
Equivariant Unification

James Cheney

University of Edinburgh

RTA 2005

April 19, 2005

1

Motivation

• Nominal logic [Pitts 2003]: a variant of first-order logic with names and
name-binding formalized using swapping (invertible renamings) and
freshness (− /∈ FV (−)).

• Goals: term rewriting, automated/computer assisted reasoning, and
logic programming using nominal logic

• As for other theories, unification and matching are important decision
procedures.

2

Motivation

• Previous work: Urban, Pitts, and Gabbay’s nominal unification algo-
rithm

• Nice properties: PTIME, unique most general unifiers

• Problem 1: Only handles a special case

• Problem 2: Equivariance: nominal resolution 6= nominal unification

3

Notation

a, b ∈ A Names

f, g ∈ FnSym Uninterpreted function symbols

X, Y ∈ V ar Variables

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f(t) First-order terms

| 〈a〉t | Π · t | a Nominal terms

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P Permutations

C ::= t ≈ u | a # t Equality, freshness constraints

Note that this includes permutation terms & variables which are not present
in nominal logic proper.

4

Ground swapping

The result of applying a (ground) permutation Π to a (ground) term is:

Π · a = Π(a)
Π · 〈〉 = 〈〉

Π · 〈t, u〉 = 〈Π · t,Π · u〉
Π · f(t) = f(Π · t)
Π · 〈b〉t = 〈Π · b〉Π · t

where

id(a) = a
Π ◦Π′(a) = Π(Π′(a))

(a b)(c) =


b (a = c)
a (b = c)
c (a 6= c 6= b)

5

Ground freshness theory

(a 6= b)
a # b Different names fresh

a # 〈〉 Anything fresh for unit
a # t

a # f(t) Freshness ignores function symbols
a # t a # u

a # 〈t, u〉 Freshness ignores pairs

a # 〈a〉t Fresh if bound
(a 6= b) a # t

a # 〈b〉t Fresh if fresh for body

6

Ground equational theory

a ≈ a

〈〉 ≈ 〈〉
t1 ≈ u1 t2 ≈ u2
〈t1, t2〉 ≈ 〈u1, u2〉

t ≈ u
f(t) ≈ f(u)

t ≈ u
〈a〉t ≈ 〈a〉u


Standard equational rules

(a 6= b) a # u t ≈ (a b) · u
〈a〉t ≈ 〈b〉u α-equivalence for abstractions

7

Problem 1: UPG algorithm only solves a special case

• UPG algorithm does not consider problems involving unknown names
in swappings or binding position

• This is why the algorithm remains unitary.

• For example, (A B) · C ≈ C has two distinct solutions:

{A = B} {A # C, B # C}

8

Problem 2: Equivariance

• In nominal logic, truth is preserved by name-swapping

• Two atomic formulas (or rewrite rules) can be logically equivalent but
not equal as nominal terms.

• Example:

p(a) ⇐⇒ p((a b) · a) ≈ p(b) but p(a) 6≈ p(b)

• For backchaining and rewriting, need to unify/match modulo equivari-
ance

9

Why is this hard?

• Let’s take a little quiz.

• Satisfiable or not?

p((c b) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

No!

• Satisfiable or not?

p((d c) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

Yes: X = c, Y = a, permutation (a d)(b c)

Wasn’t that easy?

10

Why is this hard?

• Let’s take a little quiz.

• Satisfiable or not?

p((c b) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

No!

• Satisfiable or not?

p((d c) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

Yes: X = c, Y = a, swap (a d)(b c)

Wasn’t that easy?

11

Another fun example

• Is this satisfiable?

X # (((X Y) · (X Y) · X (X Y) · (X Y) · X) · X (X X) · Y) · (X Y) · X

12

Another fun example

• Is this satisfiable? No

X # (((X Y) · (X Y) · X (X Y) · (X Y) · X) · X (X X) · Y) · (X Y) · X

(((X Y) · (X Y) · X (X Y) · (X Y) · X) · X (X X) · Y) · Y

((X X) · X (X X) · Y) · Y

(X Y) · Y

X

13

Outline

• UPG nominal unification

a, b,t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | Π · t | a

Π ::= (a b) | id | Π ◦Π′

C ::= t ≈ u | a # t

• Note: names a, b in (a b), 〈a〉t, a # t must be ground.

14

Outline

• Full nominal unification: allow name-variables anywhere.

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | Π · t | a

Π ::= (a b) | id | Π ◦Π′

C ::= t ≈ u | a # t

• This is NP -complete because guessing is needed to deal with swap-
ping [C 04]

15

Outline

• Equivariant unification: allow permutation variables & inverses

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P

C ::= t ≈ u | a # t

• t and u unify “up to a permutation” if P · t ≈ u is satisfiable.

• Also NP -hard [C 04]

16

Our approach

• Phase I: Get rid of term symbols (unit, pair, functions, abstractions)

• Phase II: Get rid of permutation operations (id, inverse, composition,
swapping)

• This leaves problems of the form P · a ≈ b, a # b only.

