rightarrow \mathbf{a} \ \# \ x}{\sum, x\#\mathbf{a} : \cdot \Rightarrow \mathbf{a} \ \# \ x} \underbrace{\frac{\Sigma, x\#\mathbf{a} : \cdot \Rightarrow \mathbf{a} \ \# \ x}{\Sigma, x\#\mathbf{a} : \cdot \Rightarrow \exists a.a \ \# \ x}_{F}}_{\underline{\Sigma}, x : \cdot \Rightarrow \exists a.a \ \# \ x}_{F} \forall R} \underline{\sum, x : \cdot \Rightarrow \forall x. \exists a.a \ \# \ x}_{F} \forall R}$$

Equivariance Principle

Constants fixed by name-swapping

$$(a \ b) \cdot c \approx c$$

Functions commute with name-swapping

$$(a\ b) \cdot f(\vec{t}) \approx f((a\ b) \cdot \vec{t})$$

Truth preserved by name-swapping

$$\frac{\Sigma : \Gamma, p((a\ b) \cdot \vec{t}) \Rightarrow \psi}{\Sigma : \Gamma, p(\vec{t}) \Rightarrow C} EV$$

U-Quantifier Rules

• Our rules:

$$\frac{\Sigma \# \mathsf{a} : \Gamma, \phi \Rightarrow \psi}{\Sigma : \Gamma, \mathsf{Va}.\phi \Rightarrow \psi} \mathsf{V}L \qquad \frac{\Sigma \# \mathsf{a} : \Gamma \Rightarrow \phi}{\Sigma : \Gamma \Rightarrow \mathsf{Va}.\phi} \mathsf{V}R \qquad (\mathsf{a} \not\in \Sigma)$$

- Intuitively, to either prove or use a \mathcal{N} -quantified formula, instantiate it to a completely fresh name and proceed.
- Previous systems have used complex syntactic side-conditions to do this.

Denotational Semantics?

- That's another talk. Sorry!
- An incomplete semantics can be inherited from Pitts' nominal logic semantics
- A complete semantics is known [Cheney 2004], working on publication

Examples

• A simple theorem: Иа.Иb.а # b

• Another theorem: $\text{Ma}, \text{b}.p(\text{a}) \supset p(\text{b})$

$$\begin{split} \frac{\overline{\Sigma\#\mathsf{a}\#\mathsf{b}:p(\mathsf{b})\Rightarrow p(\mathsf{b})}}{\underline{\Sigma\#\mathsf{a}\#\mathsf{b}:(\mathsf{a}\;\mathsf{b})\cdot p(\mathsf{a})\Rightarrow p(\mathsf{b})}} \underbrace{axioms}_{EV} \\ \frac{\underline{\Sigma\#\mathsf{a}\#\mathsf{b}:p(\mathsf{a})\Rightarrow p(\mathsf{b})}}{\underline{\Sigma:\cdot\Rightarrow\mathsf{Na},\mathsf{b}.p(\mathsf{a})\supset p(\mathsf{b})}} \, \mathsf{N}R^2, \supset R \end{split}$$

Examples

• A non-theorem: $\text{Ma.}p(a,a) \Rightarrow \text{Ma.}b.p(a,b)$

$$\frac{\Sigma \# \mathsf{a} \# \mathsf{b} \# \mathsf{a}' : p(\mathsf{a}', \mathsf{a}') \Rightarrow p(\mathsf{a}, \mathsf{b})}{\Sigma : \mathsf{Va}.p(\mathsf{a}, \mathsf{a}) \Rightarrow \mathsf{Va}, \mathsf{b}.p(\mathsf{a}, \mathsf{b})} \mathsf{V}R^2, \mathsf{V}L$$

• Another non-theorem: $\text{Va.}p(a,y) \Rightarrow \forall x.p(x,y)$.

$$\frac{\sum, x\# \mathsf{a} : p(\mathsf{a}, y) \Rightarrow p(x, y)}{\sum : \mathsf{Va}.p(\mathsf{a}, y) \Rightarrow \forall x.p(x, y)} \mathsf{V}L, \forall R$$

Failure?

• Observe that failure can be difficult to detect because of equivariance...

$$\frac{\Sigma : (a \ b) \cdot (a \ b) \cdot P \Rightarrow Q}{\sum : (a \ b) \cdot P \Rightarrow Q}$$

$$\frac{\Sigma : (a \ b) \cdot P \Rightarrow Q}{\sum : P \Rightarrow Q}$$

- This problem was already present in other formalizations.
- Future work: deciding $\bigwedge P \supset \bigvee Q$, where P,Q are freshness, equality, or atomic formulas.

• Weakening, invertibility, contraction properties

Lemma 1 (Weakening). *If* $\Sigma : \Gamma \Rightarrow \phi$ *then* $\Sigma : \Gamma, \psi \Rightarrow \phi$.

