
A Process Algebra Approach to
Provenance

James Cheney

Lab Lunch

February 7, 2006

A Process Algebra Approach to Provenance – p.1/18

What is process algebra?

A symbolic system for describing and understanding
the behavior of concurrent processes

Examples: CSP, CCS, π-calculus, variants

Basic ideas:

P |Q parallel composition
P + Q choice
c(x).P input x from channel c, then do P

c̄e.P output e to channel c, then do P

Half of the audience has seen this before

A Process Algebra Approach to Provenance – p.2/18

What is provenance?

Information about the creation, modification, derivation,
or other history of something

Real-world examples: birth certificate, passport stamps,
travel stickers on luggage

Digital examples: links, version control changelogs,
email headers

Problem: Requires extra effort, discipline to maintain
provenance manually (especially for automatic
processes); many users aren’t that patient

Self-reported provenance may be unreliable
(dishonesty/laziness/human error)

Half of the audience has seen this before

A Process Algebra Approach to Provenance – p.3/18

Provenance Challenges

There are (at least) two significant challenges in
tracking and managing provenance

Policy : that is, what should we be doing, and how
can we argue that what we do is sufficient/correct?
Mechanism: that is, how to build systems that
effectively and efficiently capture (and exploit)
provenance information?

Most existing work focuses on (2), but without a good
answer for (1), it’s not clear to me how to evaluate an
answer to (2).

A Process Algebra Approach to Provenance – p.4/18

Formal Foundation

In a previous lab lunch Peter discussed work on
provenance semantics for a simple tree update
language

u ::= u;u′ | ins p | del p | p := q

History is the sequence of versions, with “links”
between each version reflecting changes

q q
p

p := q

p

del p a

pp

ins p a

p
a

a
p

A Process Algebra Approach to Provenance – p.5/18

Example

Example

a
b

c
a

b
c

ins a/e b := a del a

d d e

a

b
c

d e d e

b c

d e

a
b

c

d e

a/e := c

(Many links omitted for readability.)

So, we can tell that b/d was originally from under a, and
that b/e is a copy of c.

A Process Algebra Approach to Provenance – p.6/18

How does this help?

The history expresses the most detailed form of
provenance information we are interested in.

This can be used to evaluate other approaches w.r.t.
accuracy and correctness.

Key question:
Given a provenance tracking system, what
questions about the history can be answered with
certainty (given only the final state and
provenance information)?

A Process Algebra Approach to Provenance – p.7/18

Problems

Considered sequential language involving one
database only

Real world examples involve multiple databases, users
acting in parallel

This introduces many problems that don’t come up in
the single-threaded, single-database case.

multiple agents/authors
synchronization
concurrent queries/updates
read/write conflicts

A Process Algebra Approach to Provenance – p.8/18

Example

Consider following (realistic) situation:
1. Dr. X copies some data from DB Y and incorporates

it into DB X
2. Meanwhile, Dr. Y updates DB Y with data from DB X

DB X

DB YDr. Y

Dr. X

read x=l

write m=x

write l=y

read y=m

m=17

l=42

A Process Algebra Approach to Provenance – p.9/18

What happened?

Depending on the order of operations, there are several
outcomes.

DB X

DB YDr. Y

Dr. X

read x=l

write m=x

write l=y

read y=m

m=17

l=42

DB X

DB YDr. Y

Dr. X

read x=l

write m=x

write l=y

read y=m

m=17

l=17y=17

x=17

Y reads and writes, then X reads and writes.

A Process Algebra Approach to Provenance – p.10/18

What happened?

Depending on the order of operations, there are several
outcomes.

DB X

DB YDr. Y

Dr. X

read x=l

write m=x

write l=y

read y=m

m=17

l=42

DB X

DB YDr. Y

Dr. X

read x=l

write m=x

write l=y

read y=m

m=42

l=17

x=42

y=17

X and Y read, then X and Y write.

A Process Algebra Approach to Provenance – p.11/18

Process algebra to the rescue!

Consider simple algebra for processes that
communicate with databases (and each other)

P ::= P |Q | P + Q | α.P | 0

α ::= query db e(x) | upd db u | c̄e | c(x)

e ::= l | n | x

u ::= l := e | ins l = e | del l | u;u′

db: database name, c: channel between processes

To keep things simple, “databases” are just flat maps
from labels l to integer values n.

δ : Lab ⇀ N

A Process Algebra Approach to Provenance – p.12/18

Standard semantics

Queries and updates on a database δ:

[[n]](δ) = n

[[l]](δ) = δ(l)

[[u;u′]](δ) = [[u′]]([[u]](δ))

[[ins l v]](δ) = δ] {l 7→ v}

[[del l]](δ) = δ − l

[[l := v]](δ) = δ[l := v]

Note that expressions and updates must be ground (no
free variables) when evaluated.

A Process Algebra Approach to Provenance – p.13/18

Standard semantics

Configurations ∆;P consist of a collection of databases
∆ = {db1 7→ δ1, . . .} and a process P

All the standard process reduction steps lift:

P → Q

〈∆;P 〉 → 〈∆;Q〉

In addition, we have steps

〈∆; query db e(x).P |Q〉 → 〈∆;P [[[e]](∆(db))/x]|Q〉

〈∆; upd db u.P |Q〉 → 〈∆[db := [[u]](∆(db))];P |Q〉

In both cases, transition only if [[e]](∆(db)) or [[u]](∆(db))
is defined.

A Process Algebra Approach to Provenance – p.14/18

Provenance semantics

Idea: Annotate values with source information db.t.l,
meaning “came from db at time t in location l”.
Annotations can also be empty (⊥).

[[n]]α(δ) = n⊥

[[l]]α(δ) = δ(l)l

[[u;u′]](δ) = [[u′]]([[u]](δ))

[[ins l vα]](δ) = δ] {l 7→ vα}

[[del l]](δ) = δ − l

[[l := vα]](δ) = δ[l := vα]

A Process Algebra Approach to Provenance – p.15/18

Provenance semantics

Assume a global integer clock t (for simplicity).

Use db and clock time to label data obtained via queries

Clock steps only occur when a database is updated.

〈t; ∆; query db e(x).P |Q〉 → 〈t; ∆;P [[[e]]db.t(∆(db))/x]|Q〉

〈t; ∆; upd db u.P |Q〉 → 〈t + 1; ∆[db := [[u]](∆(db))];P |Q〉

A Process Algebra Approach to Provenance – p.16/18

History

We can now define a history of a configuration C as a
sequence of configurations ending in C.

Data can flow into processes, stay there for several time
steps, then flow into a DB.

This semantics can be used as a starting point for
evaluating techniques for tracking provenance in a
distributed setting.

Y

X
m=17 m=17 m=17

l=42 l=17 l=17 vs
Y

X
m=17

l=42

m=42

l=17l=42

m=42

A Process Algebra Approach to Provenance – p.17/18

Conclusions

Next steps: identifying interesting provenance systems
and assertion languages, proofs of correctness.

Extensions to process language to support locking may
be needed

Also, the synchronous time model is unrealistically
simplistic (and distinguishes too much)

Cryptographic protocols may be needed in
non-cooperative settings.

A Process Algebra Approach to Provenance – p.18/18

	What is process algebra?
	What is provenance?
	Provenance Challenges
	Formal Foundation
	Example
	How does this help?
	Problems
	Example
	What happened?
	What happened?
	Process algebra to the rescue!
	Standard semantics
	Standard semantics
	Provenance semantics
	Provenance semantics
	History
	Conclusions

