A Nominal Logical Framework Logic and Semantics Club January 20, 2006

James Cheney

University of Edinburgh

A Nominal Logical Framework - p.1/28

Introduction

- A logical framework is a formal system for defining (and reasoning about) other formal systems.
- Typically, employs a *dependent type theory* to represent syntax and judgments of a logic or language
- Idea goes back to at least de Bruijn's AUTOMATH project
- (Edinburgh) LF, Calculus of Constructions, and variants have proven very expressive and powerful.
- Fertile area for interesting type theories (Linear LF, Ordered LF, Concurrent LF; Inductive Constructions)

Do we really need another LF?

- Existing LF family very expressive, but:
 - 1. Names are "second-class": difficult to encode judgments based on *name-inequality*
 - Inductive (meta-)reasoning apparently must be performed externally; co-induction, logical relations not well understood
 - 3. Encoding generativity (e.g. allocation semantics) requires resorting to counters/linearity
- Eventual goal: handle all of these concerns; today focus on
 (1) and sketch (2), (3)

Another motivation

- Nominal logic: a recently proposed technique for "near first-order" reasoning about names & binding; basis for αProlog
- Related theories: Miller & Tiu's $FO\lambda^{\nabla}$, higher-order patterns, Pfenning, Pientka and Nanevski's contextual modal type theory
- Goal: Identify a common core type theory unifying the basic ideas underlying these systems
- thus providing a constructive foundation for nominal techniques
- and hopefully getting certain type theorists off my case...

Syntax

Extends LF

$$K ::= type | \Pi x:A.K | name$$

$$A,B ::= a | A M | \Pi x:A.B | \mathsf{Va}:A.B$$

$$M,N ::= c | x[\rho] | \lambda x:A.M | M N | \mathfrak{a} | \langle \mathfrak{a} \rangle M | M @ \mathfrak{a}$$

$$\rho ::= id | \rho, \mathfrak{a}/\mathfrak{b}$$

- Note: Names a, b,... are a new syntactic class similar to (but disjoint from) variables
- ρ: explicit renamings
- **•** Ma:A.B, $\langle a:A \rangle M$, subject to α-equivalence
- α-equivalence & capture-avoiding substitution/renaming operations defined in traditional way for LF

Contexts

- **•** Contexts: as LF, but with extra *name contexts* σ .
- Also, types in Γ are guarded by name-context.

$$\Sigma ::= \cdot | c : A | a : K$$

$$\Gamma ::= \cdot | x : A[\sigma]$$

$$\sigma ::= \cdot | a : A$$

Well-formedness for contexts: as LF, but types in σ must be of kind name (and cannot depend on names).

$$\frac{\Gamma \vdash \sigma \operatorname{nctx} \quad \Gamma \vdash \cdot \triangleright A : \operatorname{name}}{\Gamma \vdash \sigma, \mathfrak{a} : A \operatorname{nctx}}$$

Judgments

Judgments: as LF, but with extra name-context.

$\vdash \Sigma$ sig	Signature formation
$\vdash \Gamma$ ctx	Context formation
$\Gamma \vdash \sigma$ nctx	Name context formation
$\Gamma \vdash \sigma \triangleright K$: kind	Kind formation
$\Gamma \vdash \sigma \triangleright A : K$	Type family formation
$\Gamma \vdash \sigma \triangleright M : A$	Object formation
$\Gamma \vdash \sigma \triangleright \rho : \sigma'$	Renaming formation
$\Gamma \vdash \sigma \triangleright K = K'$: kind	Kind equality
$\Gamma \vdash \sigma \triangleright A = B : K$	Type family equality
$\Gamma \vdash \sigma \triangleright M = N : A$	Object equality
$\Gamma \vdash \sigma \triangleright \rho = \rho' : \sigma'$	Renaming equality

Typing: highlights

The rules for variables and renamings:

$$\frac{\Gamma \vdash \sigma' \triangleright \rho : \sigma}{\Gamma, x : A[\sigma] \vdash \sigma' \triangleright x[\rho] : A[\rho]}$$

Variables have to be instantiated with appropriate local names.

$$\overline{\Gamma \vdash \sigma \triangleright \mathsf{id} : \cdot}$$

$$\frac{\Gamma \vdash \sigma \triangleright \rho : \sigma'}{\Gamma \vdash \sigma, \mathfrak{b} : A \triangleright \rho, \mathfrak{a} / \mathfrak{b} : \sigma', \mathfrak{a} : A}$$

Renamings must be one-to-one.

