The Semantics of Nominal Logic
Programs

James Cheney
ICLP 2006

August 19, 2006

Motivation

e Nominal logic [Pitts 2003] is a first-order axiomatization of
names, name-binding, and alpha-equivalence

e Provides a logical foundation for logic programming with
“‘concrete’” names

e Much more convenient for prototyping type systems,

e “First-class” names, including nondeterministic fresh name
generation, so sometimes more convenient than HO abstract
syntax

Example

e A (very tired) example: typechecking.
x:Tel e:T—-U T'Hf:T (xgl) TMax:Tre:U

[Fx:T [Fe f:U [FXxe: T — U
tc(G,var(X),T) :— mem((X,T),G).
tc(G,app(E,F),U) :— tc(G,E,arr(T,U)), tc(G,F,T).

tc(G,lam(x\E) ,arr(T,U)) :- x # G, tc([(x,T)I|G],E,U).

e Note that clauses and subgoals correspond exactly (read x #
Gasxg&l)

Example

e Large-step semantics for ML-like references:

(a c Lab) <M7€1> — <M/7a> <M/7 €2> — <M”7U>
(M, a) — (M, a) (M, e1 1= ep) = (M"[a :=],)

(M, e) — (M, a) (M,e) — (M',v) (a¢dom(M'))
(M, le) — (M', M'(a)) (M, ref) — (M'[a := v], a)

e Interesting part: last rule requires fresh label for new memory
cell

Example

e Large-step semantics for ML-like references:

(M,1ab(A)) ‘eval‘ (M,lab(A)).

(M,assign(E1,E2)) ‘eval® (M3,unit) :- (M,E1) ‘eval‘ (M1,lab(Ap)),
(M1, E2) ‘eval‘ (M2,V),
update ((A,V) ,M2,M3).

(M,deref (E)) ‘eval (M°,V) :=— (M,E) ‘eval® (M’,lab(A)),
mem((A,V),M?).

(M,ref(E)) ‘eval® ([(a,V)|M’],lab(a)) :- (M,E) ‘eval‘ ,(M’,V),

a#M’ .

e Interesting part: in last rule, name a is constrained to be
sufficiently fresh

Motivation (II)

e Previous papers have considered differing operational, proof-
theoretic, and denotational semantics separately...

e [his paper gives a unified presentation that ties them to-
gether

e Main contribution: Improved “uniform proof” semantics

Notation

a,b
I 9
XY

a,b,t,u

C
>

\Y%

= ™

A

FnSym

Var

c| f(H) X
(@)t | (ab)-t]a
~ula#t
X, X | Z#aly
|V, C

Atoms/Names
Term symbols
Variables
First-order terms
Nominal terms
Equality, freshness
Contexts
Constraint sets

Note: Contexts 2 #a have special meaning: name a cannot occur
free in any variables in 2.

Ground swapping

The result of applying a swapping (b b’) to a ground term is:

(bb)-a = (bb)(a)
(bb)-c = ¢
(bb)-f(&) = fUbB)-t1,...,(b 1) tn)
(bb)-(a)t = ((bb)-a)(bb)-t
where
b (a=1Vb)
(b b)) (a) = { b’ (a=Db)
a (a=b#%b)

Note: In case of abstraction, no a-renaming is needed; swapping
IS intrinsically capture-avoiding!

Ground freshness theory

Different names fresh

Anything fresh for constant

Freshness ignores function symbols

Fresh if fresh for body
Fresh if bound

Ground equational theory

Q

d d

o
&

C
t1=~u1 -+ tn~un

f(&) ~ f(a@)

> Standard equational rules

(7
a)t =~ (b)u a-equivalence for abstractions

10

Don’t worry if that went by a little fast.
The constraint theory is largely
irrelevant to the rest of the talk.

11

The VI-quantifier

e [he semantics of the WM-quantifier on ground formulas ¢ is
as follows

F Na.p < F (ab)-¢ for some b & supp(Na.¢)
More generally, if a¢g FN(X),

2 . VFWMap < 2#a . VFo

e Example:

F Wa.Nb.a # b FVX.MNa.a# X 7 NaVX.a # X

12

Nominal logic goals and programs

e Goal formulae and program clauses are of the form

G A|C|IT|GANG' |GVvE|3X.G|WNa.G
D A|T|DAND|GD>D|VX.D|WNa.D

e Note: We interpret
A:—By,...,Bp,as NAVX.B{A---ABp,D A
where 3= FN(A, B) and X = FV (A, B).

e Example:
Na.VG, E,T.a # GAte([(a, T)|G], E,U) D te(G, \({a)E),arr(T,U))

13

Denotational semantics

e Consider Herbrand (term) models only; a model is (essen-
tially) a set S of atomic formulas.

e Given program clause D, define one-step deduction operator
Tp thusly:

TA(S) = SUA
Tp,aD,(S) = Tp,(S)UTp,(S)
ThH(S) if SEG
Taop(8) = { SD() otherwise
Tyx:0.0(5) = Ut:o Tp/x1(S)
Ta:w.0(S) = Ubwernwa.p) L(a b)-p(S)

14

Uniform/focused proofs

e Define a proof theory that captures uniform (goal-directed)
and atomic (program clause-directed) proofs

o > : A,V — (G: given program A, constraint V implies G.

o > AV £> A: given program A, constraint V and program
clause D immediately imply A. (“Focused” proofs)

e Quantifier rules use constraints rather than substitutions.

