The Semantics of Nominal Logic Programs

James Cheney

ICLP 2006

August 19, 2006

Motivation

- Nominal logic [Pitts 2003] is a first-order axiomatization of names, name-binding, and alpha-equivalence
- Provides a logical foundation for logic programming with "concrete" names
- Much more convenient for prototyping type systems,
- "First-class" names, including nondeterministic fresh name generation, so sometimes more convenient than HO abstract syntax

Example

A (very tired) example: typechecking.

```
 \begin{array}{lll} tc(G,var(X),T) & := mem((X,T),G). \\ tc(G,app(E,F),U) & := tc(G,E,arr(T,U)), \ tc(G,F,T). \\ tc(G,lam(x\setminus E),arr(T,U)) & := x \# G, \ tc([(x,T)\mid G],E,U). \end{array}
```

• Note that clauses and subgoals correspond exactly (read x # G as $x \notin \Gamma$)

Example

Large-step semantics for ML-like references:

$$\frac{(a \in Lab)}{\langle M, a \rangle \to \langle M, a \rangle} \qquad \frac{\langle M, e_1 \rangle \to \langle M', a \rangle \quad \langle M', e_2 \rangle \to \langle M'', v \rangle}{\langle M, e_1 := e_2 \rangle \to \langle M''[a := v], () \rangle}$$

$$\frac{\langle M, e \rangle \to \langle M', a \rangle}{\langle M, !e \rangle \to \langle M', M'(a) \rangle} \qquad \frac{\langle M, e \rangle \to \langle M', v \rangle \quad (a \not\in dom(M'))}{\langle M, ref \ e \rangle \to \langle M'[a := v], a \rangle}$$

 Interesting part: last rule requires fresh label for new memory cell

Example

Large-step semantics for ML-like references:

ullet Interesting part: in last rule, name a is constrained to be sufficiently fresh

Motivation (II)

- Previous papers have considered differing operational, prooftheoretic, and denotational semantics separately...
- This paper gives a unified presentation that ties them together
- Main contribution: Improved "uniform proof" semantics

Notation

a,b	\in	A	Atoms/Names
f,g	\in	FnSym	Term symbols
X, Y	\in	Var	Variables
a, b, t, u	::=	$c \mid f(\vec{t}) \mid X$	First-order terms
		$\langle a angle t \mid (a \ b) \cdot t \mid$ a	Nominal terms
C	::=	$t \approx u \mid a \# t$	Equality, freshness
Σ	::=	$\cdot \mid \mathbf{\Sigma}, X : \tau \mid \mathbf{\Sigma} \# \mathbf{a} : \nu$	Contexts
∇	::=	$\cdot \mid abla, C$	Constraint sets

Note: Contexts Σ #a have special meaning: name a cannot occur free in any variables in Σ .

Ground swapping

The result of applying a swapping $(b \ b')$ to a ground term is:

$$\begin{array}{rcl} (\mathsf{b}\;\mathsf{b}') \cdot \mathsf{a} &=& (\mathsf{b}\;\mathsf{b}')(\mathsf{a}) \\ (\mathsf{b}\;\mathsf{b}') \cdot c &=& c \\ (\mathsf{b}\;\mathsf{b}') \cdot f(\vec{t}) &=& f((\mathsf{b}\;\mathsf{b}') \cdot t_1, \ldots, (\mathsf{b}\;\mathsf{b}') \cdot t_n) \\ (\mathsf{b}\;\mathsf{b}') \cdot \langle \mathsf{a} \rangle t &=& \langle (\mathsf{b}\;\mathsf{b}') \cdot \mathsf{a} \rangle (\mathsf{b}\;\mathsf{b}') \cdot t \end{array}$$

where

$$(b \ b')(a) = \begin{cases} b & (a = b') \\ b' & (a = b) \\ a & (a \neq b \neq b') \end{cases}$$

Note: In case of abstraction, no α -renaming is needed; swapping is intrinsically capture-avoiding!

