Towards a General Theory of Names, Binding, and Scope

James Cheney

September 30, 2005

“You can have any color car you like, as long as it 1s black.”

[Henry Ford]

The gap

e High-level formalisms (higher-order, nominal, theory of contexts, de
Bruijn, etc.) typically bind one name at a time, and its scope is a
subtree adjacent to the binding occurrence.

— Call this form of scoping unary lexical scoping (ULS)
e Real logics, programming languages display other forms of scoping
that do not fit this mold
Non-lexical scoping (scope 1s not an adjacent subtree)
Global scope and unique definitions
Anonymity

Simultaneous binding (e.g., patterns, letrec)

Is this really a problem?

True, ULS can be used to simulate all of the above

But, encodings are not always adequate; there may be “junk” terms
or “confusion” terms

Moreover, translation apparently cannot be formalized in the
meta-logic, but must be done “on paper”

But “elaboration” translations from, e.g., letrec + patterns to fix +
case are often not trivial.

Claim: Gap between formalisms and real languages hinders adoption
by non-experts.

This paper: Show how to capture such approaches adequately within

nominal logic

Our approach

e In nominal logic, ULS is not “built-in”, but “definable”.
e Other forms of binding are also definable.
e Program: Investigate four classes of more exotic binding situations
and show how to axiomatize them in NL.
Pseudo-unary scoping
Global/unique scoping
Anonymity

Simultaneous binding (patterns)

What’s special about nominal logic?

e My feeling: NL’s explicit treatment of names as data makes it more
flexible for talking about non-ULS binding.

e This is just a feeling.

e It’s entirely possible that the same 1deas/tricks are sensible in other
approaches, but I don’t see how.

e Reverse psychology, anyone?

Nominal Logic

Nominal logic [Pitts 2003] 1s a extension of FOL that axiomatizes:
names a,b € A,

swapping (i.e. invertible renaming) (a b) - x,

freshness (the “not free in” relation”) a # x,

a name-abstraction operation (a)z providing unary lexical scoping.

Terms
tu=al f(t)]cl(a)
Types

Tu=v |6 | (V)T

v: name types, o: data types

Nominal equational logic

e Well-formedness

a:veEY c:Tey aiv 7
a:v C:T (a)t : (v)T

ticmi fi(T1,...,Th) 2 0EX
f(t): 46

e Swapping (7 : A — A a permutation)

Nominal equational logic

e Freshness

(a # b) a#t;, (t=1,...,n)
a#b a#c a# f(ty,...,tn)
a#b a#t
a# (b)t a#(a)

e Equality
ti~u; (i=1,...,n)
ara c~c f(ty,...,tn) = flur,...,uy)

a~b t~u aF(bju) tx=(ab)-u
(a)t ~ (b)u (a)t ~ (b)u

e Note: abstraction “just another function symbol”’; no binding at NL
level

Pseudo-unary lexical scoping

e Examples:

letz =eine let(e, (z)e)

p o) q in_trans(p, z, (¥)q)

e These can be shoehorned into ULS, by rearranging the abstract
syntax trees

let_exp : (exp, (id)exp) — exp.

intrans : (proc,id, (id)proc) — trans.

10

Pseudo-unary lexical scoping

e Alternative: Use “natural” syntax

let exp : (id,exp,exp) — exp.
trans : (proc,act,proc) — trans.

in : (id,id) — act

e Axiomatize equality as follows:

X # e y #q
X # let_exp(x, e1, e3) y # trans(p,in(x,y), q)
x# fa e1=f1 e (xy)-fo
let_exp(x, e1,es) = let_exp(y, f1, f2)
y#4q prqg x=x g=(xy)-q
t'rcms(p, in(x, y), q) ~ tTCmS(p/a ’m(xla y’), q’)

11

Global scoping

Many languages have “global” scoping:

an identifier may be defined at most once

identifiers may be defined in one module and referenced anywhere
Examples: C program scope, XML IDs, module systems

Also, in a namespace system, defined identifiers must be unique
within namespace.

