
Logic Programming with Names and
Binding

James Cheney, Cornell University

(joint work with Christian Urban, University of

Cambridge)

September 7, 2004

1



Problem

• Names can’t be handled easily in traditional logic program-
ming.

• Consider the typing rules for the λ-calculus:

x : τ ∈ Γ
Γ ` x : τ

Γ ` e : τ ′ → τ Γ ` e′ : τ ′
Γ ` e e′ : τ

Γ, x : τ ` τ ′

Γ ` λx.e : τ → τ ′

• Here’s an easy (but incorrect) Prolog translation:

tc(G, var(X), T ) :− mem((X, T ), G).
tc(G, app(E, E′), T ) :− tc(G, E, arr(T ′, T )), tc(G, E′, T ′).
tc(G, lam(X, E), arr(T, T ′)) :− tc([(X, T )|G], E, T ′).

2



Some bugs

• This program is incorrect. For example,

lam(x, lam(x, var(x)))

can be assigned two types α → β → β, α → β → α.

• Also,

lam(x, lam(x, app(var(x), var(x))))

may succeed with answer α → (α → β) → β!

• What happened?

3



I lied

• Technically speaking, I should have said

Γ, x : τ ` τ ′ x 6∈ FV (Γ)
Γ ` λx.e : τ → τ ′

• It’s not hard to define not in fv in Prolog, giving

tc(G, lam(X, E), arr(T, U)) :− not in fv(X, G), tc([(X, T )|G], E, U).

• But this rules out both λx.λx.x and λx.λx.(x x).

• We need to freshen bound variables. Back to the drawing
board?

4



Revisionist history

• If you know about higher-order abstract syntax (and I assume

many of you do), please pretend you don’t for the next few

minutes.

• What if HOAS had never been invented?

• Perhaps someone would have invented an alternative way of

thinking about binding.

• Recently someone did.

5



Gabbay-Pitts theory

• Recently Gabbay and Pitts (LICS 1999) developed a new
theory of names and binding.

• Names are an abstract data type with constants a, b, . . .

• (a b) · t: the result of swapping names a and b in t.

• a # t: freshness predicate asserting “a is fresh for t”

• 〈a〉t: the abstraction of a over t, i.e. t with a bound.

6



Examples

• Swapping:

(a b) · (f(a, b, c)) ≈ f(b, a, c) (a b) · 〈a〉f(b, a) ≈ 〈b〉f(a, b)

• Freshness (“not-free-in”)

¬(a # a) a # f(b, c) a # 〈a〉t

• Abstraction (equal up to “α-equivalence”):

〈a〉a ≈ 〈b〉b = · · · 〈a〉f(a, b) ≈ 〈a′〉f(a′, b) 6≈ 〈b〉f(b, a)

7



αProlog

• αProlog is a logic programming language with built-in fresh-

ness, swapping, and abstraction.

• In αProlog, the tricky λ-typechecking rule can be written as:

tc(G, lam(〈x〉E), arr(T, U)) :− x # G, tc([(x, T )|G], E, U).

• We use x # G for x 6∈ FV (Γ).

• We use abstraction for binding in lam(〈x〉E).

8



Nominal unification (1)

• Nominal unification algorithm developed by Urban, Pitts,

Gabbay solves such problems.

• Answers are substitutions θ paired with sets of freshness con-

straints F = {x # V, . . .}.

• Example: 〈x〉Z and 〈y〉W unify with θ = [W := (x y) · Z],

F = {x # Z}.

• Example: a # f(X, 〈a〉Y ) provided F = {a # X}.

9



Nominal unification (2)

• Based on first-order unification.

• Key new rules for unifying abstractions:

〈a〉t ≈? 〈a〉u, P =⇒ t ≈? u, P

〈a〉t ≈? 〈b〉u, P =⇒ t ≈? (a b) · u, a #? u, P

• Some new rules for freshness problems:

a #? b, P =⇒ P

a #? 〈a〉t, P =⇒ P

a #? 〈b〉t, P =⇒ a #? t, P

10



Proof search in αProlog

• As in Prolog, we solve a goal formula A′ by looking for a

clause

A :− G1, . . . , Gm

unifying A and A′ to θ, and solving subgoals θ(G1), . . . , θ(Gm).

