
Towards a General Theory of Names, Binding, and Scope

James Cheney

September 30, 2005

1

“You can have any color car you like, as long as it is black.”
[Henry Ford]

2

The gap

• High-level formalisms (higher-order, nominal, theory of contexts, de
Bruijn, etc.) typically bind one name at a time, and its scope is a

subtree adjacent to the binding occurrence.
– Call this form of scoping unary lexical scoping (ULS)

• Real logics, programming languages display other forms of scoping
that do not fit this mold
– Non-lexical scoping (scope is not an adjacent subtree)
– Global scope and unique definitions
– Anonymity
– Simultaneous binding (e.g., patterns, letrec)

3

Is this really a problem?

• True, ULS can be used to simulate all of the above

• But, encodings are not always adequate; there may be “junk” terms
or “confusion” terms

• Moreover, translation apparently cannot be formalized in the
meta-logic, but must be done “on paper”

• But “elaboration” translations from, e.g., letrec + patterns to fix +
case are often not trivial.

• Claim: Gap between formalisms and real languages hinders adoption
by non-experts.

• This paper: Show how to capture such approaches adequately within
nominal logic

4

Our approach

• In nominal logic, ULS is not “built-in”, but “definable”.

• Other forms of binding are also definable.

• Program: Investigate four classes of more exotic binding situations
and show how to axiomatize them in NL.
– Pseudo-unary scoping
– Global/unique scoping
– Anonymity
– Simultaneous binding (patterns)

5

What’s special about nominal logic?

• My feeling: NL’s explicit treatment of names as data makes it more
flexible for talking about non-ULS binding.

• This is just a feeling.

• It’s entirely possible that the same ideas/tricks are sensible in other
approaches, but I don’t see how.

• Reverse psychology, anyone?

6

Nominal Logic

• Nominal logic [Pitts 2003] is a extension of FOL that axiomatizes:

• names a, b ∈ A,

• swapping (i.e. invertible renaming) (a b) · x,

• freshness (the “not free in” relation”) a # x,

• a name-abstraction operation 〈a〉x providing unary lexical scoping.

• Terms
t ::= a | f(t) | c | 〈a〉t

• Types
τ ::= ν | δ | 〈ν〉τ

ν: name types, δ: data types

7

Nominal equational logic

• Well-formedness

a : ν ∈ Σ
a : ν

c : τ ∈ Σ
c : τ

a : ν t : τ

〈a〉t : 〈ν〉τ

ti : τi f : (τ1, . . . , τn) → δ ∈ Σ

f(t) : δ

• Swapping (π : A → A a permutation)

π · a = π(a)

π · c = c

π · f(t) = f(π · t)

π · 〈a〉t = 〈π · a〉π · t

8

Nominal equational logic

• Freshness
(a 6= b)

a # b a # c

a # ti (i = 1, . . . , n)

a # f(t1, . . . , tn)

a # b a # t

a # 〈b〉t a # 〈a〉t

• Equality

a ≈ a c ≈ c

ti ≈ ui (i = 1, . . . , n)

f(t1, . . . , tn) ≈ f(u1, . . . , un)

a ≈ b t ≈ u

〈a〉t ≈ 〈b〉u

a # (b, u) t ≈ (a b) · u

〈a〉t ≈ 〈b〉u

• Note: abstraction “just another function symbol”; no binding at NL
level

9

Pseudo-unary lexical scoping

• Examples:

let x = e in e′
4
= let(e, 〈x〉e′)

p
x(y)
−→ q

4
= in trans(p, x, 〈y〉q)

• These can be shoehorned into ULS, by rearranging the abstract
syntax trees

let exp : (exp, 〈id〉exp) → exp.

in trans : (proc, id, 〈id〉proc) → trans.

10

Pseudo-unary lexical scoping

• Alternative: Use “natural” syntax

let exp : (id, exp, exp) → exp.

trans : (proc, act, proc) → trans.

in : (id, id) → act

• Axiomatize equality as follows:

x # e1

x # let exp(x, e1, e2)

y # q

y # trans(p, in(x, y), q)

x # f2 e1 ≈ f1 e2 ≈ (x y) · f2

let exp(x, e1, e2) ≈ let exp(y, f1, f2)

y # q′ p ≈ q x ≈ x′ q ≈ (x y) · q′

trans(p, in(x, y), q) ≈ trans(p′, in(x′, y′), q′)

11

Global scoping

• Many languages have “global” scoping:

• an identifier may be defined at most once

• identifiers may be defined in one module and referenced anywhere

• Examples: C program scope, XML IDs, module systems

• Also, in a namespace system, defined identifiers must be unique
within namespace.

12

Global scoping

• Our solution: add type and term constructor for “unique definitions”

t ::= · · · | a!! τ ::= · · · | ν!!

• Refine well-formedness so that at most one name can be uniquely
defined in a term.