Typing: highlights

The rules for names, abstractions, and concretions:

 $\Gamma \vdash \sigma, \mathfrak{a}: A \triangleright \mathfrak{a}: A$

 $\frac{\Gamma \vdash \sigma, \mathfrak{a}: A \triangleright M : B}{\Gamma \vdash \sigma \triangleright \langle \mathfrak{a}: A \rangle M : \mathsf{Va}: A.B}$

$$\frac{\Gamma \vdash \sigma \triangleright M : \mathsf{Ma:}A.B}{\Gamma \vdash \sigma, \mathfrak{a:}A \triangleright M @ \mathfrak{a} : B}$$

- Fresh name a added to the context in $\langle \mathfrak{a} : A \rangle M$ rule
- Solution Names removed from the context in $M @ \mathfrak{a}$ rule.
- **•** Therefore, $\langle \mathfrak{a}:A \rangle \lambda x: \mathsf{Va}:A \cdot \mathsf{Vb}:A \cdot x @ \mathfrak{a} @ \mathfrak{a}$ is not typable.
- However, $\lambda x: A \rightarrow A \rightarrow B. \langle \mathfrak{a}: A \rangle x \mathfrak{a} \mathfrak{a}$ is OK.

Equality: highlights

- β-reduction and η-expansion (extensionality) for Π-types/λ-terms as in LF
- For И-types, we have

Standard, but note that β -rule can never identify two different names.

Local reductions/expansions

The following *local* soundness and completeness properties for И are important checks that the system is sensible:

$$\begin{array}{c}
\mathcal{D} \\
\Gamma \vdash \sigma, \mathfrak{a}: A \triangleright M : B \\
\hline \Gamma \vdash \sigma \triangleright (\langle \mathfrak{a}: A \rangle M) : \mathsf{Va}: A.B \\
\hline \Gamma \vdash \sigma, \mathfrak{b}: A \triangleright (\langle \mathfrak{a}: A \rangle M) @ \mathfrak{b} : B[\mathfrak{b}/\mathfrak{a}] \\
\downarrow_{\beta} \\
\mathcal{D}[\mathfrak{b}/\mathfrak{a}] \\
\Gamma \vdash \sigma, \mathfrak{b}: A \triangleright M[\mathfrak{b}/\mathfrak{a}] : B[\mathfrak{b}/\mathfrak{a}]
\end{array}$$

Local reductions/expansions

The following *local* soundness and completeness properties for И are important checks that the system is sensible:

Simple example

As an example, consider lambda term typing encoded in NLF:

$$\begin{array}{lll} wf & : & ctx \rightarrow exp \rightarrow ty \rightarrow type. \\ wf_var & : & wf \ G \ (var \ V) \ T \leftarrow lookup \ G \ V \ T. \\ wf_app & : & wf \ G \ (app \ E_1 \ E_2) \ U \\ & \leftarrow & wf \ G \ E_1 \ (arr \ T \ U) \leftarrow wf \ G \ E_2 \ T. \\ wf_lam & : & wf \ G \ (lam \ M) \ (arr \ T \ U) \\ & \leftarrow & \mathsf{Va.}wf \ [G,(\mathfrak{a},T)] \ (M @ \mathfrak{a}) \ U. \end{array}$$

- Contexts are just lists.
- Note that we do not use implication for local hypotheses (and it would be incorrect to do so).

Encoding hypotheses

A distinctive feature of LF is the higher-order encoding of hypothetical judgments:

$$wf_lam : wf (lam M) (arr T U) \\ \leftarrow \Pi x.(wf x T \rightarrow wf (M x) U).$$

- This is nifty because (intuitionistic) object language contexts "disappear" into LF's (intuitionistic) context.
- This does not work using И in nominal logic or NLF!

$$wf_lam : wf (lam M) (arr T U) \\ \leftarrow \mathsf{Ma.}(wf (var \mathfrak{a}) T \to wf (M @ \mathfrak{a}) U).$$

Encoding hypotheses

- Why does this not work?
- Local hypotheses are "lifted" out of their name context.
- So the following is derivable:

