Reasoning and programming with nominal logic
Part I: Nominal logic and abstract syntax

James Cheney

Abstraction, Substitution and Naming in Computer Science
ICMS Workshop
May 27, 2007
How to fail calculus

\[
\int_0^1 \int_0^1 xy \, dx \, dy = \int_0^1 \int_0^1 xx \, dx \, dx \\
= \int_0^1 \frac{1}{3} \, dx = \frac{1}{3}
\]

\(\neq \frac{1}{4}\) (the real answer)

- We expect freshman calculus students to understand variable binding at an intuitive level
 - often without any explicit explanation or justification.
- And they do.
- But computers don’t.
“Without loss of generality” considered harmful

- “Without loss of generality” reasoning about freshness & \(\alpha \)-equivalence is common (often implicit) in informal proofs

 \textit{If } e \textit{ is of the form } \lambda x.M, \textit{ where we assume without loss of generality that } x \textit{ does not appear in } \Gamma \ldots

- Usually means reasoning modulo equivalence relation is being swept under the rug...

- What makes this informal reasoning principle sound?

- Can we capture “without loss of generality” reasoning logically?
What would Church do?

- Church’s higher-order logic: define quantifiers as higher-order functions

\[\Pi : (\iota \rightarrow o) \rightarrow o \quad \Sigma : (\iota \rightarrow o) \rightarrow o \]

\[\forall x. \phi \equiv \Pi(\lambda x. \phi) \quad \exists x. \phi \equiv \Sigma(\lambda x. \phi) \]

- Forms basis of *higher-order abstract syntax* approach
 - current state of the art (Twelf, \(\lambda \)Prolog, \(\nabla \)/Bedwyr...)

- Deal with painful issue of \(\alpha \)-equivalence, substitution, etc. once and for all, reuse for each object-language

- Provides elegant approach to formalizing many systems

- But, names “second-class”: name-comparison, generation not well-supported
What would Frege do?

- Quantification theory — introduced by Frege [1879].
- Frege also provided first definition of “α-equivalence”:

 \[\begin{align*}
 & b \quad c \quad q(b) \\
 & b \quad q(b) \quad p(b, a) \\
 & a \quad p(b, a) \\
 & c \quad q(c) \quad p(c, c) \\
 & c \quad q(c) \quad p(c, d) \\
 & a \quad p(a, b) \quad b \quad p(a, b) \\
 \end{align*} \]

 \[\ldots \text{Replacing a German letter [bound variable] everywhere in its scope by some other one is, of course, permitted, so long as in places where different letters initially stood different ones also stand afterward. This has no effect on the content. [G. Frege, Begriffsschrift, 1879]} \]
Gabbay-Pitts approach

- Fast forward 120 years or so...
- [Gabbay, Pitts LICS 1999] formalized names, binding, α-equivalence, fresh name quantification using swapping
 - NB: Injective renamings \cong swappings (Frege was right)
- Formalized within (non-standard) Fraenkel-Mostowski set theory
 - Originally for studying indep. of AC...
 - Created (false) impression that technique requires nonstandard foundations
- [Pitts 2003] introduced elementary (first-order) axiomatization called nominal logic
Hold on a minute...

- [Gabbay, Pitts 1999] presented complete picture; but many ingredients already there...
- [Pollack 1994, McKinna-Pollack 1999] investigated defining α-renaming, formalizing PTS using swappings
- [Lescanne, Rouyer-Degli 1995]: explicit substitutions via swapping
- [Odersky 1994] studied “functional” local names via swappings, “finite support”
- [Pitts and Stark 1991, Stark 1998] studied *generativity* using swappings/name-matchings
- [Miller 1991] Injective/bijective renamings in higher-order pattern unification
- ...?
Consider naive, structurally recursive renamings (of all occurrences) of names:

$$\lambda x.\lambda y.\lambda z \equiv_\alpha \lambda x'.\lambda y'.x'y'z$$

$$(\lambda x.\lambda y.\lambda z)[x/y, x/z] = \lambda x.\lambda x.xxx \not\equiv_\alpha (\lambda x'.\lambda y'.x'y'z)[x/y, x/z]$$

Does not preserve α-equivalence — violates Frege’s principle

But if we restrict to *bijective* renamings, α-equivalence is preserved.

$$(\lambda x.\lambda y.\lambda z)[x/z, z/x] = \lambda z.\lambda y.\lambda zyx \equiv_\alpha (\lambda x'.\lambda y'.x'y'z)[x/z, z/x]$$

“Naive” bijective renamings are *naturally capture-avoiding*

We can use this to define α-equivalence
What good is nominal logic?

- Names “first-class”; exist as (semantic) values; can be compared
- Binding, free names, and name-generation use same mechanisms
- Induction/recursion principles resemble informal conventions
- Provides a formal foundation for informal, but rigorous idioms
- “Close” to FO logic; many existing techniques can be reused with a token (“nominal”?) amount of work
Ground nominal terms

\[a, b \in A \]
\[f, g \in FnSym \]
\[t, u ::= \langle \rangle | \langle t, u \rangle | f(t) \]
\[\langle a \rangle t | a \]
\[\pi ::= (a \ b) | id | \pi \circ \pi' \]
\[C ::= t \approx u | a \neq t \]

Note: Constants \(c = c \langle \rangle \), \(n \)-ary functions \(f(t) = f\langle t_1, t_2, \cdots \rangle \)
Running example

- Type signature

\[id : name\textunderscore type. \quad exp : type \]

- Term signature

\begin{align*}
\text{var} & : id \to exp \\
\text{app} & : exp \times exp \to exp \\
\text{lam} & : \langle id\rangle exp \to exp
\end{align*}

- Translation

\begin{align*}
\langle x \rangle = & \quad \text{var}(x) \\
\langle M N \rangle = & \quad \text{app}(\langle M \rangle, \langle N \rangle) \\
\langle \lambda x.M \rangle = & \quad \text{lam}(\langle x \rangle \langle M \rangle)
\end{align*}
Ground swapping

