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How to fail calculus
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(the real answer)

We expect freshman calculus students to understand variable
binding at an intuitive level

often without any explicit explanation or justification.

And they do.

But computers don’t.

James Cheney
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“Without loss of generality” considered harmful

“Without loss of generality” reasoning about freshness &
α-equivalence is common (often implicit) in informal proofs

If e is of the form λx .M, where we assume without
loss of generality that x does not appear in Γ...

Usually means reasoning modulo equivalence relation is being
swept under the rug...

What makes this informal reasoning principle sound?

Can we capture “without loss of generality” reasoning
logically?

James Cheney
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What would Church do?

Church’s higher-order logic: define quantifiers as higher-order
functions

Π : (ι→ o) → o Σ : (ι→ o) → o

∀x .φ ≡ Π(λx .φ) ∃x .φ ≡ Σ(λx .φ)

Forms basis of higher-order abstract syntax approach

current state of the art (Twelf, λProlog, ∇/Bedwyr...)

Deal with painful issue of α-equivalence, substitution, etc.
once and for all, reuse for each object-language

Provides elegant apprach to formalizing many systems

But, names “second-class”: name-comparison, generation not
well-supported

James Cheney
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What would Frege do?

Quantification theory — introduced by Frege [1879].

Frege also provided first definition of “α-equivalence”:

. . . Replacing a German letter [bound variable] everywhere
in its scope by some other one is, of course, permitted, so
long as in places where different letters initially stood
different ones also stand afterward. This has no effect on
the content. [G. Frege, Begriffsschrift, 1879]

b c q(b)

p(b, c)

b q(b)

a p(b, a)

c d q(c)

p(c, d)

a q(a)

b p(a, b)

James Cheney
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Gabbay-Pitts approach

Fast forward 120 years or so...

[Gabbay, Pitts LICS 1999] formalized names, binding,
α-equivalence, fresh name quantification using swapping

NB: Injective renamings ∼= swappings (Frege was right)

Formalized within (non-standard) Fraenkel-Mostowski set
theory

Originally for studying indep. of AC...
Created (false) impression that technique requires nonstandard
foundations

[Pitts 2003] introduced elementary (first-order) axiomatization
called nominal logic

James Cheney
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Hold on a minute...

[Gabbay, Pitts 1999] presented complete picture; but many
ingredients already there...

[Pollack 1994, McKinna-Pollack 1999] investigated defining
α-renaming, formalizing PTS using swappings

[Lescanne, Rouyer-Degli 1995]: explicit substitutions via
swapping

[Odersky 1994] studied “functional” local names via
swappings, “finite support”

[Pitts and Stark 1991, Stark 1998] studied generativity using
swappings/name-matchings

[Miller 1991] Injective/bijective renamings in higher-order
pattern unification

...?

James Cheney
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Key idea in one slide

Consider naive, structurally recursive renamings (of all
occurrences) of names:

λx .λy .xyz ≡α λx ′.λy ′.x ′y ′z

(λx .λy .xyz)[x/y , x/z ] = λx .λx .xxx 6≡α (λx ′.λy ′.x ′y ′z)[x/y , x/z ]

Does not preserve α-equivalence — violates Frege’s principle

But if we restrict to bijective renamings, α-equivalence is
preserved.

(λx .λy .xyz)[x/z , z/x ] = λz .λy .zyx ≡α (λx ′.λy ′.x ′y ′z)[x/z , z/x ]

“Naive” bijective renamings are naturally capture-avoiding

We can use this to define α-equivalence

James Cheney
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What good is nominal logic?

Names “first-class”; exist as (semantic) values; can be
compared

Binding, free names, and name-generation use same
mechanisms

Induction/recursion principles resemble informal conventions

Provides a formal foundation for informal, but rigorous idioms

“Close” to FO logic; many existing techniques can be reused
with a token (“nominal”?) amount of work

James Cheney
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Outline
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Ground nominal terms

a, b ∈ A Names

f , g ∈ FnSym Term symbols

t, u ::= 〈〉 | 〈t, u〉 | f (t) First-order terms

| 〈a〉t | a Nominal terms

π ::= (a b) | id | π ◦ π′ Permutations

C ::= t ≈ u | a # t Equality, freshness

Note: Constants c = c 〈〉, n-ary functions f (~t) = f 〈t1, 〈t2, · · ·〉〉

James Cheney
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Running example