12

Global scoping

e Our solution: add type and term constructor for “unique definitions”
tu=---]al Tou=---| V!

e Refine well-formedness so that at most one name can be uniquely
defined in a term.

e Judgment S F ¢ : 7 means that ¢ : 7 and uniquely defines the names
S CA.

a:vVEY c:TEY Swi{ajrt:7 a:vEeEY acs

SkFa:v Stkc:7 Sk {(ayt:(v)r Skal:v

S=W;S AN, Sitti:m f:(r,...,7n) 2 TEX
Sl_f(tl,...,tn)ZT

13

Anonymous identifiers

Names are often used as “dummies’ to describe a data structure

e.g., graph vertices, automaton state names, universal variables in
ML type schemes or Horn clauses

The choice of names is arbitrary; that is, such data structures are
Invariant up to name permutations

e.g., the following are equivalent:
@ — 6 — 6 =M LTypeScheme 6 — 7 =7

({1,2,3},1(1,2), (1,3)}) =crapn ({2, 4, 2}, {(z,9), (2, 2) })

14

Anonymous identifiers

To handle anonymity within NL, add a type 777 of “anonymous
values of type 77

Equivalently, 777 is the type of equivalence classes of 7 up to

renaming.

axiomatized as follows:

aFtr
Then type schemes, Horn clauses, graphs, automata etc. can be

encoded by using 77 at the appropriate place.

Observe that t7 always has an equivalent form such that all names
are completely fresh (for any finite name context).

15

Aside

As a aside, note that the obvious syntactic encoding of sets/transition
relations as lists used in graphs and automata is inadequate.

To recover adequacy, need to equate lists up to commutativity and
idempotence.

But this is no problem in NL: just add axiom:s.

More generally, structural congruences (including laws involving
binding) translate directly to axioms in NL.

E.G. m-calculus

z # P r # Q
vr.P~ P (vx.P) | Q =~ vx.(P|Q) ve.vy.P ~ vy.vx. P

Simultaneous binding (pattern matching)

e ML-style pattern matching binds “all names in a pattern”
simultaneously

e Example:

case e of f(x,9(y, 2)) = €[z, y,2] | -+

17

Simultaneous binding (pattern matching)

e Our solution: define auxiliary predicate(s) bnd(z, p), meaning
“pattern p binds z”

bnd(z, e;)
bnd(z,z) bnd(x, f(e1,...,en))

e Axiomatize pattern equivalence-up-to-renaming in terms of bnd

bnd(x, p)
z# (p=e)

e Could also axiomatize pattern variable linearity

18

Putting it all together: letrec

e [ect’s show how to handle a realistic “letrec’”’ construct.

letrec fi pt e

f1p7*

and frm pL,

19

Basic problem

e Syntax encoding:

letrec : list (fnamel, list (list pattern,exp)) — decl

e Handle uniqueness of function names using !.
e Handle binding of list (list pattern, exp) using bnd predicate

e Can’t just treat like iterated “let”, since later names have scope in
earlier function bodies.

Approach #1

e Specify binding behavior of only the first function

f# 0,0 (b,0)~(fg)-01)
f # letrec((f,body) :: 1) letrec((f,b) :: 1) =~ letrec((g,b") :: I")

e Observation: Does work for “the first” f

e Treat all function bodies as “the first” in parallel

perm(l,1")
letrec(l) =~ letrec(l")

where perm says that [is a permutation of [’.

21

Approach #2

Approach #1 presumes that order of bodies 1s immaterial.
This might be OK for pure formalization purposes.

But not realistic for e.g. source to source translation

since programmers don’t like unnecessary syntactic changes.

If we really do care about the order of letrec bodies, can axiomatize
using bnd instead.

summary

e Advantages of this approach
— Seems very flexible

— Nice equational characterizations

e Disadvantages
— Ad hoc axiomatic extensions to equational/freshness theory

— Not clear how portable to other approaches

Related work

FreshOCaml [Shinwell]: allows arbitrary data structures in
abstractions, can specify that only some name type becomes bound,
fairly mature

Caml [Pottier]: also allows general data structures in abstractions,

has keywords “binds”, “inner” and “outer” for describing how names

are scoped.

Sewell, Zdancewic, others (conversations this week): i1deas for
generalized BNF+binding syntax

All notations are more compact (and likely more convenient in
common cases) but can be translated to NL axioms.

Exploration of the design space is good!

Big picture

Lots of examples of axiomatizations of interesting binding behavior

Observation: « 1s just one of several structural congruence principles
that can be freely combined in NL

Need more unifying principles for how to handle, e.g. patterns, letrec,
general structural congruences

Conjecture: All “reasonable” structural congruences can be
expressed in NL, are decidable in PTIME and unifiable in NPTIME.

How to get induction/recursion principles for arbitrary (nominal)
structural congruences?

Future work: Nominal equational unification (and NPTIME
subclasses), integration into aProlog?

Future work: Investigate higher-level binding specifications/types