The result of applying a (ground) permutation π to a (ground) term is:

$$
\begin{align*}
\pi \cdot a &= \pi(a) \\
\pi \cdot \langle \rangle &= \langle \rangle \\
\pi \cdot \langle t, u \rangle &= \langle \pi \cdot t, \pi \cdot u \rangle \\
\pi \cdot f(t) &= f(\pi \cdot t) \\
\pi \cdot \langle b \rangle t &= \langle \pi \cdot b \rangle \pi \cdot t
\end{align*}
$$

where

$$
\begin{align*}
\text{id}(a) &= a \\
\pi \circ \pi'(a) &= \pi(\pi'(a)) \\
(a \ b)(c) &= \begin{cases}
 b & (a = c) \\
 a & (b = c) \\
 c & (a \neq c \neq b)
\end{cases}
\end{align*}
$$
Ground freshness theory

\[
\begin{align*}
 (a \neq b) & \quad \frac{}{a \# b} \quad \text{Distinct names fresh} \\
 a \# \langle \rangle & \quad \text{Anything fresh for unit} \\
 a \# t & \quad \frac{}{a \# f(t)} \quad \text{Freshness ignores function symbols} \\
 a \# t \quad a \# u & \quad \frac{}{a \# \langle t, u \rangle} \quad \text{Freshness ignores pairs} \\
 a \# \langle a \rangle t & \quad \text{Fresh for abs. if bound} \\
 (a \neq b) \quad a \# t & \quad \frac{}{a \# \langle b \rangle t} \quad \text{Fresh for abs. if fresh for body}
\end{align*}
\]
Ground equational theory

\[
\begin{align*}
 a & \approx a \\
 \langle \rangle & \approx \langle \rangle \\
 t_1 \approx u_1 & \quad t_2 \approx u_2 \\
 \langle t_1, t_2 \rangle & \approx \langle u_1, u_2 \rangle \\
 f(t) & \approx f(u) \\
 \langle a \rangle t & \approx \langle a \rangle u \\
 a \# u & \quad t \approx (a \ b) \cdot u \\
 \langle a \rangle t & \approx \langle b \rangle u
\end{align*}
\]

Standard equational rules

\(\alpha\)-equivalence for abstractions
Examples

- Swapping

\[(a \ b) \cdot f(a, c) = f(b, c)\]

\[(a \ b) \cdot \langle b \rangle f(a, c) = \langle a \rangle f(b, c)\]

\[(a \ b) \cdot \langle a \rangle \langle b \rangle f(a, c) = \langle b \rangle \langle a \rangle f(b, c)\]
Examples

- Freshness

\[
\begin{align*}
\frac{a \neq b}{a \# b} & \quad \frac{a \# c}{a \# f(b, c)} \\
\hline
\frac{a \# f(b, c)}{a \# \langle a \rangle f(a, c)} & \quad \frac{a \# \langle a \rangle f(a, c) \quad a \# b}{a \# g(\langle a \rangle f(a, c), b)}
\end{align*}
\]
Examples

- Equality

\[
\begin{align*}
 a & \approx a \quad c \approx c \\
 f(a, c) & \approx f(a, c) \\
 a & = a \quad f(a, c) \approx f(a, c) \\
 \langle a \rangle f(a, c) & \approx \langle a \rangle f(a, c) \\
 a & \# \langle a \rangle f(a, c) \quad \langle b \rangle f(b, c) \approx (a \ b) \cdot \langle a \rangle f(a, c) \\
 \langle a \rangle \langle a \rangle f(a, c) & \approx \langle b \rangle \langle b \rangle f(b, c)
\end{align*}
\]

since \((a \ b) \cdot \langle a \rangle f(a, c) = \langle b \rangle f(b, c)\)
Why is this a correct definition of α-equivalence?

The following rules all generate \equiv_α:

\[
\begin{align*}
y \not\in \text{FV}(M) \\
\lambda x. M & \equiv_\alpha \lambda y. M[y/x]
\end{align*}
\]

\[
\begin{align*}
y \not\in \text{FV}(M) & \quad M[y/x] \equiv_\alpha N \\
\lambda x. M & \equiv_\alpha \lambda y. N
\end{align*}
\]

\[
\begin{align*}
y \not\in \text{FV}(M) & \quad M[y/x, x/y] \equiv_\alpha N \\
\lambda x. M & \equiv_\alpha \lambda y. N
\end{align*}
\]

since $M[y/x] = M[y/x, x/y]$ if $y \not\in \text{FV}(M)$.
Adequacy

- What is the relationship between nominal operations on ground exp-terms and operations on λ-terms?
- Swapping = simultaneous capture-avoiding renaming

$$(\tau \eta) \cdot \overline{M} = \overline{M[\tau/\eta, \eta/\tau]}$$

- Freshness = “not among free variables of”

$$\tau \not\# \overline{M} \iff \tau \not\in FV(M)$$

- Equality = α-equivalence

$$\overline{M} \approx \overline{N} \iff M \equiv_{\alpha} N$$
FAQ’s (I)

■ Why isn’t there a symmetric freshness constraint in the \(\alpha \)-rule?

\[
\frac{a \not \sim u \quad b \not \sim t \quad t \sim (a \ b) \cdot u}{\langle a \rangle t \sim \langle b \rangle u}
\]

■ Answer: If \(a \not \sim u \) and \(t \sim (a \ b) \cdot u \) hold, then

\[
b \sim (a \ b) \cdot a \not \sim (a \ b) \cdot u \sim t
\]

holds.