Type signature

id : name type. exp : type

Term signature

var : id → exp

app : exp × exp → exp

lam : 〈id〉exp → exp

Translation

pxq = var(x)

pM Nq = app(pMq, pNq)

pλx.Mq = lam(〈x〉pMq)

James Cheney
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Ground swapping

The result of applying a (ground) permutation π to a (ground)
term is:

π · a = π(a)
π · 〈〉 = 〈〉

π · 〈t, u〉 = 〈π · t, π · u〉
π · f (t) = f (π · t)
π · 〈b〉t = 〈π · b〉π · t

where
id(a) = a

π ◦ π′(a) = π(π′(a))

(a b)(c) =


b (a = c)
a (b = c)
c (a 6= c 6= b)

James Cheney
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Ground freshness theory

(a 6= b)

a # b Distinct names fresh

a # 〈〉 Anything fresh for unit

a # t

a # f (t) Freshness ignores function symbols

a # t a # u

a # 〈t, u〉 Freshness ignores pairs

a # 〈a〉t Fresh for abs. if bound

(a 6= b) a # t

a # 〈b〉t Fresh for abs. if fresh for body

James Cheney
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Ground equational theory

a ≈ a

〈〉 ≈ 〈〉
t1 ≈ u1 t2 ≈ u2

〈t1, t2〉 ≈ 〈u1, u2〉
t ≈ u

f (t) ≈ f (u)

t ≈ u
〈a〉t ≈ 〈a〉u


Standard equational rules

a # u t ≈ (a b) · u

〈a〉t ≈ 〈b〉u α-equivalence for abstractions

James Cheney
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Examples

Swapping
(a b) · f (a, c) = f (b, c)

(a b) · 〈b〉f (a, c) = 〈a〉f (b, c)

(a b) · 〈a〉〈b〉f (a, c) = 〈b〉〈a〉f (b, c)

James Cheney
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Examples

Freshness
a 6= b

a # b a # c

a # f (b, c)

a # 〈a〉f (a, c)

a # 〈a〉f (a, c) a # b

a # g(〈a〉f (a, c), b)

James Cheney
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Examples

Equality
a ≈ a c ≈ c

f (a, c) ≈ f (a, c)

a = a f (a, c) ≈ f (a, c)

〈a〉f (a, c) ≈ 〈a〉f (a, c)

a # 〈a〉f (a, c) 〈b〉f (b, c) ≈ (a b) · 〈a〉f (a, c)

〈a〉〈a〉f (a, c) ≈ 〈b〉〈b〉f (b, c)

since (a b) · 〈a〉f (a, c) = 〈b〉f (b, c)

James Cheney
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FAQ’s (0)

Why is this a correct definition of α-equivalence?

The following rules all generate ≡α:

y 6∈ FV (M)

λx .M ≡α λy .M[y/x ]

y 6∈ FV (M) M[y/x ] ≡α N

λx .M ≡α λy .N

y 6∈ FV (M) M[y/x , x/y ] ≡α N

λx .M ≡α λy .N

since M[y/x ] = M[y/x , x/y ] if y 6∈ FV (M).

James Cheney
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Adequacy

What is the relationship between nominal operations on
ground exp-terms and operations on λ-terms?

Swapping = simultaneous capture-avoiding renaming

(x y) · pMq = pM[x/y, y/x]q

Freshness = “not among free variables of”

x # pMq ⇐⇒ x 6∈ FV (M)

Equality = α-equivalence

pMq ≈ pNq ⇐⇒ M ≡α N

James Cheney
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FAQ’s (I)

Why isn’t there a symmetric freshness constraint in the
α-rule?

a # u b # t t ≈ (a b) · u

〈a〉t ≈ 〈b〉u

Answer: If a # u and t ≈ (a b) · u hold, then

b ≈ (a b) · a # (a b) · u ≈ t

holds.

Key step: a # u implies (a b) · a # (a b) · u

Instance of equivariance

James Cheney

Reasoning and programming with nominal logic Part I: Nominal logic and abstract syntax



Introduction Nominal terms Axiomatization Semantics

Equivariance

What is “equivariance”?
Value x is equivariant if

π · x ≈ x

for any permutation π.
Function F is equivariant if

π · F (~x) ≈ F (π · ~x)

for any ~x and any permutation π.
Relation R is equivariant if

R(~x) ⇐⇒ R(π · ~x)

for any ~x and any permutation π.

Fact: All function symbols, ≈ and # are equivariant (easy
inductions).

James Cheney
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FAQ’s (II)

The asymmetric α-equivalence law still bothers me...