• Phase III: Solve remaining problems using permutation graphs

17

Our approach (I)

• First, get rid of unit, pair, function symbols and abstractions:

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P

C ::= t ≈ u | a # t

18

Our approach (I)

• Reduction rules for equality in phase I:

(≈?1) S, 〈〉 ≈? 〈〉 →1 S
(≈?×) S, 〈t1, t2〉 ≈? 〈u1, u2〉 →1 S, t1 ≈? u1, t2 ≈? u2
(≈?f) S, f(t) ≈? f(u) →1 S, t ≈? u

(≈?abs) S, 〈a〉t ≈? 〈b〉u →1

{
S, a ≈? b, t ≈? u

∨ S, a #? u, t ≈? (a b) · u

}
(≈?var) S,Π · X ≈? t →1 S[X := Π−1 · t], X ≈? Π−1 · t

(where X 6∈ FV (t), X ∈ FV (S))

• Note the 2-way choice point in rule for abstraction

• Otherwise, rules similar to UPG algorithm

19

Our approach (I)

• Reduction rules for freshness in phase I:

(#?1) S, a #? 〈〉 →1 S
(#?×) S, a #? 〈u1, u2〉 →1 S, a #? u1, a #? u2
(#?f) S, a #? f(u) →1 S, a #? u

(#?abs) S, a #? 〈b〉u →1

{
S, a ≈? b
∨ S, a #? u

}

• Note the 2-way choice point in rule for abstraction

• Otherwise, rules similar to UPG algorithm

20

Our approach (II)

• Next, get rid of complex permutation terms:

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P
C ::= t ≈ u | a # t

21

Our approach (II)

• Reduction rules, phase II:

(id) S[id · v] →2 S[v]
(inv) S[Π−1 · v] →2 ∃X.S[X],Π · X ≈ v
(comp) S[Π ◦Π′ · v] →2 ∃X.S[Π · X],Π′ · v ≈ X)

(swap) S[(a a′) · v] →2


S[a], a′ ≈ v
∨ S[a′], a ≈ v

∨ ∃X.S[X], v ≈ X, a # X, a′ # X


(#Q) S, Q · v # w →2 ∃X.S, Q · v ≈ X, X # w

• Note the 3-way choice point in rule for swapping

22

Our approach (III)

• The remaining constraints involve only names, variables, and permu-
tation variables.

a, b, t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P

C ::= t ≈ u | a # t

• Problems of this form can be solved by graph reduction in PTIME.

• Idea: Build a graph with “equality”, “freshness”, and “permutation”
edges; reduce using permutation laws

23

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

P P
P

Q

P

24

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

P P
P

Q

P

25

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

PQP

26

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

PQP

27

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

28

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

29

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

P

P

Q

30

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

P

P

Q

• Unsatisfiable because Qa # a and Qa ≈ a

31

Results

• Phase I (term reduction): NP time, finitary (possible improvement to
PTIME, unitary.)

• Phase II (permutation reduction): NP time, finitary

• Phase III (graph reduction): P time, unitary.

• Overall: NP time, finitely many answers.

32

Equivariant matching

• Recall that nondeterminism comes from abstractions and swappings
only.

• Based on this observation, developed a PTIME case of equivariant
matching

• Solves P · t ≈ u when t, u are “swapping-free”, that is, of the form

t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | a

and u is ground.

33

Related work

• Solving and counting solutions to group equations well-studied, but not
group action equations.

• Our results complement recent work on avoiding equivariance in nomi-
nal term rewriting/logic programming [Fernandez et al. 2004; Urban+C
2005]

• FreshML [Shinwell et al. 2003] pattern matching doesn’t need equiv-
ariance & restricts patterns to keep matching efficient.

34

Future work

• Prototyped using constraint handling rules, “real” implementation pend-
ing.

• Managing nondeterminism (delaying/residuation)?

• Finding satisfactory efficient special cases?

• Applications to E-unification of nominal equational theories (e.g., π-
calculus)?

35

Conclusions

• Equivariant unification (“unification up to a permutation”) is a difficult
and previously unstudied problem arising in automated reasoning for
nominal logic

• We have developed the first complete, terminating algorithm.

• Not the end of the story: experience with practical issues and common
cases needed.

36

Determinizing phase I

• Idea: Replace rules of the form

(≈?abs) S, 〈a〉t ≈? 〈b〉u →1

{
S, a ≈? b, t ≈? u

∨ S, a #? u, t ≈? (a b) · u

}

(#?abs) S, a #? 〈b〉u →1

{
S, a ≈? b
∨ S, a #? u

}

• with deterministic rules

(≈?abs) 〈a〉t ≈? 〈b〉u →1 Nc.(a c) · t ≈? (b c) · u
(#?abs) a #? 〈b〉u →1 Nc.a #? (b c) · u

• Problem: more swappings so maybe more nondeterminism later

37