■ Key step: \(a \not \sim u \) implies \((a \ b) \cdot a \not \sim (a \ b) \cdot u \)

■ Instance of equivariance
Equivariance

- What is “equivariance”?
 - Value x is equivariant if
 \[\pi \cdot x \approx x \]
 for any permutation π.
 - Function F is equivariant if
 \[\pi \cdot F(\vec{x}) \approx F(\pi \cdot \vec{x}) \]
 for any \vec{x} and any permutation π.
 - Relation R is equivariant if
 \[R(\vec{x}) \iff R(\pi \cdot \vec{x}) \]
 for any \vec{x} and any permutation π.
- Fact: All function symbols, \approx and $#$ are equivariant (easy inductions).
FAQ’s (II)

- The asymmetric α-equivalence law still bothers me...
- OK then...

\[
\forall c. (a \ c) \cdot t \approx (b \ c) \cdot u \\
\langle a \rangle t \approx \langle b \rangle u
\]

where $\forall a. \phi$ quantifies over fresh names only.
The \forall-quantifier

- What does $\forall a. \phi$ mean?
- Intuitively: “for arbitrary fresh names a, $\phi(a)$ holds”
- Note that
 - Syntax trees are finite (mention finitely many names)
 - Set of names is infinite
 - Sets of names fresh for (finitely many) syntax trees are cofinite
 - Fresh names are “indistinguishable”

- So, we say that $\forall a. \phi$ holds if $\{a \mid \phi(a)\}$ is cofinite.
- (Think “almost everywhere” in measure theory)
Self-duality of \mathcal{N}

- **Fact:** $\neg \mathcal{N}a.\phi \iff \mathcal{N}a.\neg\phi$
- **Intuition:** “not mostly $\phi = $ mostly not ϕ”
- **Proof (sketch):**
 \[
 \neg \mathcal{N}a.\phi \iff \{a \mid \phi(a)\} \text{ not cofinite} \\
 \iff \{a \mid \phi(a)\} \text{ finite} \\
 \iff \{a \mid \neg\phi(a)\} \text{ cofinite} \\
 \iff \mathcal{N}a.\neg\phi
 \]

- **NB:** Not cofinite implies finite since ϕ mentions/depends on only finitely many names

- **Some/any reasoning**
 - “Freshness principle”: we can never run out of fresh names
 - “Equivariance principle”: any two fresh names have the same properties
Goal: Capture valid reasoning about nominal terms in a logic.
- Take sorted, first-order logic as a starting point
- Axioms for equality, freshness, \forall
- Gentzen-style sequent calculus
Nominal logic basics

Extends (sorted, =) first-order logic with syntax/axioms for

- names a, b inhabiting name sorts A, B, \ldots
- a name-swapping function symbol $(- -) \cdot -$: $A \times A \times S \rightarrow S$ for each name-sort A and sort S
- a name-binding or abstraction function symbol/sort $\langle - \rangle -$: $A \times S \rightarrow \langle A \rangle S$
- a freshness relation $- \# -$: $A \times S$ relating names a and terms t with no free occurrences of a
- a fresh-name quantifier $\forall a. \phi$.

Let Ω be a signature listing basic data sorts & name sorts, and assigning sorts to function & relation symbols.
Axioms for swapping

(S1) \(\forall a:A, x:S. \ (a \ a) \cdot x \approx x \)

(S2) \(\forall a, b:A, x:S. \ (a \ b) \cdot (a \ b) \cdot x \approx x \)

(S3) \(\forall a, b:A. \ (a \ b) \cdot a \approx b \)

Note: Can derive \((a \ b) \cdot b \approx a:\)

\[
\begin{align*}
(a \ b) \cdot a & \approx b \quad (S3) \\
(a \ b) \cdot (a \ b) \cdot a & \approx (a \ b) \cdot b \quad (=) \\
a & \approx (a \ b) \cdot b \quad (S2)
\end{align*}
\]
Axioms for freshness

(F1) $\forall a, b:A. \forall x:S. \ a \ # \ x \land b \ # \ x \supset (a \ b) \cdot x = x$

(F2) $\forall a, b:A. \ a \ # \ b \iff a \neq b$

(F3) $\forall a:A, b:A'. \ a \ # \ b$

(F4) $\forall \bar{x}:\bar{S}. \exists a. \ a \ # \ \bar{x}$

Freshness principle (F4): Can never run out of fresh names. NB: Can derive previous laws, e.g.

$a \ # \ x \supset a \ # \ f(x) \ a \ # \ ⟨a⟩x$
Axioms for equivariance

(E1) \(\forall a, a':A, b, b':A', x:S. \ (a a') \cdot (b b') \cdot x \approx ((a a') \cdot b (a a') \cdot b') \cdot (a a') \cdot x \)

(E2) \(\forall a, a':A, b:A', x:S. \ b \# x \supset (a a') \cdot b \# (a a') \cdot x \)

(E3) \(\forall a, a':A, \bar{x}:\bar{S}. \ (a a') \cdot f(\bar{x}) \approx f((a a') \cdot \bar{x}) \)

(E4) \(\forall a, a':A, \bar{x}:\bar{S}. \ R(\bar{x}) \supset R((a a') \cdot \bar{x}) \)

Equivariance principle: all constant/function/relation symbols are equivariant.

Proposition

For any \(\phi(\bar{x}) \), we have NL \(\vdash \phi(\bar{x}) \iff \phi((a b) \cdot \bar{x}). \)
Axioms for abstraction

(A1) \(\forall a, b : A, x, y : S. \langle a \rangle x \approx \langle b \rangle y \iff (a \approx b \land x \approx y) \lor (a \# y \land x \approx (a \cdot b) \cdot y) \)

(A2) \(\forall y : \langle A \rangle S. \exists a : A, x : S. y \approx \langle a \rangle x \)

(E5) \(\forall a, a' : A, b : A', x : S. (a \cdot a') \cdot \langle b \rangle x \approx \langle (a \cdot a') \cdot b \rangle (a \cdot a') \cdot x \)

(A1) defines \(\alpha \)-equivalence

(A2) is a \textit{surjectivity} property for abstraction.

Fact: (A2) equivalent to

\(\forall y : \langle A \rangle S. \forall a : A. \exists x : S. y \approx \langle a \rangle x \)
Axiomatizing \forall

- We can axiomatize the \forall-quantifier as follows:

$$ (Q) \quad \forall a. \phi(a, \vec{x}) \iff \exists a. a \not\in \vec{x} \land \phi(a, \vec{x}) $$

where $\phi(a, \vec{x})$ indicates that a, \vec{x} list all the free variables of ϕ.