OK then...
Nc.(a c) · t ≈ (b c) · u

〈a〉t ≈ 〈b〉u

where Na.φ quantifies over fresh names only.

James Cheney
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The N-quantifier

What does Na.φ mean?

Intuitively: “for arbitrary fresh names a, φ(a) holds”

Note that

Syntax trees are finite (& mention finitely many names)
Set of names is infinite
Sets of names fresh for (finitely many) syntax trees are cofinite
Fresh names are “indistinguishable”

So, we say that Na.φ holds if {a | φ(a)} is cofinite.

(Think “almost everywhere” in measure theory)

James Cheney
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Self-duality of N

Fact: ¬ Na.φ ⇐⇒ Na.¬φ
Intuition: “not mostly φ = mostly not φ”

Proof (sketch):

¬ Na.φ ⇐⇒ {a | φ(a)} not cofinite

⇐⇒ {a | φ(a)} finite

⇐⇒ {a | ¬φ(a)} cofinite

⇐⇒ Na.¬φ

NB: Not cofinite implies finite since φ mentions/depends on
only finitely many names
Some/any reasoning

“Freshness principle”: we can never run out of fresh names
“Equivariance principle”: any two fresh names have the same
properties

James Cheney
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Nominal logic: axiomatization

Goal: Capture valid reasoning about nominal terms in a logic.

Take sorted, first-order logic as a starting point

Axioms for equality, freshness, N

Gentzen-style sequent calculus

James Cheney
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Nominal logic basics

Extends (sorted, =) first-order logic with syntax/axioms for

names a, b inhabiting name-sorts A,B, . . .

a name-swapping function symbol (− −) ·− : A× A× S → S
for each name-sort A and sort S

a name-binding or abstraction function symbol/sort
〈−〉− : A× S → 〈A〉S
a freshness relation − # − : A× S relating names a and
terms t with no free occurrences of a

a fresh-name quantifier Na.φ.

Let Ω be a signature listing basic data-sorts & name-sorts, and
assigning sorts to function & relation symbols

James Cheney
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Axioms for swapping

(S1) ∀a:A, x :S . (a a) · x ≈ x

(S2) ∀a, b:A, x :S . (a b) · (a b) · x ≈ x

(S3) ∀a, b:A. (a b) · a ≈ b

Note: Can derive (a b) · b ≈ a:

(a b) · a ≈ b (S3)
(a b) · (a b) · a ≈ (a b) · b (=)

a ≈ (a b) · b (S2)

James Cheney
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Axioms for freshness

(F1) ∀a, b:A.∀x :S . a # x ∧ b # x ⊃ (a b) · x = x

(F2) ∀a, b:A. a # b ⇐⇒ a 6= b

(F3) ∀a:A, b:A′. a # b

(F4) ∀~x :~S .∃a. a # ~x

Freshness principle (F4): Can never run out of fresh names. NB:
Can derive previous laws, e.g.

a # x ⊃ a # f (x) a # 〈a〉x

James Cheney
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Axioms for equivariance

(E1) ∀a, a′:A, b, b′:A′, x :S . (a a′) · (b b′) · x
≈ ((a a′) · b (a a′) · b′) · (a a′) · x

(E2) ∀a, a′:A, b:A′, x :S . b # x ⊃ (a a′) · b # (a a′) · x

(E3) ∀a, a′:A,~x :~S . (a a′) · f (~x) ≈ f ((a a′) · ~x)

(E4) ∀a, a′:A,~x :~S . R(~x) ⊃ R((a a′) · ~x)

Equivariance principle: all constant/function/relation symbols are
equivariant.

Proposition

For any φ(~x), we have NL ` φ(~x) ⇐⇒ φ((a b) · ~x).

James Cheney
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Axioms for abstraction

(A1) ∀a, b:A, x , y :S . 〈a〉x ≈ 〈b〉y ⇐⇒
(a ≈ b ∧ x ≈ y)
∨(a # y ∧ x ≈ (a b) · y)

(A2) ∀y :〈A〉S .∃a:A, x :S . y ≈ 〈a〉x

(E5) ∀a, a′:A, b:A′, x :S . (a a′) · 〈b〉x ≈ 〈(a a′) · b〉(a a′) · x

(A1) defines α-equivalence
(A2) is a surjectivity property for abstraction.
Fact: (A2) equivalent to

∀y :〈A〉S . Na:A.∃x :S .y ≈ 〈a〉x

James Cheney
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Axiomatizing N

We can axiomatize the N-quantifier as follows:

(Q) Na.φ(a, ~X ) ⇐⇒ ∃a.a # ~x ∧ φ(a,~x)

where φ(a,~x) indicates that a,~x list all the free variables of φ.