Ground freshness theory

Ground equational theory

$$\begin{array}{c} \overline{\mathbf{a} \approx \mathbf{a}} \\ \overline{\mathbf{c} \approx \mathbf{c}} \\ \underline{t_1 \approx u_1 \quad \cdots \quad t_n \approx u_n} \\ f(\overline{t}) \approx f(\overline{u}) \\ \underline{t \approx u} \\ \overline{\langle \mathbf{a} \rangle t \approx \langle \mathbf{a} \rangle u} \\ \end{array} \right\} \quad \text{Standard equational rules}$$

$$\underline{(\mathbf{a} \neq \mathbf{b}) \quad \mathbf{a} \# u \quad t \approx (\mathbf{a} \ \mathbf{b}) \cdot u} \\ \underline{\langle \mathbf{a} \rangle t \approx \langle \mathbf{b} \rangle u} \quad \alpha \text{-equivalence for abstractions}$$

Don't worry if that went by a little fast.

The constraint theory is largely irrelevant to the rest of the talk.

The *VI*-quantifier

ullet The semantics of the $\mbox{\it U}$ -quantifier on ground formulas ϕ is as follows

$$\models \mathsf{Va}.\phi \iff \models (\mathsf{a} \mathsf{b}) \cdot \phi \mathsf{ for some b} \not\in supp(\mathsf{Va}.\phi)$$

More generally, if a $\notin FN(\Sigma)$,

$$\Sigma : \nabla \vDash \mathsf{Va.} \phi \iff \Sigma \# a : \nabla \vDash \phi$$

• Example:

$$\models$$
 $\mathsf{Va.Vb.a} \not= \mathsf{b} \qquad \models \forall X. \mathsf{Va.a} \not= X \qquad \not\models \mathsf{Va.} \forall X. \mathsf{a} \not= X$

Nominal logic goals and programs

• Goal formulae and program clauses are of the form

$$G ::= A \mid C \mid \top \mid G \wedge G' \mid G \vee G' \mid \exists X.G \mid \mathsf{Va}.G$$

$$D ::= A \mid \top \mid D \wedge D \mid G \supset D \mid \forall X.D \mid \mathsf{Va}.D$$

Note: We interpret

$$A:-B_1,\ldots,B_n$$
 as $V(\vec{a}). \forall \vec{X}.B_1 \wedge \cdots \wedge B_n \supset A$ where $\vec{a}=FN(A,\vec{B})$ and $\vec{X}=FV(A,\vec{B})$.

Example:

Иа.
$$\forall G, E, T$$
.а # $G \land tc([(\mathsf{a},T)|G], E, U) \supset tc(G, \lambda(\langle \mathsf{a} \rangle E), arr(T,U))$

Denotational semantics

- \bullet Consider Herbrand (term) models only; a model is (essentially) a set S of atomic formulas.
- ullet Given program clause D, define one-step deduction operator T_D thusly:

$$T_{\top}(S) = S$$
 $T_{A}(S) = S \cup A$
 $T_{D_{1} \wedge D_{2}}(S) = T_{D_{1}}(S) \cup T_{D_{2}}(S)$
 $T_{G \supset D}(S) = \begin{cases} T_{D}(S) & \text{if } S \models G \\ S & \text{otherwise} \end{cases}$
 $T_{\forall X:\sigma.D}(S) = \bigcup_{t:\sigma} T_{D[t/X]}(S)$
 $T_{\mathsf{Ma}:\nu.D}(S) = \bigcup_{b:\nu \notin FN(\mathsf{Ma}.D)} T_{(\mathsf{a} \ \mathsf{b}) \cdot D}(S)$

Uniform/focused proofs

- Define a proof theory that captures uniform (goal-directed)
 and atomic (program clause-directed) proofs
- $\Sigma : \Delta; \nabla \Longrightarrow G$: given program Δ , constraint ∇ implies G.
- $\Sigma : \Delta; \nabla \xrightarrow{D} A$: given program Δ , constraint ∇ and program clause D immediately imply A. ("Focused" proofs)
- Quantifier rules use constraints rather than substitutions.