- Fact: Equivalent to “universal” characterization

Proposition

$$ NL \vdash \exists a. a \not\in \vec{x} \land \phi(a, \vec{x}) \iff \forall a. a \not\in \vec{x} \supset \phi(a, \vec{x}) $$

Proof.

Need both equivariance (Prop 1) and freshness (F4).
Aside: Proof theory of NL

- Sequent/ND proof systems for NL have also been studied.
- One idea: build freshness information into variable contexts:

\[\Sigma ::= \cdot | \Sigma, x:S | \Sigma\#\alpha:A \]

- \(\mathcal{N} \)-rules:

\[
\begin{align*}
\Sigma\#\alpha:A : \Gamma, \phi \Rightarrow \psi & \quad \mathcal{N}L \\
\Sigma : \Gamma, \mathcal{I}\alpha:A.\phi \Rightarrow \psi & \quad \mathcal{N}R
\end{align*}
\]

- Embed \(\approx/\# \)-axioms as additional rules (c.f. *Structural Proof Theory* [Negri and van Plato 2001])

- Don’t have time for more on this...
Nominal logic was inspired by nominal terms, which can mention/depend on only finitely many names.

And sound for reasoning about such models... but incomplete.

We now consider the semantics of nominal logic in general:

- Finitely-supported nominal sets — incomplete
- Ideal-supported nominal sets & completeness
- Herbrand models & completeness for nominal-universal theories
Finitely-supported nominal sets

Definition

A finitely-supported nominal set is a structure

\[(X, \cdot_X : \text{Perm}(A) \times X \rightarrow X, \text{supp} : X \rightarrow \mathcal{P}_{\text{fin}}(A))\]

such that:

- \(\cdot_X\) is a group action of \(\text{Perm}(A)\) on \(X\)
- each \(x \in X\) has a \(\subseteq\)-minimum, finite support \(\text{supp}(x)\) such that:

\[\forall a, b \notin \text{supp}(x). (a \ b) \cdot x = x\]
Basic nominal sets

- Any “ordinary” set (\mathbb{N}, \mathbb{R}, etc.) can be viewed as a nominal set:

 $$(a \ b) \cdot x = x$$
 $$\text{supp}(x) = \emptyset$$

- The set of names \mathbb{A} is a nominal set:

 $$(a \ b) \cdot x = \begin{cases}
 a & x = b \\
 b & x = a \\
 c & a \neq x \neq b
 \end{cases}$$
 $$\text{supp}(a) = \{a\}$$
Nominal set constructions

- Unit 1 = \{⋆\}:
 \[\pi \cdot ⋆ = ⋆ \]
 \[\text{supp}(⋆) = \emptyset \]

- Cartesian products \(X \times Y \):
 \[\pi \cdot (x, y) = (\pi \cdot x, \pi \cdot y) \]
 \[\text{supp}(x, y) = \text{supp}(x) \cup \text{supp}(y) \]

- Disjoint unions \(X + Y \):
 \[\pi \cdot (\iota_i(x)) = \iota_i(\pi \cdot x) \]
 \[\text{supp}(\iota_i(x)) = \text{supp}(x) \]
Nominal set constructions

- Function spaces $X \to Y$ (finitely-supported):
 \[(\pi \cdot f)(x) = \pi \cdot (f(\pi^{-1} \cdot x))\]

- Powersets $\mathcal{P}(X)$ (finitely-supported):
 \[\pi \cdot S = \{\pi \cdot x \mid x \in S\}\]

- Quotients X/\equiv (\equiv equivariant):
 \[\pi \cdot [x]_{\equiv} = \{\pi \cdot y \mid x \equiv y\} = [\pi \cdot x]_{\equiv}\]

- Nominal sets & equivariant functions have topos structure (\cong “Schanuel topos”).

James Cheney
Reasoning and programming with nominal logic Part I: Nominal logic and abstract syntax
Consider the equivalence relation on $A \times X$ generated by:

$$\forall c. (a \cdot c) \cdot x = (b \cdot c) \cdot y \supset (a, x) \equiv_\alpha (b, y)$$

Define the *name-abstraction construction* as:

$$\langle \langle A \rangle \rangle X \triangleq (A \times X)/\equiv_\alpha$$

$$\langle \langle a \rangle \rangle x \triangleq (a, x) \equiv_\alpha$$

Facts:

$$\pi \cdot (\langle \langle a \rangle \rangle x) = \langle \langle \pi \cdot a \rangle \rangle \pi \cdot x$$

$$\text{supp}(\langle \langle a \rangle \rangle x) = \text{supp}(x) - \{a\}$$
Soundness

We can (soundly) interpret...

- $A^M = A; (\langle A \rangle S)^M = \langle \langle A \rangle \rangle S^M$
- Other sorts S as nominal sets S^M
- $a^M = a$
- $(\langle a \rangle t)^M = \langle a^M \rangle t^M$
- $\dashv \dashv$ as "real" equality
- $\dashv \# \dashv$ as $\notin \text{supp}(\cdot)$ ("real" freshness)
- Other constant, function, predicate symbols as equivariant values, functions, relations
Soundness and (in)completeness

Theorem (Soundness)

\[\Gamma \vdash \phi \text{ implies } \Gamma \models_{\text{FS}} \phi \]

- Unfortunately, finite-support semantics is incomplete.
- Compactness fails: all finite subsets of

\[\Gamma = \{ \neg(a_i \# x) \mid i \in \omega \} \cup \{ a_i \# a_j \mid i \neq j \in \omega \} \]

are satisfiable in FS-models, but \(\Gamma \) is not.