Lemma 2 (Invertibility). The $\mathsf{V}L$ and $\mathsf{V}R$ rules are invertible:

- If Σ : Γ, VIa. $\psi \Rightarrow \phi$ then Σ#a : Γ, $\psi \Rightarrow \phi$ (for a \notin Σ)
- If Σ : Γ, ψ ⇒ Va. ϕ then Σ#a : Γ, ψ ⇒ ϕ (for a \notin Σ)

Lemma 3 (Contraction). If $\Sigma : \Gamma, \psi, \psi \Rightarrow \phi$ then $\Sigma : \Gamma, \psi \Rightarrow \phi$.

• Equivariance was only assumed for atomic formulas, but more general rules are admissible.

Lemma 4 (Admissibility of EVL). If $\Sigma : \Gamma, (a \ b) \cdot \psi \Rightarrow \phi$ then $\Sigma : \Gamma, \psi \Rightarrow \phi$.

Lemma 5 (Admissibility of EVR). If $\Sigma : \Gamma, \psi \Rightarrow (a \ b) \cdot \phi$ then $\Sigma : \Gamma, \psi \Rightarrow \phi$.

Subtle point in proof: left and right equivariance are mutually recursive (because of implication)

$$\frac{\Sigma : \Gamma, (a \ b) \cdot \phi_1 \Rightarrow (a \ b) \cdot \phi_2}{\Sigma : \Gamma \Rightarrow (a \ b) \cdot (\phi_1 \supset \phi_2)} \supset R$$

 hyp rule only assumed for atomic formulas, but generalized form admissible.

Lemma 6 (Admissibility of hyp^*). The rule

$$\overline{\Sigma : \Gamma, \phi \Rightarrow \phi} \, hyp^*$$

is admissible.

Proof relies on EVL for M-case:

$$\begin{array}{l} \overline{\Sigma\#\mathsf{a}\#\mathsf{b}:\phi(\mathsf{b})\Rightarrow\phi(\mathsf{b})} \, hyp^* \\ \overline{\Sigma\#\mathsf{a}\#\mathsf{b}:\Gamma,(\mathsf{a}\;\mathsf{b})\cdot\phi(\mathsf{a})\Rightarrow\phi(\mathsf{b})} \, \underbrace{\Sigma\#\mathsf{a}\#\mathsf{b}:\Gamma,\phi(\mathsf{a})\Rightarrow\phi(\mathsf{b})}_{EVL} \, \underbrace{\Sigma\#\mathsf{a}\#\mathsf{b}:\Gamma,\phi(\mathsf{a})\Rightarrow\phi(\mathsf{b})}_{\Sigma:\Gamma,\,\mathsf{Va}.\phi\Rightarrow\,\mathsf{Va}.\phi} \, \mathsf{VL}, \mathsf{VR} \end{array}$$

Cut-elimination

Theorem 7. If $\Sigma : \Gamma, \phi \Rightarrow \psi$ and $\Sigma : \Gamma' \Rightarrow \phi$ then $\Gamma, \Gamma' \Rightarrow \psi$

Proof follows standard techniques of permuting cuts upward.

• The proof is straightforward, but relies on the previous properties

Cut-elimination: interesting case

• Given a principal И-cut,

$$\frac{\Sigma \# \mathbf{a} : \Gamma \Rightarrow \phi}{\Sigma : \Gamma \Rightarrow \mathsf{VIa}.\phi} \mathsf{VIR} \quad \frac{\Sigma \# \mathbf{a} : \Gamma, \phi \Rightarrow \psi}{\Sigma : \Gamma, \mathsf{VIa}.\phi \Rightarrow \psi} \mathsf{IL}$$

$$\Sigma : \Gamma \Rightarrow \psi$$

permute the cut upward using the freshness principle:

$$\frac{\Sigma \# \mathbf{a} : \Gamma \Rightarrow \phi \quad \Sigma \# \mathbf{a} : \Gamma, \phi \Rightarrow \psi}{\Sigma \# \mathbf{a} : \Gamma \Rightarrow \psi F} cut$$

$$\frac{\Sigma \# \mathbf{a} : \Gamma \Rightarrow \psi}{\Sigma : \Gamma \Rightarrow \psi} F$$

Applications

- Syntactic proof of consistency
- Proof of conservativity relative to Pitts' system
- Sound and complete translation from $FO\lambda^{\nabla}$ to NL^{\Rightarrow}

Translation from $FO\lambda^{\nabla}$ to nominal logic

• $FO\lambda^{\nabla}$ [Miller, Tiu 2003]: a logic with *local name contexts* σ and a self-dual local name quantifier $\nabla x.\phi$:

$$\frac{\Sigma : \Gamma, (\sigma, x) \triangleright \phi \Rightarrow \mathcal{A}}{\Sigma : \Gamma, \sigma \triangleright \nabla x. \phi \Rightarrow \mathcal{A}} \nabla L \quad \frac{\Sigma : \Gamma \Rightarrow (\sigma, x) \triangleright \phi}{\Sigma : \Gamma \Rightarrow \sigma \triangleright \nabla x. \phi} \nabla R \qquad (x \notin \Sigma, \sigma)$$

- [Gabbay, Cheney 2004] gave a sound but not complete translation to a nominal logic variant
- Incomplete because $\mbox{\it I}$ admits "weakening", "exchange", but $\mbox{\it ∇}$ does not.