Goal-directed proofs

$$\begin{array}{c} \underline{\Sigma : \nabla \vDash C} \\ \overline{\Sigma : \Delta; \nabla \Longrightarrow C} \ con \\ \hline \underline{\Sigma : \Delta; \nabla \Longrightarrow G_1} \quad \underline{\Sigma : \Delta; \nabla \Longrightarrow G_2} \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow G_1 \land G_2} \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow G_1 \land G_2} \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow G_1 \land G_2} \\ \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow G_1 \lor G_2} \lor R_i \\ \hline \underline{\Sigma : \Delta; \nabla \Longrightarrow G_1 \lor G_2} \\ \\ \underline{\Sigma : \nabla \vDash \exists X.C} \quad \underline{\Sigma}, X : \Delta; \nabla, \underline{C} \Longrightarrow G} \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow \exists X : \sigma.G} \\ \underline{\Sigma : \nabla \vDash \mathsf{Ma.}C} \quad \underline{\Sigma \#a : \Delta; \nabla, C \Longrightarrow G} \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow \mathsf{Ma:} \nu.G} \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow \mathsf{Ma:} \nu.G} \\ \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow \mathsf{Ma:} \nu.G} \\ \\ \underline{\Sigma : \Delta; \nabla \Longrightarrow \mathsf{Ma:} \nu.G} \\ \end{array}$$

Atomic focused proofs

Comments

- Most connective rules standard.
- Quantifier rules use *constraints* rather than *substitutions*. More on this later.
- Atomic formula rule (hyp) uses relation $A \sim A'$ rather than $A \approx A'$. Technically,

$$\Sigma : \nabla \vDash A \sim A' \iff \exists \pi. \Sigma : \nabla \vDash \pi \cdot A \approx A'$$

More on this later.

Residuated proofs

- Define a slight variant of proof theory that computes a sufficient constraint or goal
- $\Sigma: \Delta \Longrightarrow G \setminus C$: given program Δ , G reduces to residual constraint C
- $\Sigma: \Delta \xrightarrow{D} A \setminus G$: atomic formula A reduces against focused program clause D to subgoal G
- Rules not shown, straightforward.

Operational semantics

Similar to [Darlington and Guo 1994]'s operational semantics

(B)
$$\Sigma \langle A, \Gamma \mid \nabla \rangle \longrightarrow \Sigma \langle G, \Gamma \mid \nabla \rangle$$

(if $\exists D \in \Delta . \Sigma : \Delta \xrightarrow{D} A \setminus G$)

$$\begin{array}{ccc} (C) & \Sigma \langle C, \Gamma \mid \nabla \rangle & \longrightarrow & \Sigma \langle \Gamma \mid \nabla, C \rangle \\ & (\nabla, C \text{ consistent}) & \end{array}$$

$$(\top) \quad \Sigma \langle \top, \Gamma \mid \nabla \rangle \qquad \longrightarrow \quad \Sigma \langle \Gamma \mid \nabla \rangle$$

$$(\land) \quad \Sigma \langle G_1 \land G_2, \Gamma \mid \nabla \rangle \quad \longrightarrow \quad \Sigma \langle G_1, G_2, \Gamma \mid \nabla \rangle$$

$$(\vee_i)$$
 $\Sigma \langle G_1 \vee G_2, \Gamma \mid \nabla \rangle \longrightarrow \Sigma \langle G_i, \Gamma \mid \nabla \rangle$

$$(\exists) \quad \Sigma \langle \exists X : \sigma.G, \Gamma \mid \nabla \rangle \quad \longrightarrow \quad \Sigma, X : \sigma \langle G, \Gamma \mid \nabla \rangle$$

$$(\mathsf{V}) \quad \Sigma \langle \mathsf{Va} : \nu.G, \Gamma \mid \nabla \rangle \quad \longrightarrow \quad \Sigma \# \mathsf{a} : \nu \langle G, \Gamma \mid \nabla \rangle$$

Most rules standard.

Key results

- ullet Least Herbrand models of Δ and least fixed points of T_{Δ} exist and equal.
- Proof theoretic semantics sound and (weakly) complete wrt model theoretic semantics.
- Operational semantics sound and complete wrt proof theory.
- Spared details, outline in paper, full version forthcoming.

