
A Nominal Logical Framework
Logic and Semantics Club

January 20, 2006

James Cheney

University of Edinburgh

A Nominal Logical Framework – p.1/28



Introduction

A logical framework is a formal system for defining (and
reasoning about) other formal systems.

Typically, employs a dependent type theory to represent
syntax and judgments of a logic or language

Idea goes back to at least de Bruijn’s AUTOMATH project

(Edinburgh) LF, Calculus of Constructions, and variants have
proven very expressive and powerful.

Fertile area for interesting type theories (Linear LF, Ordered
LF, Concurrent LF; Inductive Constructions)

A Nominal Logical Framework – p.2/28



Do we really need another LF?

Existing LF family very expressive, but:

1. Names are “second-class”: difficult to encode judgments
based on name-inequality

2. Inductive (meta-)reasoning apparently must be
performed externally; co-induction, logical relations not
well understood

3. Encoding generativity (e.g. allocation semantics)
requires resorting to counters/linearity

Eventual goal: handle all of these concerns; today focus on
(1) and sketch (2), (3)

A Nominal Logical Framework – p.3/28



Another motivation

Nominal logic: a recently proposed technique for “near
first-order” reasoning about names & binding; basis for
αProlog

Related theories: Miller & Tiu’s FOλ∇, higher-order patterns,
Pfenning, Pientka and Nanevski’s contextual modal type
theory

Goal: Identify a common core type theory unifying the basic
ideas underlying these systems

thus providing a constructive foundation for nominal
techniques

and hopefully getting certain type theorists off my case...

A Nominal Logical Framework – p.4/28



Syntax

Extends LF

K ::= type |Πx:A.K | name

A,B ::= a | A M |Πx:A.B | Na:A.B

M,N ::= c | x[ρ] | λx:A.M |M N | a | 〈a〉M |M @a

ρ ::= id | ρ,a/b

Note: Names a,b, . . . are a new syntactic class similar to (but
disjoint from) variables

ρ: explicit renamings

Na:A.B, 〈a : A〉M, subject to α-equivalence

α-equivalence & capture-avoiding substitution/renaming
operations defined in traditional way for LF

A Nominal Logical Framework – p.5/28



Contexts

Contexts: as LF, but with extra name contexts σ.

Also, types in Γ are guarded by name-context.

Σ ::= · | c : A | a : K

Γ ::= · | x : A[σ]

σ ::= · | a : A

Well-formedness for contexts: as LF, but types in σ must be
of kind name (and cannot depend on names).

Γ ` σ nctx Γ ` ·.A : name
Γ ` σ,a : A nctx

A Nominal Logical Framework – p.6/28



Judgments

Judgments: as LF, but with extra name-context.

` Σ sig Signature formation

` Γ ctx Context formation

Γ ` σ nctx Name context formation

Γ ` σ.K : kind Kind formation

Γ ` σ.A : K Type family formation

Γ ` σ.M : A Object formation

Γ ` σ.ρ : σ′ Renaming formation

Γ ` σ.K = K ′ : kind Kind equality

Γ ` σ.A = B : K Type family equality

Γ ` σ.M = N : A Object equality

Γ ` σ.ρ = ρ′ : σ′ Renaming equality

A Nominal Logical Framework – p.7/28



Typing: highlights

The rules for variables and renamings:

Γ ` σ′ .ρ : σ
Γ,x:A[σ] ` σ′ . x[ρ] : A[ρ]

Variables have to be instantiated with appropriate local
names.

Γ ` σ. id : ·

Γ ` σ.ρ : σ′

Γ ` σ,b : A.ρ,a/b : σ′,a : A

Renamings must be one-to-one.

A Nominal Logical Framework – p.8/28



Typing: highlights

The rules for names, abstractions, and concretions:

Γ ` σ,a:A.a : A

Γ ` σ,a:A.M : B
Γ ` σ. 〈a:A〉M : Na:A.B

Γ ` σ.M : Na:A.B
Γ ` σ,a:A.M @a : B

Fresh name a added to the context in 〈a : A〉M rule

Names removed from the context in M @a rule.

Therefore, 〈a:A〉λx: Na:A. Nb:A.x@a@a is not typable.

However, λx:A→ A→ B.〈a:A〉x a a is OK.

A Nominal Logical Framework – p.9/28



Equality: highlights

β-reduction and η-expansion (extensionality) for
Π-types/λ-terms as in LF

For N-types, we have

(β) (〈a:A〉M)@b = M[b/a] (b 6∈ FV (M))

(η) 〈a:A〉(M @a) = M : Na:A.B (a 6∈ FV (M))

Standard, but note that β-rule can never identify two different
names.