Examples of old translation

• translation of "weakening principle"

$$\nabla x.p \iff p$$
 (underivable)

is

$$Va.p \iff p$$
 (derivable!)

translation of "exchange principle"

$$\nabla x, y.p(x,y) \iff \nabla y, x.p(x,y)$$
 (underivable)

is

$$\mathsf{Va}, \mathsf{b}.p(n(\mathsf{a}), n(\mathsf{b})) \iff \mathsf{Vb}, \mathsf{a}.p(n(\mathsf{a}), n(\mathsf{b})) \qquad (\mathsf{derivable!})$$

Examples of new translation

• translation of "weakening principle"

$$\nabla x.p \iff p$$
 (underivable)

is

$$\text{Ma.}p[a] \iff p[]$$
 (underivable)

translation of "exchange principle"

$$\nabla x, y.p(x,y) \iff \nabla y, x.p(x,y)$$
 (underivable)

is

$$\mathsf{Va}, \mathsf{b}.p[\mathsf{a},\mathsf{b}](n(\mathsf{a}),n(\mathsf{b})) \iff \mathsf{Vb}, \mathsf{a}.p[\mathsf{b},\mathsf{a}](n(\mathsf{a}),n(\mathsf{b})) \qquad \text{(underivable)}$$

Note: Translation is homomorphic on propositional connectives

Note: We lift \forall , \exists to make local context dependence explicit

(Here $ev(h) = \forall a : A.a \# h$)

Note: We delay using \mathcal{U} for ∇ by storing ∇ -quantified names in local context.

Note: We translate local contexts to *VI-quantified names*

Note also: We also parameterize translated atomic formulas by list of local names.

Idea of proof

- Identify a normal form for NL derivations
- Prove that all normal forms represent $FO\lambda^{\nabla}$ proofs
- Prove that all derivations of translated $FO\lambda^{\nabla}$ sequents can be normalized.
- Many details omitted here.

Some details

- "First normal form": derivation consists only of \mathcal{U} , hyp, or equational, freshness, or equivariance laws.
- Example: $[\![\Sigma : \Gamma, x \triangleright p \Rightarrow x \triangleright p]\!]$ derivable as

$$\Sigma : \Gamma, \mathsf{V} x.p[x] \Rightarrow \mathsf{V} x.p[x] hyp^*$$

which expands to 1NF.

Proposition 8. $[\![\Sigma : \Gamma \Rightarrow \mathcal{A}]\!]$ is in 1NF if and only if $\Sigma : \Gamma \Rightarrow \mathcal{A}$ is an initial sequent (i.e., $\mathcal{A} \in \Gamma$).

By induction on derivations (using knowledge of translation).

More details

- "Second normal form": derivation starts with a logical rule.
- If the first rule is \forall (or \exists) then it must be followed by corresponding \supset (or \land) on the same formula.

Proposition 9. A translated sequent has a 2NF derivation if and only if there exists a $FO\lambda^{\nabla}$ logical rule instance

$$\frac{J_1 \quad \cdots \quad J_n}{\Sigma : \Gamma \Rightarrow \mathcal{A}}$$

such that the translations $[\![J_1]\!], \ldots, [\![J_n]\!]$ are also derivable.

More details

• So far so good. The hard part is proving that that translated derivations have normal forms.

Proposition 10. If $[\![J]\!]$ has a NL^{\Rightarrow} derivation, then it has a 1NF or 2NF derivation.

The proof is by complicated induction on a strengthened induction hypothesis.

Theorem 11. If $[\![J]\!]$ is derivable in NL^{\Rightarrow} , then J is derivable in $FO\lambda^{\nabla}$.

Related work

- Many spatial/tree/graph/concurrency logics now incorporating И (e.g., [Caires, Cardelli 2002])
- [Gabbay, Cheney 2004]: presented an alternative system with VI-rules using more complex syntactic side-conditions
- [Schöpp, Stark 2004]: develop a dependent type theory with names & binding using similar (but more general) bunched contexts
- [Miculan, Yemane 2005] describe an (incomplete) denotational semantics of $FO\lambda^{\nabla}$.

Future work

- Uniform proof semantics of nominal logic programming
- Semantics of $FO\lambda^{\nabla}$
- A *truly* simple proof theory?
- A *simple* type theory?

Conclusions

- ullet Presented a proof theory for nominal logic that uses explicit name symbols and structured contexts to deal with ${\it N}$
- We argue that this approach is "simpler" / "easier to use";
 this is subjective
- Re-proved existing results (cut-elimination, consistency, conservativity)
- In addition, proved a nontrivial new result (embedding of $FO\lambda^{\nabla}$).