Freshness rule

• Previous proof theories for NL had a "freshness" rule.

$$\frac{\Sigma \# \mathsf{a} : \Gamma \Rightarrow \phi}{\Sigma : \Gamma \Rightarrow \phi} F \qquad (\mathsf{a} \not\in FN(\Sigma, \Gamma, \phi))$$

• Complicates the proof theory since not goal-directed & can't be permuted past $\exists R$. For example,

$$\begin{array}{c} \vdots \\ \hline {\rm a\#b} : \cdot \Rightarrow {\rm a\#b} \\ \hline {\rm a\#b} : \cdot \Rightarrow \exists X. {\rm a\#X} \\ \hline {\rm a} : \cdot \Rightarrow \exists X. {\rm a\#X} \\ \hline {\rm a} : \cdot \Rightarrow \exists X. {\rm a\#X} \\ \hline {\rm *} : \cdot \Rightarrow {\rm Ma.} \exists X. {\rm a\#X} \\ \end{array}$$

Previous solution

- Previous solution [Gabbay & C 2004]: Change definition of uniform proof
- ullet "Bake in" applications of freshness rule to $\exists R$

$$\frac{\Sigma \# \vec{\mathbf{a}} \vdash t : \tau \quad \Sigma \# \vec{\mathbf{a}} : \Gamma \Rightarrow G[t/X]}{\Sigma : \Gamma \Rightarrow \exists X^{\tau}.G} \exists R^{*}$$

Messy (so hard to analyze), worse, unclear how to implement!

New solution

- Insight: $\exists X.G$ may hold only for X mentioning new names, but we don't need to know them in the proof
- New solution: Use constraints instead of substitutions in quantifier rules

$$\frac{\Sigma : \nabla \vDash \exists X.C \quad \Sigma, X : \Delta; \nabla, C \Longrightarrow G}{\Sigma : \Delta; \nabla \Longrightarrow \exists X.G} \exists R$$

 This pushes freshness reasoning into constraint solving; proof search reduces to constraint solving in a "goal-directed" way

New solution

Using constraint-based rules, can for example derive

since $\models \exists X.a \# X$ holds.

 Such constraint-based quantifier rules were introduced earlier to define uniform proofs for CLP [Darlington and Guo 1994, Leach et al. 2001].

An application

 We used the cleaner proof-theoretic semantics to prove the correctness of program rewriting rules such as

$$G \supset \forall X.D \leadsto \forall X.(G \supset D) \quad (X \notin FV(G))$$

$$G\supset \mathsf{Vla}.D\leadsto \mathsf{Vla}.(G\supset D) \quad (\mathsf{a}\not\in supp(G))$$

• These can be used to "elaborate" all program clauses to the form

Иа
$$orall \vec{X}.G \supset A$$

Another application

ullet Resolution based on equality (rather than \sim) sometimes makes constraint solving more tractable

$$\frac{\Sigma : \nabla \vDash A \approx A'}{\Sigma : \Delta; \nabla \xrightarrow{A} A'} hyp_{\approx}$$

- Showed that \approx -resolution is complete for " \mathcal{U} -clause-free" programs (in which \mathcal{U} only appears in *goal subformulas*)
- Simple proof transformation argument (compares favorably with previous work [Urban and C 2005])

Related work

- Higher-order LP and uniform proofs [Miller et al. 1991]
- Constraint LP semantics
 - [Jaffar et al. 1998]: denotational and operational
 - [Darlington and Guo 1994, Leach, Nieva, Rodrigues-Artalejo 2001]: proof-theoretic and operational
- Miller's L_{λ} language
 - Seems related to И-clause-free fragment of NomLP

Future work

- Mode checking, additional optimizations
- Generalize semantics to arbitrary (nominal) constraint domains
- Incorporate nominal constraint solving into existing CLP system?
- Relate to L_{λ} ?

Conclusions

- Nominal logic programming is a conceptually simple extension to plain FO (C)LP supporting name-binding
- This work consolidates and improves prior treatments of its semantics
 - Key issues: rules for quantifiers, freshness
- Provides a solid foundation for verifying program transformations, interpretation, compilation.