 $\frac{x:wf(var \mathfrak{a}) t[\mathfrak{a},\mathfrak{b}] \vdash \mathfrak{a},\mathfrak{b} \triangleright x[\mathfrak{b}/\mathfrak{a},\mathfrak{a}/\mathfrak{b}]:wf(var \mathfrak{b}) t}{\vdash \mathfrak{a},\mathfrak{b} \triangleright \lambda x.x[\mathfrak{b}/\mathfrak{a},\mathfrak{a}/\mathfrak{b}]:\Pi x:wf(var \mathfrak{a}) t.wf(var \mathfrak{b}) t}$ $\frac{\cdot \vdash \mathfrak{a} \triangleright \langle \mathfrak{b} \rangle \lambda x.x[\mathfrak{b}/\mathfrak{a},\mathfrak{a}/\mathfrak{b}]:\mathsf{M}\mathfrak{b}.\Pi x:wf(var \mathfrak{a}) t.wf(var \mathfrak{b}) t}{\cdot \vdash \cdot \triangleright \langle \mathfrak{a} \rangle \langle \mathfrak{b} \rangle \lambda x.x[\mathfrak{b}/\mathfrak{a},\mathfrak{a}/\mathfrak{b}]:\mathsf{M}\mathfrak{a}.\mathsf{M}\mathfrak{b}.\Pi x:wf(var \mathfrak{a}) t.wf(var \mathfrak{b}) t}$

Bad!

This problem is similar to the kind caused by equivariance in nominal logic.

Another example: Closure conversion

- Important FP compilation phase
- Idea: Make all functions closed
- Translate functions to (closed function, environment) pair
- Environment shape depends on context:

$$\Gamma = x_n, \ldots, x_1 \mapsto env = \langle v_n, \langle v_{n-1}, \ldots, v_1 \rangle \cdots \rangle$$

Need ability to test equality and inequality of names.

Closure conversion, informally

A typical "paper" presentation

$$C[[\Gamma, x \vdash x]]e = \pi_{1}(e)$$

$$C[[\Gamma, x \vdash y]]e = C[[\Gamma \vdash y]]\pi_{2}(e) \quad (x \neq y)$$

$$C[[\Gamma \vdash e_{1} e_{2}]]e = \operatorname{let} c = C[[\Gamma \vdash e_{1}]]$$

$$\operatorname{in} (\pi_{1}(c)) (C[[\Gamma \vdash e_{2}]]e, \pi_{2}(e))$$

$$C[[\Gamma \vdash \lambda x.e_{0}]]e = \langle \lambda y.C[[\Gamma, x \vdash e_{0}]]y, e \rangle \quad (y \notin FV(\Gamma, x, e, e_{0}))$$

Inequality side conditions: non-obvious how to encode in LF.

Closure conversion in NLF

- This is no problem in NLF.
- **\square** Use *Π*-quantifier; # defined in terms of *Π*.

 - $\begin{array}{rcl} cconv_lam & : & cconv \ G \ (lam \ F_1) \ Env \\ & & (pair \ (lam \ F_2) \ Env) \\ & \leftarrow & \lor \mathfrak{l} \mathfrak{x}. \lor \mathfrak{y}. cconv \ [G, \mathfrak{x}] \ (F_1 @ \mathfrak{x}) \ (var \ \mathfrak{y}) \ (F_2 @ \mathfrak{y}). \end{array}$

Closure conversion in LF

- This is the best I can do (there may be a better way...)
- Idea: Maintain a list L of "bound" variables; ensure that hypotheses neq X Y are derivable whenever X, Y are distinct elements of list.

cconv : *list id*
$$\rightarrow$$
 list id \rightarrow *tm* \rightarrow *tm* \rightarrow *tm* \rightarrow *type*.

$$\begin{array}{rcl} cconv_var2 & : & cconv \ L \ [G,X] \ (var \ Y) \ Env \ E \\ & \leftarrow & neq \ X \ Y \\ & \leftarrow & cconv \ L \ G \ (var \ Y) \ (pi2 \ Env) \ E. \end{array}$$

Closure conversion in LF

- Tricky part: Use "distinctness" predicate to encode 2|L| inequalities compactly.
 - $\begin{array}{lll} distinct & : & id \rightarrow list \ id \rightarrow type. \\ neq_1 & : & neq \ X \ Y \leftarrow distinct \ X \ L \leftarrow member \ Y \ L \\ neq_2 & : & neq \ X \ Y \leftarrow distinct \ Y \ L \leftarrow member \ X \ L \\ cconv_lam & : & cconv \ L \ G \ (lam \ F_1) \ Env \ (pair \ (lam \ F_2) \ Env) \\ \leftarrow & \Pi x.\Pi y. distinct \ x \ L \rightarrow \\ cconv \ [L,x] \ [G,x] \ (F_1 \ x) \ (var \ y) \ (F_2 \ y) \end{array}$