15

Goal-directed proofs

> VEC
> AV = ¢ " S AV —T &
2 A V=—=G1 X:A;V=—= G R
2 AV = G1 NGy 4

2 AV = G,
2 A,V =—=G1VGo

> VFEFIX.C . X:AV,0U=G

VR;

2 AV = dX.0.G Sl
> . VEWa.C Z#a:A;V,C———>GMR
2 AV —=— Vav.G

s AvE2 A Den ,
> A V=— A S€

16

Atomic focused proofs

sAvE A A V=G _

Z:A;VGD—D>A

SCVEIX.C X A V.02 4
]] VX:.o0.D
AN VAR =Ny

S VEVAC S#a:A:V,C2 A

S AV Na:v.D A

L

VL

NL

17

Comments

e Most connective rules standard.

e Quantifier rules use constraints rather than substitutions.
More on this later.

e Atomic formula rule (hyp) uses relation A ~ A’ rather than
A~ A’. Technically,

>: VEA~A «— InX:VEx - Ax A
More on this later.

18

Residuated proofs

e Define a slight variant of proof theory that computes a suf-
ficient constraint or goal

e > . A= G\ C: given program A, G reduces to residual
constraint C

N NN \ G: atomic formula A reduces against focused
program clause D to subgoal G

e Rules not shown, straightforward.

19

Operational semantics

e Similar to [Darlington and Guo 1994]'s operational semantics

(B) (A, T|V) — X(G,I| V)
(ifiDeas: A2 A\ @

(C) Z(C,T|V) — (| V,C)
(V, C consistent)

(T) X(T,M|Vv) — (| V)

Gi NGy, T | V) — X(G1,Go, T | V)

G1V Gy, | V) — X(G;, T | V)

1X:0.G,|V) — X X:o(G,[|V)

>
>
>
> (Na:w.G,I | V) — X#awv(G,T|V)

Most rules standard.

20

Key results

e Least Herbrand models of A and least fixed points of T'a
exist and equal.

e Proof theoretic semantics sound and (weakly) complete wrt
model theoretic semantics.

e Operational semantics sound and complete wrt proof theory.

e Spared details, outline in paper, full version forthcoming.

21

Freshness rule

e Previous proof theories for NL had a “freshness” rule.

>Ha:l = o
> T=¢ ' (agFN(Z,T,¢))

e Complicates the proof theory since not goal-directed & can't
be permuted past dR. For example,

aFtb:-=a#b 1R
a#b:-:>E|X.a#XF
a:-=dX.a# X AR
o= WMadX.a#F# X

22

Previous solution

e Previous solution [Gabbay & C 2004]: Change definition of
uniform proof

e “Bake in” applications of freshness rule to dR

S#HIT-tiT SHE T = Gt/X]
> T = 3X".G R

e Messy (so hard to analyze), worse, unclear how to implement!

23

New solution

e Insight: dX.G may hold only for X mentioning new names,
but we don’t need to know them in the proof

e New solution: Use constraints instead of substitutions in
quantifier rules

S VEIX.C S.X:AV.C= G
> A Y — IX.G R

e T his pushes freshness reasoning into constraint solving; proof
search reduces to constraint solving in a ‘“‘goal-directed” way

24

New solution

e Using constraint-based rules, can for example derive

2 TEIXa# X a:a#X:,»a#ngRp
T EWa. T a:T$3X'a#XVIR
T = WMadX.a# X

since F 4X.a #£ X holds.

e Such constraint-based quantifier rules were introduced earlier

to define uniform proofs for CLP [Darlington and Guo 1994,
Leach et al. 2001].

25

An application

e \We used the cleaner proof-theoretic semantics to prove the
correctness of program rewriting rules such as

GDOVX.D~~VX.(GDD) (X¢&FV(QG))

G D WNa.D ~ WNa.(G D D) (aé¢supp(G))

e [hese can be used to “elaborate” all program clauses to the
form

NavX.G O A

26

Another application

e Resolution based on equality (rather than ~) sometimes makes
constraint solving more tractable

> VEAx A
S AV A A

hyp~

e Showed that =-resolution is complete for “W-clause-free”
programs (in which W only appears in goal subformulas)

e Simple proof transformation argument (compares favorably
with previous work [Urban and C 2005])

27

Related work

e Higher-order LP and uniform proofs [Miller et al. 1991]

e Constraint LP semantics
— [Jaffar et al. 1998]: denotational and operational

— [Darlington and Guo 1994, Leach, Nieva, Rodrigues-Artalejo
2001]: proof-theoretic and operational

e Miller's L, language
— Seems related to W-clause-free fragment of NomLP

28

Future work

e Mode checking, additional optimizations

e Generalize semantics to arbitrary (nominal) constraint do-
mains

e Incorporate nominal constraint solving into existing CLP sys-
tem??

e Relate to L7

29

Conclusions

e Nominal logic programming is a conceptually simple exten-
sion to plain FO (C)LP supporting name-binding

e [his work consolidates and improves prior treatments of its
semantics

— Key issues: rules for quantifiers, freshness

e Provides a solid foundation for verifying program transfor-
mations, interpretation, compilation.

30