Fact: Equivalent to “universal” characterization

Proposition

NL ` ∃a.a # ~x ∧ φ(a,~x) ⇐⇒ ∀a.a # ~x ⊃ φ(a,~x)

Proof.

Need both equivariance (Prop 1) and freshness (F4).

James Cheney
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Aside: Proof theory of NL

Sequent/ND proof systems for NL have also been studied.

One idea: build freshness information into variable contexts:

Σ ::= · | Σ, x :S | Σ#a:A

N-rules:

Σ#a:A : Γ, φ⇒ ψ

Σ : Γ, Na:A.φ⇒ ψ
NL

Σ#a:A : Γ ⇒ φ

Σ : Γ ⇒ Na:A.φ
NR

(a 6∈ Σ)

Embed ≈/#-axioms as additional rules (c.f. Structural Proof
Theory [Negri and van Plato 2001])

Don’t have time for more on this...

James Cheney
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Nominal logic: semantics

Nominal logic was inspired by nominal terms, which can
mention/depend on only finitely many names

And sound for reasoning about such models... but incomplete

We now consider the semantics of nominal logic in general

Finitely-supported nominal sets — incomplete
Ideal-supported nominal sets & completeness
Herbrand models & completeness for nominal-universal theories

James Cheney
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Finitely-supported nominal sets

Definition

A finitely-supported nominal set is a structure

(X , ·X : Perm(A)× X → X , supp : X → Pfin(A))

such that:

·X is a group action of Perm(A) on X

each x ∈ X has a ⊆-minimum, finite support supp(x) such
that:

∀a, b 6∈ supp(x).(a b) · x = x

James Cheney
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Basic nominal sets

Any “ordinary” set (N, R, etc.) can be viewed as a nominal
set:

(a b) · x = x

supp(x) = ∅

The set of names A is a nominal set:

(a b) · x =


a x = b

b x = a

x a 6= x 6= b

supp(a) = {a}

James Cheney
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Nominal set constructions

Unit 1 = {?}:

π · ? = ?

supp(?) = ∅

Cartesian products X × Y :

π · (x , y) = (π · x , π · y)

supp(x , y) = supp(x) ∪ supp(y)

Disjoint unions X + Y :

π · (ιi (x)) = ιi (π · x)

supp(ιi (x)) = supp(x)

James Cheney
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Nominal set constructions

Function spaces X → Y (finitely-supported):

(π · f )(x) = π · (f (π−1 · x))

Powersets P(X ) (finitely-supported):

π · S = {π · x | x ∈ S}

Quotients X/≡ (≡ equivariant):

π · [x ]≡ = {π · y | x ≡ y} = [π · x ]≡

Nominal sets & equivariant functions have topos structure (∼=
“Schanuel topos”).

James Cheney
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Name-abstraction construction

Consider the equivalence relation on A× X generated by:

Nc.(a c) · x = (b c) · y ⊃ (a, x) ≡α (b, y)

Define the name-abstraction construction as:

〈〈A〉〉X 4
= (A× X )/≡α

〈〈a〉〉x 4
= (a, x)≡α

Facts:

π · (〈〈a〉〉x) = 〈〈π · a〉〉π · x

supp(〈〈a〉〉x) = supp(x)− {a}

James Cheney
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Soundness

We can (soundly) interpret...

AM = A; (〈A〉S)M = 〈〈A〉〉SM

Other sorts S as nominal sets SM

aM = a

(〈a〉t)M = 〈〈aM〉〉tM

− ≈ − as “real” equality

− # − as − 6∈ supp(−) (“real” freshness)

Other constant, function, predicate symbols as equivariant
values, functions, relations

James Cheney
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Soundness and (in)completeness

Theorem (Soundness)

Γ ` φ implies Γ �FS φ

Unfortunately, finite-support semantics is incomplete.

Compactness fails: all finite subsets of

Γ = {¬(ai # x) | i ∈ ω} ∪ {ai # aj | i 6= j ∈ ω}

are satisfiable in FS-models, but Γ is not.

Idea: Γ says “x has infinitely many different names in its
support”

And noncompactness implies incompleteness

James Cheney
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Recovering completeness

Obviously, NL is complete w.r.t. all first-order models, but
this is unhelpful...