• In Prolog, clause variables are freshened and first-order uni-

fication is used.

• In αProlog, clause variables and names are freshened and

nominal unification is used.

11



Examples

• Consider tc([], lam(〈x〉lam(〈x〉var(x))), T )

• Unique solution: T = arr(T1, arr(T2, T2)).

• Consider tc([], lam(〈x〉lam(〈x〉app(var(x), var(x)))), T )

• No solution

12



So what?

• Can other interesting programs be written more easily in

αProlog?

• Yes. Substitution, evaluation, etc.

• These can be done using HOAS also.

• What can αProlog do that HOAS cannot?

13



Closure conversion (not in paper)

• Important FP compilation phase

• Idea: Make all functions closed

• Translation function to (closed function, environment) pair

• Environment shape depends on context:

Γ = xn, . . . , x1 7→ env = 〈vn, 〈vn−1, . . . , v1〉 · · · 〉

14



Simple, untyped closure conversion

• A simple approach:

C[[x,Γ ` x]]e = π1(e)

C[[y,Γ ` x]]e = C[[Γ ` x]](π2(e)) (x 6= y)

C[[Γ ` t1t2]]e = let c = C[[Γ ` t1]]e in (π1(c)) 〈C[[Γ ` t2]]e, π2(c)〉
C[[Γ ` λx.t]]e = 〈λy.C[[x,Γ ` t]]y, e〉 (x, y /∈ Γ)

15



Closure conversion code

• This is no problem for αProlog.

var : id → tm. app : (tm, tm) → tm.
lam : 〈id〉tm → tm. let : (tm, 〈id〉tm) → tm.
...
cconv([X|G], var(X), E, pi1(E)).
cconv([X|G], var(Y ), E, T )

:− X # Y, cconv(G, var(Y ), pi2(E), T ).
cconv(G, app(T1, T2), E, T ′)

:− cconv(G, T1, E, T ′
1),

cconv(G, T2, E, T ′
2),

T ′ = let(T ′
1, 〈c〉app(pi1(var(c)), pair(T ′

2, pi2(var(c))))).
cconv(G, lam(〈x〉T ), E, pair(lam(〈y〉F ), E))

:− x # G, y # G, cconv([x|G], T, var(y), F ).

16



Closure conversion appears hard in HOAS

• Need access to context Γ as data structure: order of name

binding matters!

• Need name-(in)equality tests

• HOAS doesn’t help with this

17



More examples in paper

• λµ-calculus with “continuation call” substitution operation

• π-calculus terms and operational semantics

18



Problem: Equivariance

• Equivariance: Validity preserved by name-swapping.

• For example,

tc([], lam(〈x〉lam(〈y〉var(x))), τ)
(a b)⇐⇒ tc([], lam(〈y〉lam(〈x〉var(y))), τ)

• Logical equivalence does not imply nominal term equality.

• Nominal unification does not (and should not) allow this

19



Equivariant Unification is NP-Complete

• Graph 3-Colorability reduces to equivariant unification.

• So, EV-unification is hard in general.

• Is it hard in practice? Open problem.

• Nominal unification works in many cases.

• Future/current work: practical EV-unification.

20



Summary

• Gabbay-Pitts + logic programming provides advanced facili-

ties for programming with names and binding

• There are significant technical challenges in this approach.

• But, may be easier to automate or assist reasoning about

languages using GP approach.

• αProlog: A reasonable first step in this direction

21



Church...

• It’s true that HOAS has a long and honorable history.

• The idea dates at least to Church (1940).

• It is powerful and broadly applicable.

• But not all-powerful.

22



... or Frege?

• But the permutation approach has a longer (but less well-

known) history!

• Frege (1879) said

Replacing a German letter [bound name] everywhere in

its scope by some other one is, of course, permitted, so

long as in places where different letters initially stood

different ones also stand afterward. This has no effect

on the content.

23