- Idea: \(\Gamma \) says “\(x \) has infinitely many different names in its support”
- And noncompactness implies incompleteness
Recovering completeness

- Obviously, NL is complete w.r.t. all first-order models, but this is unhelpful...
- What do the FO models of NL look like?
- Answer: *ideal-supported models* in which supports form a proper ideal.
 - NB: Already known in study of ¬AC set theory...
- Ideal properties ensure that we can *never run out* of fresh names even if some values have *infinite support*!
- Thus, it is also possible to use NL to reason about *infinite objects with infinite support*.
- NB: Even if \mathbb{A} countable! (by Löwenheim-Skolem)
Ideal-supported nominal sets

Let $\mathcal{I} \subseteq \mathcal{P}(\mathbb{A})$ be a proper ideal containing $\mathcal{P}_{\text{fin}}(\mathbb{A})$.

Definition

An \mathcal{I}-nominal set is an algebraic structure $(X, \cdot_X : \text{Perm}(\mathbb{A}) \times X \rightarrow X, \text{supp} : X \rightarrow \mathcal{I})$ such that:

- \cdot_X is a group action of $\text{Perm}(\mathbb{A})$ on X
- each elt of X has a \subseteq-minimum support $\text{supp}(x) \in \mathcal{I}$

All constructions for finitely-supported nominal sets still work.

Theorem (Soundness & Completeness)

$\Gamma \models \phi$ over ideal-supported structures iff $\Gamma \vdash \phi$
To be continued...

- **Part I**
 - Nominal terms
 - Axiomatization
 - Semantics

- **Intermission**

- **Part II**
 - Nominal logic programming
 - Unification/resolution
Outline

- Part I
 - Nominal terms
 - Axiomatization
 - Semantics
- Intermission
- Part II
 - Nominal logic programming
 - Unification/resolution
Nominal logic programming

- An application: logic programming in NL ("αProlog")
- Goal: Translate informal “paper” inference rule definitions to executable, yet formally transparent language
- Use nominal features to handle generativity, α-equivalence
- Equivariance ensures cannot “get at” bound names
- No help with substitution
 - But no longer “hard” to implement declaratively (no need for gensym)
Example (I)

A warm-up (warmed-over?) example: typechecking.

\[
\begin{align*}
 & x : T \in \Gamma \\
 & \Gamma \vdash M : T \rightarrow U \\
 & \Gamma \vdash N : T \\
 & (x \notin \Gamma) \quad \Gamma, x : T \vdash M : U \\
 & \Gamma \vdash \lambda x. M : T \rightarrow U
\end{align*}
\]

\[
\begin{align*}
 & tc(G, \text{var}(X), T) :\!-\! mem((X, T), G). \\
 & tc(G, \text{app}(M, N), U) :\!-\! tc(G, M, arr(T, U)), tc(G, N, T). \\
 & tc(G, \text{lam}(\langle x \rangle M), arr(T, U)) :\!-\! x \not\in G, tc([\langle x, T \rangle|G], M, U).
\end{align*}
\]
Example (I)

A warm-up (warmed-over?) example: typechecking.

\[
\begin{align*}
\text{tc}(G, \text{var}(X), T) & : \leftarrow \text{mem}((X, T), G). \\
\text{tc}(G, \text{app}(M, N), U) & : \leftarrow \text{tc}(G, M, \text{arr}(T, U)), \text{tc}(G, N, T). \\
\text{tc}(G, \text{lam}(<\tau>M), \text{arr}(T, U)) & : \leftarrow \tau \not\in G, \text{tc}([((\tau, T)|G], M, U). \\
\end{align*}
\]

Note that clauses and subgoals correspond closely

- Read \(\tau \not\in G\) as \(x \not\in \Gamma\)
- Read \(\text{lam}(\langle\tau\rangle M)\) as \(\lambda x. M\)
Example (II)

- Alpha-\textit{inequivalence}.
- Non-immediate in a higher-order setting (fun exercise!).

\[
\begin{align*}
\text{neq} & (\text{var}(X), \text{var}(Y)) & : & X \not\equiv Y. \\
\text{neq} & (\text{app}(M, N), \text{app}(M', N')) & : & \text{neq}(M, M'). \\
\text{neq} & (\text{app}(M, N), \text{app}(M', N')) & : & \text{neq}(N, N'). \\
\text{neq} & (\text{lam}(\langle x \rangle M), \text{lam}(\langle x \rangle N)) & : & \text{neq}(M, N). \\
\text{neq} & (\text{var}(_), \text{app}(_ ,_)) & & \text{neq}(\text{var}(_), \text{lam}(_)). \\
\text{neq} & (\text{app}(_ ,_), \text{var}(_)) & & \text{neq}(\text{app}(_ , _), \text{lam}(_)). \\
\text{neq} & (\text{lam}(_), \text{app}(_ ,_)) & & \text{neq}(\text{lam}(_), \text{var}(_)). \\
\end{align*}
\]

- Here, $X \not\equiv Y$ just means $X \neq Y$.
- NB: This also works for π-calc mismatch, explicit substitutions, ...
Example (III)

- Large-step semantics for ML-like references:

\[
\begin{align*}
(a \in \text{Lab}) & \quad \langle \sigma, a \rangle \rightarrow \langle \sigma, a \rangle \\
\langle \sigma, M \rangle & \rightarrow \langle \sigma', a \rangle \\
\langle \sigma, !M \rangle & \rightarrow \langle \sigma', \sigma'(a) \rangle
\end{align*}
\]

\[
\begin{align*}
\langle \sigma, M_1 \rangle & \rightarrow \langle \sigma', a \rangle \\
\langle \sigma, M_1 := M_2 \rangle & \rightarrow \langle \sigma''[a := V], () \rangle \\
\langle \sigma, M \rangle & \rightarrow \langle \sigma', V \rangle \\
\langle \sigma, \text{ref } M \rangle & \rightarrow \langle \sigma'[a := V], a \rangle
\end{align*}
\]

- Interesting part: last rule requires *fresh* label for new memory cell
Example (III)

- Large-step semantics for ML-like references:

\[
(S, \text{lab}(A)) \Rightarrow (S, \text{lab}(A)).
(S, \text{assign}(M_1, M_2)) \Rightarrow (S_3, \text{unit}) \quad : \quad (S, M_1) \Rightarrow (S_1, \text{lab}(A)),
(S_1, M_2) \Rightarrow (S_2, V),
\text{update}((A, V), S_2, S_3).
\]

\[
(S, \text{deref}(M)) \Rightarrow (S', V) \quad : \quad (S, M) \Rightarrow (S', \text{lab}(A)),
\text{mem}((A, V), S').
\]

\[
(S, \text{ref}(M)) \Rightarrow ([[(a, V)|S'], \text{lab}(a)) \quad : \quad (S, M) \Rightarrow (S', V),
\alpha \not\# S'.
\]

- Interesting part: in last rule, name \(\alpha \) is constrained to be sufficiently fresh.
Logic programming languages derive much of their power from logical foundations.