Formal properties

- Weakening, substitution: standard
- Injective Renaming (but not general renaming) of name-contexts:

Lemma 1. *If* $\Gamma \vdash \sigma \triangleright \rho : \sigma'$ *and* $\Gamma \vdash \sigma \triangleright M : A$ *then* $\Gamma \vdash \sigma' \triangleright M[\rho] : A[\rho].$

- Subject Reduction
- Church-Rosser, Strong Normalization: standard, reduction to LF
- Decidability of typechecking: Extensions of proofs by [Goguen 05] or [Harper and Pfenning 05]
- Warning: Currently revising system, still need to check details.

Extensions: induction/coinduction

- Judgments can be defined without recourse to recursion through negative type occurrences
- Hence, supporting "internal" induction/coinduction using standard type theoretic methods ought to be straightforward.

 $\Gamma \vdash \sigma \triangleright M : A[\mu X.A[X]]$

 $\Gamma \vdash \sigma \triangleright M : \mu X.A[X]$

 $\overline{\Gamma \vdash \sigma \triangleright} \operatorname{fold} M : \mu X.A[X] \quad \overline{\Gamma \vdash \sigma \triangleright} \operatorname{unfold} M : A[\mu X.A[X]]$

- However, this departs significantly from the "traditional" LF methodology...
- [Momigliano and Tiu 2003] approach can probably be used

Extensions: generativity

- The ability to reason about "fresh for world" name generation is a key aspect of nominal logic.
- Core NLF doesn't support it: if $\mathfrak{a} \notin FN(B)$, then $NL \vdash \mathsf{Ma}.B \supset B$ but $NLF \not\vdash M : \mathsf{Ma}.B \rightarrow B$.
- Why? The following derivation attempt is stuck:

$$\frac{x: \mathsf{Va}.B \vdash \cdot \triangleright ??: B}{\vdash \cdot \triangleright \lambda x: (\mathsf{Va}:A).??: \mathsf{Va}:A.B \longrightarrow B}$$

A possible solution: Add a "fresh name choice" proof term va:A.M

$$\frac{\Gamma \vdash \sigma, \mathfrak{a} : A \triangleright M : B}{\Gamma \vdash \sigma \triangleright \mathsf{va} : A . M : B}$$

Equational theory, formal properties seem challenging

What if we vary the allowed renamings?

- Existing name-contexts: allow weakening, exchange, injective renaming but not contraction or general substitution
- If we *limit* renamings so that reordering and weakening are forbidden, we get something like core $FO\lambda^{\nabla}$.
- If we relax renamings so that contraction/arbitrary substitutions are allowed, then we get something like Binding Algebras.
- Both variations might be interesting!

Semantics

- From a type/proof-theoretic point of view, proving that proofs have normal forms and typechecking is decidable is generally enough.
- From this follows consistency, adequacy, other key properties.
- But it would be nice to work out the semantics of NLF, relate to semantics of NL, $FO\lambda^{\nabla}$, etc.
- Probably easier for the λ -free fragment...

NLF in context

- Nominal techniques rely on bijective renamings; NLF's injective renamings can always be extended to bijective ones (and seem to be more compatible with type theoretic setting).
- Rules for И type are self-dual, as in NL
- They also correspond to natural deduction forms of the ∇ -quantifier rules from $FO\lambda^{\nabla}$:

$$\frac{\Sigma:\Gamma,(\sigma,x)\triangleright A\Rightarrow\mathcal{C}}{\Sigma:\Gamma,\sigma\triangleright\nabla x.A\Rightarrow\mathcal{C}}\quad\frac{\Sigma:\Gamma\Rightarrow(\sigma,x)\triangleright A}{\Sigma:\Gamma\Rightarrow\sigma\triangleright\nabla x.A}$$

Well-formedness restrictions on concretion terms correspond to *higher-order pattern restriction* familiar in higher-order unification

Future work

- Integrating full induction/coinduction (following Momigliano and Tiu?)
- Generativity?
- Implementation/translation to basic LF?
- Semantics?!

Conclusions

- Higher-order techniques underlying traditional LF powerful, but have some limitations.
- Using ideas drawn from a number of sources, we've seen how "first-class" name-inequality can be supported in a nominal extension of LF
- Next steps: induction, generativity
- Still lots to do.