A Nominal Logical Framework – p.10/28



Local reductions/expansions

The following local soundness and completeness properties
for Nare important checks that the system is sensible:

D
Γ ` σ,a:A.M : B

Γ ` σ. (〈a:A〉M) : Na:A.B
Γ ` σ,b:A. (〈a:A〉M)@b : B[b/a]

⇓β

D[b/a]
Γ ` σ,b:A.M[b/a] : B[b/a]

A Nominal Logical Framework – p.11/28



Local reductions/expansions

The following local soundness and completeness properties
for Nare important checks that the system is sensible:

D
Γ ` σ.M : Na:A.B

⇓η

D
Γ ` σ.M : Na:A.B

Γ ` σ,a:A.M @a : B
Γ ` σ. 〈a:A〉M @a : Na:A.B

A Nominal Logical Framework – p.12/28



Simple example

As an example, consider lambda term typing encoded in
NLF:

w f : ctx→ exp→ ty→ type.
w f _var : w f G (var V ) T ← lookup G V T.

w f _app : w f G (app E1 E2) U
← w f G E1 (arr T U)← w f G E2 T.

w f _lam : w f G (lam M) (arr T U)

← Na.w f [G,(a,T )] (M @a) U.

Contexts are just lists.

Note that we do not use implication for local hypotheses (and
it would be incorrect to do so).

A Nominal Logical Framework – p.13/28



Encoding hypotheses

A distinctive feature of LF is the higher-order encoding of
hypothetical judgments:

w f _lam : w f (lam M) (arr T U)

← Πx.(w f x T → w f (M x) U).

This is nifty because (intuitionistic) object language contexts
“disappear” into LF’s (intuitionistic) context.

This does not work using Nin nominal logic or NLF!

w f _lam : w f (lam M) (arr T U)

← Na.(w f (var a) T → w f (M @a) U).

Why?

A Nominal Logical Framework – p.14/28



Encoding hypotheses

Why does this not work?

Local hypotheses are “lifted” out of their name context.

So the following is derivable:

x : w f (var a) t[a,b] ` a,b. x[b/a,a/b] : w f (var b) t
` a,b.λx.x[b/a,a/b] : Πx:w f (var a) t.w f (var b) t

· ` a. 〈b〉λx.x[b/a,a/b] : Nb.Πx:w f (var a) t.w f (var b) t
· ` ·. 〈a〉〈b〉λx.x[b/a,a/b] : Na. Nb.Πx:w f (var a) t.w f (var b) t

Bad!

This problem is similar to the kind caused by equivariance in
nominal logic.

A Nominal Logical Framework – p.15/28



Another example: Closure conversion

Important FP compilation phase

Idea: Make all functions closed

Translate functions to (closed function, environment) pair

Environment shape depends on context:

Γ = xn, . . . ,x1 7→ env = 〈vn,〈vn−1, . . . ,v1〉 · · ·〉

Need ability to test equality and inequality of names.

A Nominal Logical Framework – p.16/28



Closure conversion, informally

A typical “paper” presentation

C[[Γ,x ` x]]e = π1(e)
C[[Γ,x ` y]]e = C[[Γ ` y]]π2(e) (x 6= y)

C[[Γ ` e1 e2]]e = let c = C[[Γ ` e1]]

in (π1(c)) (C[[Γ ` e2]]e,π2(e))
C[[Γ ` λx.e0]]e = 〈λy.C[[Γ,x ` e0]]y,e〉 (y 6∈ FV (Γ,x,e,e0))

Inequality side conditions: non-obvious how to encode in LF.

A Nominal Logical Framework – p.17/28



Closure conversion in NLF

This is no problem in NLF.

Use N-quantifier; # defined in terms of N.

cconv : list id→ exp→ exp→ exp→ type.
cconv_var2 : cconv [G,X ] (var Y ) Env E

← X # Y
← cconv G (var Y ) (pi2 Env) E.

cconv_lam : cconv G (lam F1) Env
(pair (lam F2) Env)

← Nx. Ny.cconv [G, x] (F1@x) (var y) (F2@y).

A Nominal Logical Framework – p.18/28



Closure conversion in LF

This is the best I can do (there may be a better way...)

Idea: Maintain a list L of “bound” variables; ensure that
hypotheses neq X Y are derivable whenever X ,Y are distinct
elements of list.

cconv : list id→ list id→ tm→ tm→ tm→ type.

cconv_var2 : cconv L [G,X ] (var Y ) Env E
← neq X Y
← cconv L G (var Y ) (pi2 Env) E.