- **Prolog**
 - semantics based on first-order logic
 - implementation based on first-order unification

- **\(\lambda\)Prolog**
 - semantics based on higher-order logic
 - implementation based on higher-order unification

- **\(\alpha\)Prolog**
 - semantics based on nominal logic?
 - implementation based on ??
We consider goals and program clauses in NL defined as follows:

\[
G ::= \top | p(\vec{t}) | G \land G' | G \lor G' | \exists X. G | t \simeq u | t \not\# u | \forall \alpha. G
\]

\[
D ::= \top | p(\vec{t}) | D \land D' | G \supset D | \forall X. D | \forall \alpha. D
\]

Example: “Open” program clause

\[
tc(G, \text{lam}(\langle x \rangle M), \text{arr}(T, U)) :\neg x \not\# G, tc([[(x, T)|G], M, U).
\]

logically interpreted as “closed” formula

\[
\forall x. \forall G, M, T, U.
\]
\[
x \not\# G \land tc([[(x, T)|G], M, U) \supset tc(G, \text{lam}(\langle x \rangle M), \text{arr}(T, U))
\]
Semantics

- Traditional approaches to the semantics of LP can be adapted to nominal logic programs:
 - Least fixed point models
 - Least Herbrand models
 - Proof-theoretic semantics (uniform proofs)
 - Operational semantics (idealized, nondeterministic)

Moreover all of the semantics are equivalent
Herbrand models

- As a starting point, consider *Herbrand models* of NL.
- Define *Herbrand base* B_Ω as set of all atomic (non-constraint) formulas over signature Ω.
- A *Herbrand model* is an equivariant subset $\mathcal{H} \subseteq B_\Omega$.
- Given such a model, interpret
 - term symbols as themselves ($c^\mathcal{H} = c$, $f^\mathcal{H}(\vec{t}) = f(\vec{t})$)
 - sorts S as sets ($S^\mathcal{H} = \{ t : S \mid t \text{ ground} \}$)
 - predicates R as relations ($R^\mathcal{H} = \{ \vec{t} \mid R(\vec{t}) \in \mathcal{H} \}$)
- Write $\models^\mathcal{H} \phi$ if ϕ holds in \mathcal{H}; etc.
- Write $\Sigma : \nabla \models C$ for *constraint entailment* ($\forall \theta : \Sigma.\theta \models^\mathcal{H} \nabla$ implies $\theta \models^\mathcal{H} C$)
Herbrand’s theorem for NL

- Full NL sound but incomplete with respect to “intended models” over nominal terms.
- But complete for “nominal universal” (N∀) theories

\[
\begin{align*}
\phi_0 & ::= R(\vec{t}) \mid \phi_0 \land \psi_0 \mid \phi_0 \lor \psi_0 \mid \neg \phi_0 \\
\phi & ::= \phi_0 \mid a \neq t \supset \phi \mid t \approx u \supset \phi \mid \forall X : S. \phi \mid Na : A . \phi
\end{align*}
\]

Theorem (Nominal Herbrand theorem)

A N∀-theory Γ is satisfiable iff it has a nominal term model.

- Non-immediate due to ∃ axioms in NL (F4,A2)
Least Herbrand models

- Fact: Every NL program (set of D-formulas) is (equivalent to) a $\forall\exists$-theory.

\[
(\forall a.\, G) \supset D \quad \Longrightarrow \quad \forall a.\, (G \supset D) \quad (a \not\in FN(D))
\]
\[
(\forall a.\, G) \land G' \quad \Longrightarrow \quad \forall a.\, (G \land G') \quad (a \not\in FN(G'))
\]
\[
\vdots
\]

- Fact: Herbrand models closed under intersection (proof similar to FO case)

- Conclusion: Least Herbrand model \mathcal{H}_P exists for any NL program P.
Can we “compute” (recursively enumerate) least Herbrand model?

In FO case, yes; $\mathcal{H}_P = LFP(T_P)$, for T_P a continuous operator on Herbrand models

Can extend this proof to NL

Key fact 1: continuity in presence of \forall-quantifier

Key fact 2: T_P must also be equivariant to ensure that $LFP(T_P)$ is equivariant
Computing least models

- Define one-step deduction operator (by induction on D-formulas):

$$
\begin{align*}
T_{\top} (\mathcal{H}) &= \mathcal{H} \\
T_A (\mathcal{H}) &= \mathcal{H} \cup \{ A \} \\
T_{D_1 \land D_2} (\mathcal{H}) &= T_{D_1} (\mathcal{H}) \cup T_{D_2} (\mathcal{H}) \\
T_{\forall X : S.D} (\mathcal{H}) &= \bigcup_{t : S} T_{D[t/X]} (\mathcal{H}) \\
T_{\forall A : A.D} (\mathcal{H}) &= \bigcup_{b : A \notin FN(\forall A.D)} T_{D[b/a]} (\mathcal{H})
\end{align*}
$$

- Define $T_{\mathcal{P}}$ as $T_{\land_i D_i}$ if $\mathcal{P} = \{ D_1, \ldots, D_n \}$.
- Continuity easy; only \forall is nonstandard
- Equivariance: must generalize to $\pi \cdot T_D (S) = T_{\pi.D} (\pi \cdot S)$.

