
Logic Programming with Names and
Binding

James Cheney

September 28, 2004

1

Prologue

2

Gabbay and Pitts (1999)

• Developed a new theory of names, binding, and α-equivalence

based on swapping (permutations, FM-set theory)

• Nominal logic: variant of first-order logic incorporating these

ideas

• I call their approach “nominal abstract syntax” for short.

• Often asked: Why permutations instead of good old capture-

avoiding substitution?

3

McKinna and Pollack (1993,1999)

• Formalized reasoning about the λ-calculus in LEGO.

• Along the way:

– Principle that fresh parameters can always be chosen

– Inductive definition of α-equivalence

– Quantifier switching:

V closed(λx.t) ⇐⇒ ∀p.V closed(t[p/x]) ⇐⇒ ∃p.V closed(t[p/x])

– Invertible renamings built up out of {x/y, y/x}

4

Frege (1879)

• Frege (Begriffsschift 1879) wrote:

. . . Replacing a German letter [bound name] everywhere

in its scope by some other one is, of course, permitted,

so long as in places where different letters initially stood

different ones also stand afterward. This has no effect

on the content.

• Thus, he viewed formulas as invariant under one-to-one re-

namings (and hence, also permutations) of bound names.

5

My view

Nominal abstract syntax is a new and simpler way of looking at

reasoning about names and binding. Arguably, the techniques

themselves are not new. But they are underutilized.

I am interested in applying nominal abstract syntax to real prob-

lems in programming and formal reasoning.

Long term goal: Better logical frameworks for reasoning about

logics and programming languages.

First step: I (and others) have developed αProlog, a logic pro-

gramming language based on nominal abstract syntax.

6

Outline

• Overview of nominal logic

• αProlog programming examples

• How it works

• What doesn’t work (yet)

• Conclusion

7

Nominal Logic

8

Nominal Logic: Syntax

• Names a, b inhabiting name-sorts A, A′

• Swapping a, b, x 7→ (a b) ·x : A, A, S → S exchanges two names

• Abstraction a, x 7→ 〈a〉x : A, S → 〈A〉S used for object-level
binding

• Freshness relation a # x means “x does not depend on a”

• N-quantifier quantifies over fresh names: Na.φ means “for
fresh names a, φ holds”

9

Names: What are they?

• In my approach, names are a new syntactic class, distinct
from variables and from function or constant symbols

• Syntactically different names are also semantically distinct

• Names can be used in object terms denoting binding: 〈a〉x,
but they can also be “bound” at the metalevel: Na.φ

• 〈a〉a = 〈b〉b is a (true) formula of nominal logic, while Na.p(a)
and Nb.p(b) are α-equivalent formulas in the conventional
way.

10

Theory of Swapping and Freshness

• Swapping

(a b) · a = b (a a) · x = x (a b) · (a b) · x = x

• Freshness

a # a′ ⇐⇒ a 6= a′ a # x ∧ b # x ⊃ (a b) · x = x

• Examples

a # (a b) · a (a b) · f(a, b, a, g(a)) = f(b, a, b, g(b))

11

Theory of Name-Abstraction

• Intuitively, 〈a〉x is “the value x with a distinguished bound

name a”.

• Considered equal up to “safe” renaming:

〈a〉x = 〈b〉x ⇐⇒ (a = b ∧ x = y) ∨ (a # y ∧ x = (a b) · y)

• For example,

〈a〉a = 〈b〉b 〈a〉(a, b) 6= 〈b〉(b, a)

12

Freshness and Equivariance Principles

• Freshness: Fresh names can always be chosen.

∀~x.∃a.a # ~x

• Equivariance: Truth preserved by name-swapping

∀~x.∀a, b.p(~x) ⊃ p((a b) · x)

• Also, constants and function symbols preserved by swapping

∀a, b.(a b) · c = c ∀~x.∀a, b.f((a b) · x) = (a b) · f(x)

13

N-Quantifier

• Originally defined as

Na.φ(a, ~x) ⇐⇒ ∃a.a # ~x ∧ φ(a, ~x)

• But equivalent (using freshness, equivariance) to

∀a.a # ~x ⊃ φ(a, ~x)

• Examples

Na, b.a # b Na, b.φ(a, b) ⇐⇒ Na, b.φ(b, a)

Na.φ(a, a) 6⊂6⊃ Na, b.φ(b, a)

14

Sequent Calculus

• Judgments use name/variable context Σ expressing both typ-
ing and freshness information

Σ ::= · | Σ, x : S | Σ#a : A

Intuitively, Σ#a is equivalent to a # ~x where ~x = FV (Σ).

• Freshness principle restated as:

Σ#a : Γ ⇒ C
Σ : Γ ⇒ C

• Convenient direct proof rules for N:

Σ#a : Γ ⇒ C
Σ : Γ ⇒ Na.C

Σ#a : Γ, A ⇒ C
Σ : Γ, Na.A ⇒ C

15

Nominal Logic Programming in αProlog

16

Nominal Logic Programming (Horn clauses)

• Written Prolog-style as

A :− B1, . . . , Bn.

where A, ~B are atomic formulas involving nominal terms.

• We interpret such clauses as NL formulas

N~a.∀~x.B1 ∧ · · · ∧Bn ⊃ A

• Implementation: αProlog

17

Some interesting programs I

• Typechecking the λ-calculus

x : τ ∈ Γ
Γ ` x : τ

Γ ` e1 : σ → τ Γ ` e2 : σ
Γ ` e1 e2 : τ

Γ, x : τ ` e : σ (x 6∈ FV (Γ))
Γ ` λx.e1 : τ → σ

tc(G, var(X), T) :− mem((X, T), G).
tc(G, app(E, E′), T) :− tc(G, E, arr(T ′, T)), tc(G, E′, T ′).
tc(G, lam(〈a〉E), arr(T, T ′)) :− a # G, tc([(a, T)|G], E, T ′).