• Judgment S ` t : τ means that t : τ and uniquely defines the names
S ⊆ A.

a : ν ∈ Σ
S ` a : ν

c : τ ∈ Σ
S ` c : τ

S] {a} ` t : τ

S ` 〈a〉t : 〈ν〉τ
a : ν ∈ Σ a ∈ S

S ` a!! : ν

S =
⊎n

1 Si

∧n

i=1 Si ` ti : τi f : (τ1, . . . , τn) → τ ∈ Σ

S ` f(t1, . . . , tn) : τ

13

Anonymous identifiers

• Names are often used as “dummies” to describe a data structure

• e.g., graph vertices, automaton state names, universal variables in
ML type schemes or Horn clauses

• The choice of names is arbitrary; that is, such data structures are
invariant up to name permutations

• e.g., the following are equivalent:

α → β → β ≡MLTypeScheme β → γ → γ

({1, 2, 3}, {(1, 2), (1, 3)}) ≡Graph ({x, y, z}, {(x, y), (x, z)})

14

Anonymous identifiers

• To handle anonymity within NL, add a type τ?? of “anonymous
values of type τ”

• Equivalently, τ?? is the type of equivalence classes of τ up to
renaming.

• axiomatized as follows:

a # t??

((a b) · t)?? ≈ u??

t?? ≈ u??

• Then type schemes, Horn clauses, graphs, automata etc. can be
encoded by using ?? at the appropriate place.

• Observe that t?? always has an equivalent form such that all names
are completely fresh (for any finite name context).

15

Aside

• As a aside, note that the obvious syntactic encoding of sets/transition
relations as lists used in graphs and automata is inadequate.

• To recover adequacy, need to equate lists up to commutativity and
idempotence.

• But this is no problem in NL: just add axioms.

• More generally, structural congruences (including laws involving
binding) translate directly to axioms in NL.

• E.G. π-calculus

x # P

νx.P ≈ P

x # Q

(νx.P) | Q ≈ νx.(P |Q) νx.νy.P ≈ νy.νx.P

16

Simultaneous binding (pattern matching)

• ML-style pattern matching binds “all names in a pattern”
simultaneously

• Example:

case e of f(x, g(y, z)) ⇒ e′[x, y, z] | · · ·

17

Simultaneous binding (pattern matching)

• Our solution: define auxiliary predicate(s) bnd(x, p), meaning
“pattern p binds x”

bnd(x, x)

bnd(x, ei)

bnd(x, f(e1, . . . , en))

• Axiomatize pattern equivalence-up-to-renaming in terms of bnd

bnd(x, p)

x # (p ⇒ e) ...

• Could also axiomatize pattern variable linearity

18

Putting it all together: letrec

• Let’s show how to handle a realistic “letrec” construct.

letrec f1 p1
1 = e1

1

...
f1 pn1

1 = en1

1

...
and fm p1

m = e1
m

...
fm pnm

m = enm

m

19

Basic problem

• Syntax encoding:

letrec : list (fname!!, list (list pattern, exp)) → decl

• Handle uniqueness of function names using !!.

• Handle binding of list (list pattern, exp) using bnd predicate

• Can’t just treat like iterated “let”, since later names have scope in
earlier function bodies.

20

Approach #1

• Specify binding behavior of only the first function

f # letrec((f, body) :: l)

f # b′, l′ (b, l) ≈ (f g) · (b, l′)

letrec((f, b) :: l) ≈ letrec((g, b′) :: l′)

• Observation: Does work for “the first” f

• Treat all function bodies as “the first” in parallel

perm(l, l′)

letrec(l) ≈ letrec(l′)

where perm says that l is a permutation of l′.

21

Approach #2

• Approach #1 presumes that order of bodies is immaterial.

• This might be OK for pure formalization purposes.

• But not realistic for e.g. source to source translation

• since programmers don’t like unnecessary syntactic changes.

• If we really do care about the order of letrec bodies, can axiomatize
using bnd instead.

22

Summary

• Advantages of this approach
– Seems very flexible
– Nice equational characterizations

• Disadvantages
– Ad hoc axiomatic extensions to equational/freshness theory
– Not clear how portable to other approaches

23

Related work

• FreshOCaml [Shinwell]: allows arbitrary data structures in
abstractions, can specify that only some name type becomes bound,
fairly mature

• Cαml [Pottier]: also allows general data structures in abstractions,
has keywords “binds”, “inner” and “outer” for describing how names
are scoped.

• Sewell, Zdancewic, others (conversations this week): ideas for
generalized BNF+binding syntax

• All notations are more compact (and likely more convenient in
common cases) but can be translated to NL axioms.

• Exploration of the design space is good!

24

Big picture

• Lots of examples of axiomatizations of interesting binding behavior

• Observation: α is just one of several structural congruence principles
that can be freely combined in NL

• Need more unifying principles for how to handle, e.g. patterns, letrec,
general structural congruences

• Conjecture: All “reasonable” structural congruences can be
expressed in NL, are decidable in PTIME and unifiable in NPTIME.

• How to get induction/recursion principles for arbitrary (nominal)
structural congruences?

• Future work: Nominal equational unification (and NPTIME
subclasses), integration into αProlog?

• Future work: Investigate higher-level binding specifications/types

25