What do the FO models of NL look like?

Answer: ideal-supported models in which supports form a
proper ideal.

NB: Already known in study of ¬AC set theory...

Ideal properties ensure that we can never run out of fresh
names even if some values have infinite support!

Thus, it is also possible to use NL to reason about infinite
objects with infinite support.

NB: Even if A countable! (by Löwenheim-Skolem)

James Cheney
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Ideal-supported nominal sets

Let I ⊆ P(A) be a proper ideal containing Pfin(A).

Definition

An I-nominal set is an algebraic structure

(X , ·X : Perm(A)× X → X , supp : X → I)

such that:

·X is a group action of Perm(A) on X
each elt of X has a ⊆-minimum support supp(x) ∈ I

All constructions for finitely-supported nominal sets still work.

Theorem (Soundness & Completeness)

Γ � φ over ideal-supported structures iff Γ ` φ

James Cheney
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Reasoning and programming with nominal logic
Part II: Nominal logic programming
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Nominal logic programming

An application: logic programming in NL (“αProlog”)

Goal: Translate informal “paper” inference rule definitions to
executable, yet formally transparent language

Use nominal features to handle generativity, α-equivalence

Equivariance ensures cannot “get at” bound names

No help with substitution

But no longer “hard” to implement declaratively (no need for
gensym)

James Cheney
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Example (I)

A warm-up (warmed-over?) example: typechecking.

x : T ∈ Γ
Γ ` x : T

Γ ` M : T → U Γ ` N : T
Γ ` M N : U

(x 6∈ Γ) Γ, x : T ` M : U

Γ ` λx .M : T → U

tc(G , var(X ),T ) :− mem((X ,T ),G ).
tc(G , app(M,N),U) :− tc(G ,M, arr(T ,U)), tc(G ,N,T ).
tc(G , lam(〈x〉M), arr(T ,U)) :− x # G , tc([(x,T )|G ],M,U).

James Cheney
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Example (I)

A warm-up (warmed-over?) example: typechecking.

x : T ∈ Γ
Γ ` x : T

Γ ` M : T → U Γ ` N : T
Γ ` M N : U

(x 6∈ Γ) Γ, x : T ` M : U

Γ ` λx .M : T → U

tc(G , var(X ),T ) :− mem((X ,T ),G ).
tc(G , app(M,N),U) :− tc(G ,M, arr(T ,U)), tc(G ,N,T ).
tc(G , lam(〈x〉M), arr(T ,U)) :− x # G , tc([(x,T )|G ],M,U).

Note that clauses and subgoals correspond closely

Read x # G as x 6∈ Γ
Read lam(〈x〉M) as λx .M

James Cheney
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Example (II)

Alpha-inequivalence.

Non-immediate in a higher-order setting (fun exercise!).

neq(var(X ), var(Y )) :− X # Y .
neq(app(M,N), app(M ′,N ′)) :− neq(M,M ′).
neq(app(M,N), app(M ′,N ′)) :− neq(N,N ′).
neq(lam(〈x〉M), lam(〈x〉N)) :− neq(M,N).
neq(var( ), app( , )). neq(var( ), lam( )).
neq(app( , ), var( )). neq(app( , ), lam( )).
neq(lam( ), app( , )). neq(lam( ), var( )).

Here, X # Y just means X 6= Y .

NB: This also works for π-calc mismatch, explicit
substitutions, ...

James Cheney
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Example (III)

Large-step semantics for ML-like references:

(a ∈ Lab)

〈σ, a〉 → 〈σ, a〉
〈σ,M1〉 → 〈σ′, a〉 〈σ′,M2〉 → 〈σ′′,V 〉
〈σ,M1 := M2〉 → 〈σ′′[a := V ], ()〉

〈σ,M〉 → 〈σ′, a〉
〈σ, !M〉 → 〈σ′, σ′(a)〉

〈σ,M〉 → 〈σ′,V 〉 (a 6∈ dom(σ′))

〈σ, ref M〉 → 〈σ′[a := V ], a〉

Interesting part: last rule requires fresh label for new memory
cell

James Cheney
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Example (III)

Large-step semantics for ML-like references:

(S , lab(A)) =⇒ (S , lab(A)).
(S , assign(M1,M2)) =⇒ (S3, unit) :− (S ,M1) =⇒ (S1, lab(A)),

(S1,M2) =⇒ (S2,V ),
update((A,V ),S2,S3).