James Cheney
Reasoning and programming with nominal logic Part II: Nominal logic programming
Aside: Proof-theoretic semantics

- Using proof theory of NL, can provide **proof-theoretic** semantics
- Explain behavior of \mathcal{N} in terms of **proof-search behavior**
- For goals, $\mathcal{N}\alpha.G$ means “generate fresh name α and solve G”

\[
\Sigma : \nabla \models \mathcal{N}\alpha: A. C \quad \Sigma \#\alpha:A : \Delta; \nabla, C \implies G \\
\Sigma : \Delta; \nabla \implies \mathcal{N}\alpha: A. G
\]

IL

- Similarly, for program clauses $\mathcal{N}\alpha.D$ means “generate fresh name α and proceed using D”

\[
\Sigma : \nabla \models \mathcal{N}\alpha: A. C \quad \Sigma \#\alpha:A : \Delta; \nabla, C \xrightarrow{D} A \\
\Sigma : \Delta; \nabla \xrightarrow{\mathcal{N}\alpha: A. D} A
\]

IL
Implementation

- Traditional approaches to implementing LP can be adapted:
 - SLD-resolution: depth-first proof search
 - backtracking via continuations
 - unification/constraint solving
- Key differences: need to
 - solve equations/freshness constraints over nominal terms
 - deal with nominal resolution correctly (modulo equivariance)
- These lead to nontrivial unification/resolution problems
- Overview in rest of talk
Nominal Unification

- Urban, Pitts, Gabbay [CSL 2003, TCS 2004]: developed an algorithm for
 - unifying nominal terms
 - solving freshness constraints
 with $O(n^2)$ complexity.

- **BUT**, nontrivial restrictions:

\[
\alpha \neq t \quad (\alpha \, b) \cdot t \quad \langle \alpha \rangle t
\]

- only **ground names** α may appear in marked positions (not variables)
- What about the general case?
Full nominal unification

- Full nominal unification: allow name-variables anywhere.

\[
a, b, t, u ::= X | \langle \rangle | \langle t, u \rangle | f(t) | \langle a \rangle t | \Pi \cdot t | a
\]
\[
\Pi ::= (a b) | id | \Pi \circ \Pi
\]
\[
C ::= t \approx u | a \# t
\]

- \textit{NP}-complete because guessing is needed to deal with swapping

- Reduction from \textsc{Graph 3-Colorability} [C, ICALP 2004]
Equivariance

- In nominal logic, *truth is preserved by name-swapping*
- Two atomic formulas $R(\vec{t}), R(\vec{u})$ can be *logically equivalent* yet \vec{t}, \vec{u} not *equal* as nominal terms.
- Example:

 $$R(a) \iff R((a \cdot b) \cdot a) \approx R(b) \text{ but } a \not\approx b$$

- Proof search based on \approx-unification is *incomplete*
- This can happen even for programs satisfying UPG name-groundness restriction
- In particular, needed to program *generative* relations.
Why is this hard?

- Let’s take a little quiz.
- Satisfiable or not?
 \[R((a \ b) \cdot X, X, (b \ c) \cdot Y, Y) \iff R(a', b', c', d') \]

- Satisfiable or not?
 \[R((a \ b) \cdot X, X, (c \ d) \cdot Y, Y) \iff R(a', b', c', d') \]
Why is this hard?

- Let’s take a little quiz.
- Satisfiable or not?

$$R((a \ b) \cdot X, X, (b \ c) \cdot Y, Y) \iff R(a', b', c', d')$$

- No!
- Satisfiable or not?

$$R((a \ b) \cdot X, X, (c \ d) \cdot Y, Y) \iff R(a', b', c', d')$$

- Yes: $X = b$, $Y = d$, permutation $(a \ a')(b \ b')(c \ c')(d \ d')$
- Wasn’t that easy?
Equivariant unification

- Idea: Reduce $R(\vec{t}) \iff R(\vec{u})$ to $\exists \pi. \pi \cdot \vec{t} = \vec{u}$.
- Allow permutation variables & inverses

\[
\begin{align*}
a, b, t, u & ::= X | \langle \rangle | \langle t, u \rangle | f(t) | \langle a \rangle t | \Pi \cdot t | a \\
\Pi & ::= (a b) | \text{id} | \Pi \circ \Pi' | \Pi^{-1} | P \\
C & ::= t \approx u | a \# t
\end{align*}
\]

- t and u unify “up to a permutation” if $P \cdot t \approx u$ is satisfiable.
- Also NP-hard [C ICALP 2004]
- Rest of talk: show NP algorithm for EV unification
Our approach

- Phase 0: Always push permutation applications down to names/variables
- Phase I: Get rid of term symbols (unit, pair, functions, abstractions)
- Phase II: Get rid of permutation operations (id, inverse, composition, swapping)
- This leaves problems of the form $P \cdot a \approx b$, $P \cdot a \neq b$ only.
- Phase III: Solve remaining problems using permutation graphs
Our approach (I)

- First, get rid of unit, pair, function symbols and abstractions:

\[a, b, t, u ::= X | \langle \rangle | \langle t, u \rangle | f(t) | \langle a \rangle t | \Pi \cdot t | a \]

\[\Pi ::= (a \ b) | \text{id} | \Pi \circ \Pi' | \Pi^{-1} | P \]

\[C ::= t \approx u | a \# t \]
Our approach (I)

- Reduction rules for phase I:

 \[
 \begin{align*}
 (#?_1) & \quad S, a \#? \langle \rangle \rightarrow_1 S \\
 (#?_{\times}) & \quad S, a \#? \langle u_1, u_2 \rangle \rightarrow_1 S, a \#? u_1, a \#? u_2 \\
 (#?_f) & \quad S, a \#? f(u) \rightarrow_1 S, a \#? u \\
 (#?_{abs}) & \quad S, a \#? \langle b \rangle u \rightarrow_1 \left\{ \begin{array}{l}
 S, a \approx? b \\
 \lor S, a \#? u
 \end{array} \right. \\
 \end{align*}
 \]

- Note the 2-way choice point in rule for abstraction
- Otherwise, rules similar to UPG algorithm
Our approach (I)