A Nominal Logical Framework – p.19/28



Closure conversion in LF

Tricky part: Use “distinctness” predicate to encode 2|L|
inequalities compactly.

distinct : id→ list id→ type.

neq_1 : neq X Y ← distinct X L← member Y L
neq_2 : neq X Y ← distinct Y L← member X L
cconv_lam : cconv L G (lam F1) Env (pair (lam F2) Env)

← Πx.Πy.distinct x L→
cconv [L,x] [G,x] (F1 x) (var y) (F2 y)

A Nominal Logical Framework – p.20/28



Formal properties

Weakening, substitution: standard

Injective Renaming (but not general renaming) of
name-contexts:

Lemma 1. If Γ ` σ.ρ : σ′ and Γ ` σ.M : A then
Γ ` σ′ .M[ρ] : A[ρ].

Subject Reduction

Church-Rosser, Strong Normalization: standard, reduction to
LF

Decidability of typechecking: Extensions of proofs by
[Goguen 05] or [Harper and Pfenning 05]

Warning: Currently revising system, still need to check
details.

A Nominal Logical Framework – p.21/28



Extensions: induction/coinduction

Judgments can be defined without recourse to recursion
through negative type occurrences

Hence, supporting “internal” induction/coinduction using
standard type theoretic methods ought to be straightforward.

Γ ` σ.M : A[µX .A[X ]]

Γ ` σ. fold M : µX .A[X ]

Γ ` σ.M : µX .A[X ]

Γ ` σ.unfold M : A[µX .A[X ]]

However, this departs significantly from the “traditional” LF
methodology...

[Momigliano and Tiu 2003] approach can probably be used

A Nominal Logical Framework – p.22/28



Extensions: generativity

The ability to reason about “fresh for world” name generation
is a key aspect of nominal logic.

Core NLF doesn’t support it: if a 6∈ FN(B), then
NL ` Na.B⊃ B but NLF 6`M : Na.B→ B.

Why? The following derivation attempt is stuck:

x: Na.B ` · . ?? : B
` ·.λx:( Na:A).?? : Na:A.B→ B

A possible solution: Add a “fresh name choice” proof term
νa:A.M

Γ ` σ,a : A.M : B
Γ ` σ.νa:A.M : B

Equational theory, formal properties seem challenging

A Nominal Logical Framework – p.23/28



What if we vary the allowed renamings?

Existing name-contexts: allow weakening, exchange,
injective renaming but not contraction or general substitution

If we limit renamings so that reordering and weakening are
forbidden, we get something like core FOλ∇.

If we relax renamings so that contraction/arbitrary
substitutions are allowed, then we get something like Binding
Algebras.

Both variations might be interesting!

A Nominal Logical Framework – p.24/28



Semantics

From a type/proof-theoretic point of view, proving that proofs
have normal forms and typechecking is decidable is
generally enough.

From this follows consistency, adequacy, other key
properties.

But it would be nice to work out the semantics of NLF, relate
to semantics of NL, FOλ∇, etc.

Probably easier for the λ-free fragment...

A Nominal Logical Framework – p.25/28



NLF in context

Nominal techniques rely on bijective renamings; NLF’s
injective renamings can always be extended to bijective ones
(and seem to be more compatible with type theoretic setting).

Rules for Ntype are self-dual, as in NL

They also correspond to natural deduction forms of the
∇-quantifier rules from FOλ∇:

Σ : Γ,(σ,x).A⇒ C
Σ : Γ,σ.∇x.A⇒ C

Σ : Γ⇒ (σ,x).A
Σ : Γ⇒ σ.∇x.A

Well-formedness restrictions on concretion terms correspond
to higher-order pattern restriction familiar in higher-order
unification

A Nominal Logical Framework – p.26/28



Future work

Integrating full induction/coinduction (following Momigliano
and Tiu?)

Generativity?

Implementation/translation to basic LF?

Semantics?!

A Nominal Logical Framework – p.27/28



Conclusions

Higher-order techniques underlying traditional LF powerful,
but have some limitations.

Using ideas drawn from a number of sources, we’ve seen
how “first-class” name-inequality can be supported in a
nominal extension of LF

Next steps: induction, generativity

Still lots to do.

A Nominal Logical Framework – p.28/28


	Introduction
	Do we really need another LF?
	Another motivation
	Syntax
	Contexts
	Judgments
	Typing: highlights
	Typing: highlights
	Equality: highlights
	Local reductions/expansions
	Local reductions/expansions
	Simple example
	Encoding hypotheses
	Encoding hypotheses
	Another example: Closure conversion
	Closure conversion, informally
	Closure conversion in NLF
	Closure conversion in LF
	Closure conversion in LF
	Formal properties
	Extensions: induction/coinduction
	Extensions: generativity
	What if we vary the allowed renamings?
	Semantics
	NLF in context
	Future work
	Conclusions