(S , deref (M)) =⇒ (S ′,V ) :− (S ,M) =⇒ (S ′, lab(A)),
mem((A,V ),S ′).

(S , ref (M)) =⇒ ([(a,V )|S ′], lab(a)) :− (S ,M) =⇒ (S ′,V ),
a # S ′.

Interesting part: in last rule, name a is constrained to be
sufficiently fresh

James Cheney
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Logical foundations

Logic programming languages derive much of their power
from logical foundations

Prolog

semantics based on first-order logic
implementation based on first-order unification

λProlog

semantics based on higher-order logic
implementation based on higher-order unification

αProlog

semantics based on nominal logic?
implementation based on ??

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

Nominal logic programs

We consider goals and program clauses in NL defined as
follows:

G ::= > | p(~t) | G ∧ G ′ | G ∨ G ′ | ∃X .G | t ≈ u | t # u | Na.G

D ::= > | p(~t) | D ∧ D ′ | G ⊃ D | ∀X .D | Na.D

Example: “Open” program clause

tc(G , lam(〈x〉M), arr(T ,U)) :− x # G , tc([(x,T )|G ],M,U).

logically interpreted as “closed” formula

Nx.∀G ,M,T ,U.
x # G ∧ tc([(x,T )|G ],M,U) ⊃ tc(G , lam(〈x〉M), arr(T ,U))

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

Semantics

Traditional approaches to the semantics of LP can be adapted
to nominal logic programs:

Least fixed point models
Least Herbrand models
Proof-theoretic semantics (uniform proofs)
Operational semantics (idealized, nondeterministic)

Moreover all of the semantics are equivalent

James Cheney
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Herbrand models

As a starting point, consider Herbrand models of NL.

Define Herbrand base BΩ as set of all atomic (non-constraint)
formulas over signature Ω.

A Herbrand model is an equivariant subset H ⊆ BΩ

Given such a model, interpret

term symbols as themselves (cH = c , f H(~t) = f (~t))
sorts S as sets (SH = {t : S | t ground})
predicates R as relations (RH = {~t | R(~t) ∈ H})

Write �H φ if φ holds in H; etc.

Write Σ : ∇ � C for constraint entailment (∀θ : Σ.θ �H ∇
implies θ �H C )

James Cheney
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Herbrand’s theorem for NL

Full NL sound but incomplete with respect to “intended
models” over nominal terms.

But complete for “nominal universal” ( N∀) theories

φ0 ::= R(~t) | φ0 ∧ ψ0 | φ0 ∨ ψ0 | ¬φ0

φ ::= φ0 | a # t ⊃ φ | t ≈ u ⊃ φ | ∀X :S .φ | Na:A.φ

Theorem (Nominal Herbrand theorem)

A N∀-theory Γ is satisfiable iff it has a nominal term model.

Non-immediate due to ∃ axioms in NL (F4,A2)

James Cheney
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Least Herbrand models

Fact: Every NL program (set of D-formulas) is (equivalent to)
a N∀-theory.

( Na.G ) ⊃ D =⇒ Na.(G ⊃ D) (a 6∈ FN(D))
( Na.G ) ∧ G ′ =⇒ Na.(G ∧ G ′) (a 6∈ FN(G ′))

...

Fact: Herbrand models closed under intersection (proof
similar to FO case)

Conclusion: Least Herbrand model HP exists for any NL
program P.

James Cheney
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Computing least models

Can we “compute” (recursively enumerate) least Herbrand
model?

In FO case, yes; HP = LFP(TP), for TP a continuous
operator on Herbrand models

Can extend this proof to NL

Key fact 1: continuity in presence of N-quantifier

Key fact 2: TP must also be equivariant to ensure that
LFP(TP) is equivariant

James Cheney
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Computing least models

Define one-step deduction operator (by induction on
D-formulas):

T>(H) = H
TA(H) = H ∪ {A}

TD1∧D2(H) = TD1(H) ∪ TD2(H)

TG⊃D(H) =

{
TD(H) if H � G
H otherwise

T∀X :S .D(H) =
⋃

t:S TD[t/X ](H)
T Na:A.D(H) =

⋃
b:A 6∈FN( Na.D) TD[b/a](H)

Define TP as TV
i Di

if P = {D1, . . . ,Dn}.
Continuity easy; only Nis nonstandard

Equivariance: must generalize to π · TD(S) = Tπ·D(π · S).