- Reduction rules for phase I:

 - \((\approx?_1)\):
 \[S, \langle \rangle \approx? \langle \rangle \rightarrow_1 S \]
 - \((\approx?_x)\):
 \[S, \langle t_1, t_2 \rangle \approx? \langle u_1, u_2 \rangle \rightarrow_1 S, t_1 \approx? u_1, t_2 \approx? u_2 \]
 - \((\approx?f)\):
 \[S, f(t) \approx? f(u) \rightarrow_1 S, t \approx? u \]
 - \((\approx?_{abs})\):
 \[S, \langle a \rangle t \approx? \langle b \rangle u \rightarrow_1 \left\{ S, a \approx? b, t \approx? u \lor S, a \#? u, t \approx? (a \ b) \cdot u \right\} \]
 - \((\approx?_{var})\):
 \[S, \Pi \cdot X \approx? t \rightarrow_1 S[X := \Pi^{-1} \cdot t], X \approx? \Pi^{-1} \cdot t \]
 (where \(X \notin FV(t), X \in FV(S)\))

- Note the 2-way choice point in rule for abstraction
- Otherwise, rules similar to UPG algorithm
Our approach (II)

Next, get rid of complex permutation terms:

\[
\begin{align*}
 a, b, t, u & ::= X \mid \langle \rangle \mid \langle t, u \rangle \mid f(t) \mid \langle a \rangle t \mid \Pi \cdot t \mid a \\
 \Pi & ::= (a \ b) \mid \text{id} \mid \Pi \circ \Pi' \mid \Pi^{-1} \mid P \\
 C & ::= t \approx u \mid a \# t
\end{align*}
\]
Our approach (II)

- Reduction rules, phase II:

 (id) \quad S[id \cdot v] \rightarrow_2 S[v]

 (inv) \quad S[\Pi^{-1} \cdot v] \rightarrow_2 \exists X. S[X], \Pi \cdot X \approx v

 (comp) \quad S[\Pi \circ \Pi' \cdot v] \rightarrow_2 \exists X. S[\Pi \cdot X], \Pi' \cdot v \approx X

 (swap) \quad S[(a a') \cdot v] \rightarrow_2 \begin{cases} S[a], a' \approx v \\ \lor S[a'], a \approx v \\ \lor \exists X. S[X], v \approx X, a \not\approx X, a' \not\approx X \end{cases}

 (\#Q) \quad S, Q \cdot v \not\approx w \rightarrow_2 \exists X. S, Q \cdot v \approx X, X \not\approx w

- Note the 3-way choice point in rule for swapping
Our approach (III)

- The remaining constraints involve only names, variables, and permutation variables.

\[
a, b, t, u \ ::= \ X \mid \langle \rangle \mid \langle t, u \rangle \mid f(t) \mid \langle a \rangle t \mid \Pi \cdot t \mid a
\]

\[
\Pi \ ::= \ (a \ b) \mid \text{id} \mid \Pi \circ \Pi' \mid \Pi^{-1} \mid P
\]

\[
C \ ::= \ t \approx u \mid a \# t
\]

- Conjunctive satisfiability for problems of this form can be solved by graph reduction in polynomial time.

- Idea: Build a graph with “equality”, “freshness”, and “permutation” edges; reduce using permutation laws
An example

Here’s how to reduce a permutation graph corresponding to:

\[QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \not\approx a \]
An example

Here’s how to reduce a permutation graph corresponding to:

\[QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \not\approx a \]
An example

Here’s how to reduce a permutation graph corresponding to:

\[QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \not\approx a \]
An example

Here’s how to reduce a permutation graph corresponding to:

\[QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \neq a \]
Here’s how to reduce a permutation graph corresponding to:

\[QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \not\approx a \]
An example

- Here’s how to reduce a permutation graph corresponding to:

\[QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \neq a \]
An example

Here’s how to reduce a permutation graph corresponding to:

$$QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \not\approx a$$
An example

- Here’s how to reduce a permutation graph corresponding to:

 \[QPPa \approx b \quad PQPa \approx b \quad PPa \approx b \quad P^{-1}QPa \neq a \]

- Unsatisfiable because \(Qa \neq a \) and \(Qa \approx a \)
Results

- Phase I (term reduction): NP time, finitary
- Phase II (permutation reduction): NP time, finitary
- Phase III (graph reduction): P time, unitary.
- Overall: NP time, finitely many answers.
- Variant of Phase I that is P time and unitary, but introduces lots of swappings
So this is a little depressing...

- At least it’s decidable! (wasn’t obvious)
- In practice many programs/clauses don’t require full EVU
- Many *NP*-hard constraint problems have good behavior in common cases
 - programmers tend not to encode hard combinatorial problems as constraints
 - fixed parameter tractability?
- Seems painful to implement; unifiers complex
- There may be tractable special cases that permit some reasoning about generativity (my hope)
 - Do we really need equivariance?
Further reading

Survey/column (more expository):
- Nominal logic and abstract syntax, C, SIGACT News 2005

Primary sources:
- A new approach to abstract syntax involving binders, Gabbay & Pitts, Formal Aspects of Computing 2002
- Nominal logic, Pitts, Inf. Comput. 2003
- Nominal logic programming, C, thesis 2004
- Completeness and Herbrand theorems for nominal logic, C, JSL 2006
Future work/open problems

- Efficient implementation (perhaps via translation to CLP?)
- Variants of NL (e.g. equivariance vs. orderings)
- **Proof theory of NL and nominal type theory**
- Beyond binding: practical reasoning with generativity (states in automata, nonces in security, ids in program analysis)
- Beyond names: practical support for reasoning modulo structural congruences (e.g. π-calculus)
Conclusions

Nominal abstract syntax is a new way of reasoning about and programming with names and binding.

+ Nominal logic programs frequently **direct translations** from ordinary informal presentations.
+ Can be used to reason about **generativity, name-inequality**
+/- Names kept “abstract” via equivariance; complicates resolution
 - Lacks HOAS-style built-in substitution