18

Some interesting programs II

• Substitution in the λ-calculus

x[t/x] = t
y[t/x] = y (y 6= x)
(e1 e2)[t/x] = e1[t/x] e2[t/x]
(λy.e)[t/x] = λy.(e[t/x]) (y 6= x, y 6∈ FV (t))

subst(var(a), T, a) = T.
subst(var(b), T, a) = var(b).
subst(app(E1, E2), T, a) = app(subst(E′

1, T, a), subst(E′
2, T, a)).

subst(lam(〈b〉E), T, a) = lam(〈b〉subst(E, T, a))
:− b # T.

19

Some interesting programs III

• Labeled transitions in the π-calculus (selected transitions)

p
α−→ p′ bn(α) ∩ fn(q) = ∅

p|q α−→ p′ x̄y.p
x̄y−→ p

p
x(a)−→ p′ q

x̄(a)−→ q′

p|q τ−→ νa.(p′|q′)

step(par(P, Q), A, P ′)
:− step(P, A, P ′), safe(A, Q).

step(out(X, Y, P), fout a(X, Y), P).
step(par(P, Q), tau a, res(〈a〉par(P ′, Q′)))

:− step(P, in a(X, a), P ′), step(Q, bout a(X, a), Q′).

20

Example queries

• (translated to human readable forms)

• · ` λx.λx.x : T solves T = α → β → β (unique answer)

• (λx.y)[x/y] = λx′.x (unique answer modulo α-equiv)

• p = (νy.(x̄y.0))|(x(z).z̄x.0) has three transitions:

p
x̄(w)−→ 0|(x(z).z̄x.0), x 6= w

p
x(w)−→ (νy.x̄y.0)|(w̄x.0), x 6= w

p
τ−→ νz.(0|z̄x.0)

21

How it works

22

How does it work?

• Unification algorithm is modified: nominal unification unifies

terms modulo equality in NL [UPG03,04]

• Also, freshness constraints must be solved during execution

• Finally, names in clauses are freshened prior to unification

• This is justified by the sequent rules.

23

Nominal unification example

〈a〉f(X, Y) = 〈b〉f(b, Y)

24

Nominal unification example

〈a〉f(X, Y) = 〈b〉f(b, Y)

⇓

f(X, Y) = (a b) · f(b, Y)

a # f(b, Y)

Note that a # f(b, Y) just reduces to a # Y .

25

Nominal unification example

f(X, Y) = (a b) · f(b, Y)

26

Nominal unification example

f(X, Y) = (a b) · f(b, Y)

⇓

f(X, Y) = f(a, (a b) · Y)

27

Nominal unification example

f(X, Y) = f(a, (a b) · Y)

28

Nominal unification example

f(X, Y) = f(a, (a b) · Y)

⇓

X = a

Y = (a b) · Y

29

Nominal unification example

Y = (a b) · Y

30

Nominal unification example

Y = (a b) · Y

⇓

a # Y, b # Y

Answer: 〈a〉f(X, Y) = 〈b〉f(b, Y) whenever

X = a, a # Y, b # Y

31

Freshness constraint solving example

a # f(X, 〈a〉Y)

⇓

a # X, a # 〈a〉Y

⇓

a # X

32

What doesn’t work (yet)

33

What doesn’t work

• Unfortunately, the proof search technique I’ve outlined is in-

complete!

• Why?

• Search for a proof of Na.p(a) ⇒ Na.p(a) fails after reducing

to a # a′ : p(a′) ⇒ p(a)

• Problem: equivariance not taken into account, needed here

to swap a for a′ in goal.

34

Option 1: Ignore the problem

• Actually lots of interesting programs that work without equiv-

ariance (including the ones in this talk)

• And we know how to identify them (that’s another talk...)

• But there are also lots of interesting programs that require

equivariance

– automata constructions, type inference, higher-order uni-

fication, etc...

35

Option 2: Find an efficient algorithm

• Also a nonstarter.

• Instead, I found a reduction from Graph 3-Colorability.

• So probably no such algorithm exists.

• Currently working on an exponential (but at least terminat-

ing) algorithm

36

Another problem

• There are only two equivariant binary relations on names:

equality and freshness.

• Ergo, there is no equivariant proper linear ordering on names.

• Orderings are needed for efficient implementations of most

data structures.

• New ideas are needed.

37

Conclusions

38

Related work

• Huge literature on programming and formalizing languages

with names and binding: cannot be summarized in one slide

• Closest in spirit: logical frameworks [HHP91 LF, Twelf, etc],

λProlog

• Closest in theory: FreshML [SPG03], dependently typed the-

ory of names & binding [SS04]

39

Future work

• Solve the problems! (ev unification, ordering names)

• More advanced nominal equational reasoning (e.g. π-calculus

structural equivalence as a theory of nominal logic)

• Formalization of λ-calculus using nominal logic/abstract syn-

tax in e.g. HOL [Urban]

• Nominal logical frameworks?

40

Conclusions

• Nominal abstract syntax is a new way of looking at the very

important phenomena of names and binding.

• In particular, it can be used to write logic programs that are

direct translations from ordinary informal presentations.

• Future: can this approach be used to make formal reasoning

about PLs/logics more practical?

41