James Cheney
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Aside: Proof-theoretic semantics

Using proof theory of NL, can provide proof-theoretic
semantics

Explain behavior of Nin terms of proof-search behavior

For goals, Na.G means “generate fresh name a and solve G”

Σ : ∇ � Na:A.C Σ#a:A : ∆;∇,C =⇒ G

Σ : ∆;∇ =⇒ Na:A.G
NR

Similarly, for program clauses Na.D means “generate fresh
name a and proceed using D”

Σ : ∇ � Na:A.C Σ#a:A : ∆;∇,C D−→ A

Σ : ∆;∇ Na:A.D−−−−→ A
NL

James Cheney
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Implementation

Traditional approaches to implementing LP can be adapted:

SLD-resolution: depth-first proof search
backtracking via continuations
unification/constraint solving

Key differences: need to

solve equations/freshness constraints over nominal terms
deal with nominal resolution correctly (modulo equivariance)

These lead to nontrivial unification/resolution problems

Overview in rest of talk

James Cheney
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Nominal Unification

Urban, Pitts, Gabbay [CSL 2003, TCS 2004]: developed an
algorithm for

unifying nominal terms
solving freshness constraints

with O(n2) complexity.

BUT, nontrivial restrictions:

a # t (a b) · t 〈a〉t

only ground names a may appear in marked positions (not
variables)

What about the general case?

James Cheney
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Full nominal unification

Full nominal unification: allow name-variables anywhere.

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f (t) | 〈a〉t | Π · t | a
Π ::= (a b) | id | Π ◦ Π′

C ::= t ≈ u | a # t

NP-complete because guessing is needed to deal with
swapping

Reduction from Graph 3-Colorability [C, ICALP 2004]

James Cheney
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Equivariance

In nominal logic, truth is preserved by name-swapping

Two atomic formulas R(~t),R(~u) can be logically equivalent
yet ~t, ~u not equal as nominal terms.

Example:

R(a) ⇐⇒ R((a b) · a) ≈ R(b) but a 6≈ b

Proof search based on ≈-unification is incomplete

This can happen even for programs satisfying UPG
name-groundness restriction

In particular, needed to program generative relations.

James Cheney
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Why is this hard?

Let’s take a little quiz.

Satisfiable or not?

R((a b) · X ,X , (b c) · Y ,Y ) ⇐⇒ R(a′, b′, c′, d′)

No!

Satisfiable or not?

R((a b) · X ,X , (c d) · Y ,Y ) ⇐⇒ R(a′, b′, c′, d′)

Yes: X = b,Y = d, permutation (a a′)(b b′)(c c′)(d d′)
Wasn’t that easy?

James Cheney
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Equivariant unification

Idea: Reduce R(~t) ⇐⇒ R(~u) to ∃π.π ·~t = ~u.

Allow permutation variables & inverses

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f (t) | 〈a〉t | Π · t | a
Π ::= (a b) | id | Π ◦ Π′ | Π−1 | P
C ::= t ≈ u | a # t

t and u unify “up to a permutation” if P · t ≈ u is satisfiable.

Also NP-hard [C ICALP 2004]

Rest of talk: show NP algorithm for EV unification

James Cheney
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Our approach

Phase 0: Always push permutation applications down to
names/variables

Phase I: Get rid of term symbols (unit, pair, functions,
abstractions)

Phase II: Get rid of permutation operations (id, inverse,
composition, swapping)

This leaves problems of the form P · a ≈ b, P · a # b only.

Phase III: Solve remaining problems using permutation graphs

James Cheney
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Our approach (I)

First, get rid of unit, pair, function symbols and abstractions:

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f (t) | 〈a〉t | Π · t | a
Π ::= (a b) | id | Π ◦ Π′ | Π−1 | P
C ::= t ≈ u | a # t

James Cheney
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Our approach (I)

Reduction rules for phase I:

(#?1) S , a #? 〈〉 →1 S
(#?×) S , a #? 〈u1, u2〉 →1 S , a #? u1, a #? u2

(#?f ) S , a #? f (u) →1 S , a #? u

(#?abs) S , a #? 〈b〉u →1

{
S , a ≈? b
∨ S , a #? u

}
Note the 2-way choice point in rule for abstraction

Otherwise, rules similar to UPG algorithm

James Cheney
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Our approach (I)

Reduction rules for phase I:

(≈?1) S , 〈〉 ≈? 〈〉 →1 S
(≈?×) S , 〈t1, t2〉 ≈? 〈u1, u2〉 →1 S , t1 ≈? u1, t2 ≈? u2

(≈?f ) S , f (t) ≈? f (u) →1 S , t ≈? u

(≈?abs) S , 〈a〉t ≈? 〈b〉u →1

{
S , a ≈? b, t ≈? u

∨ S , a #? u, t ≈? (a b) · u

}
(≈?var ) S ,Π · X ≈? t →1 S [X := Π−1 · t],X ≈? Π−1 · t

(where X 6∈ FV (t),X ∈ FV (S))

Note the 2-way choice point in rule for abstraction

Otherwise, rules similar to UPG algorithm

James Cheney
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Our approach (II)

Next, get rid of complex permutation terms:

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f (t) | 〈a〉t | Π · t | a
Π ::= (a b) | id | Π ◦ Π′ | Π−1 | P

C ::= t ≈ u | a # t

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

Our approach (II)

Reduction rules, phase II:

(id) S [id · v ] →2 S [v ]
(inv) S [Π−1 · v ] →2 ∃X .S [X ],Π · X ≈ v
(comp) S [Π ◦ Π′ · v ] →2 ∃X .S [Π · X ],Π′ · v ≈ X )

(swap) S [(a a′) · v ] →2

 S [a], a′ ≈ v
∨ S [a′], a ≈ v

∨ ∃X .S [X ], v ≈ X , a # X , a′ # X


(#Q) S ,Q · v # w →2 ∃X .S ,Q · v ≈ X ,X # w

Note the 3-way choice point in rule for swapping

James Cheney
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Our approach (III)

The remaining constraints involve only names, variables, and
permutation variables.

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f (t) | 〈a〉t | Π · t | a
Π ::= (a b) | id | Π ◦ Π′ | Π−1 | P
C ::= t ≈ u | a # t

Conjunctive satisfiability for problems of this form can be
solved by graph reduction in polynomial time.

Idea: Build a graph with “equality”, “freshness”, and
“permutation” edges; reduce using permutation laws

James Cheney
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An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

Q

P

P

P

P P
P

Q

P
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Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

Q

P

P

P

P P
P

Q

P

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

Q

P

P

PQP

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

Q

P

P

PQP

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

Q

P

P

P

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

Q

P

P

P

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

P

P

Q

James Cheney

Reasoning and programming with nominal logic Part II: Nominal logic programming



Nominal logic programs Logical foundations Unification and resolution Conclusions

An example

Here’s how to reduce a permutation graph corresponding to:

QPPa ≈ b PQPa ≈ b PPa ≈ b P−1QPa # a

Pa b

Q

P

P

Q

Unsatisfiable because Qa # a and Qa ≈ a

James Cheney
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Results

Phase I (term reduction): NP time, finitary

Phase II (permutation reduction): NP time, finitary

Phase III (graph reduction): P time, unitary.

Overall: NP time, finitely many answers.

Variant of Phase I that is P time and unitary, but introduces
lots of swappings

James Cheney
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So this is a little depressing...

At least it’s decidable! (wasn’t obvious)

In practice many programs/clauses don’t require full EVU

Many NP-hard constraint problems have good behavior in
common cases

programmers tend not to encode hard combinatorial problems
as constraints
fixed parameter tractability?

Seems painful to implement; unifiers complex

There may be tractable special cases that permit some
reasoning about generativity (my hope)

Do we really need equivariance?

James Cheney
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Further reading

Survey/column (more expository):

Nominal logic and abstract syntax, C, SIGACT News 2005

Primary sources:

A new approach to abstract syntax involving binders, Gabbay
& Pitts, Formal Aspects of Computing 2002

Nominal logic, Pitts, Inf. Comput. 2003

Nominal logic programming, C, thesis 2004

Completeness and Herbrand theorems for nominal logic, C,
JSL 2006

James Cheney
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Future work/open problems

Efficient implementation (perhaps via translation to CLP?)

Variants of NL (e.g. equivariance vs. orderings)

Proof theory of NL and nominal type theory

Beyond binding: practical reasoning with generativity (states
in automata, nonces in security, ids in program analysis)

Beyond names: practical support for reasoning modulo
structural congruences (e.g. π-calculus)

James Cheney
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Conclusions

Nominal abstract syntax is a new way of reasoning about and
programming with names and binding.

+ Nominal logic programs frequently direct translations from
ordinary informal presentations.

+ Can be used to reason about generativity, name-inequality
+/– Names kept “abstract” via equivariance; complicates resolution

– Lacks HOAS-style built-in substitution

James Cheney
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