Equivariant Unification

James Cheney
University of Edinburgh
RTA 2005

April 19, 2005

Motivation

e Nominal logic [Pitts 2003]: a variant of first-order logic with names and
name-binding formalized using swapping (invertible renamings) and
freshness (— ¢ FV (-)).

e Goals: term rewriting, automated/computer assisted reasoning, and
logic programming using nominal logic

e As for other theories, unification and matching are important decision
procedures.

Motivation

e Previous work: Urban, Pitts, and Gabbay's nominal unification algo-
rithm

e Nice properties: PTIME, uniqgue most general unifiers

e Problem 1: Only handles a special case

e Problem 2: Equivariance: nominal resolution = nominal unification

Notation

a,b € A Names
f,g € FnSym Uninterpreted function symbols
X, Y € Var Variables
a,b,t,u = X || {u)| f(t) First-order terms
| (a)t|M-t]a Nominal terms
M = (ab)|id|NoN|N~1|P Permutations
C = t=u|a#t Equality, freshness constraints

Note that this includes permutation terms & variables which are not present
iIn nominal logic proper.

Ground swapping

The result of applying a (ground) permutation I to a (ground) term is:

M-a = TIl(a)
n.-QO = 0
M- {t,u)y = (MN-¢,M-u)
n-f@) = f(MN-1)
M-.(byt = (M-b)M-¢
where
id(a) = a
NoM'(a) = N(M'(a))
b (a=¢c)
(@ab)(c) = {a (b=¢)
c (a=c#*Db)

Ground freshness theory

(a # b)
aF#b

a # ()

aFt

a # f(t)
aFFEt aF#Hu
a # (t,u)

a # (a)t
(a#b) a#t

a # (b)t

Different names fresh
Anything fresh for unit

Freshness ignores function symbols

Freshness ignores pairs
Fresh if bound

Fresh if fresh for body

Ground equational theory

a = a

()~ 0

1 ~up to~uo

Y

(t1,t2) =~ (ug,u2) Standard equational rules
~ U
Q@) =~ f(u)
I~ u
(a)t =~ (a)u /
(a&=b) a#u t=x(ab)-u
(a)t = (b)u a-equivalence for abstractions

Problem 1. UPG algorithm only solves a special case

e UPG algorithm does not consider problems involving unknown names
In swappings or binding position

e This is why the algorithm remains unitary.

e For example, (A B) - C =~ C has two distinct solutions:

(A=B}Y {A#C,B#C)

Problem 2: Equivariance

e In nominal logic, truth is preserved by name-swapping

e Two atomic formulas (or rewrite rules) can be logically equivalent but
not equal as nominal terms.

e Example:

p(a) <= p((ab)-a) =p(b) but p(a) % p(b)

e For backchaining and rewriting, need to unify/match modulo equivari-
ance

Why is this hard?

e Let’s take a little quiz.

e Satisfiable or not?

p((cb)- X, X,(ba)-Y,Y) «<— p(a,b,c,d)

e Satisfiable or not?

p((de)- X, X,(ba)-Y,)Y) «<— p(a,b,c,d)

10

Why is this hard?

e Let’s take a little quiz.

e Satisfilable or not?
p((C b) * X? X? (b a) * Y,Y) <~ p(aa b7C7d>
No!

e Satisfilable or not?
p((d C) * X? X7 (b a) * Y,Y) <~ p(a7 b,C,d)
Yes: X =c,Y = a,swap (a d)(bc)

Wasn't that easy?

11

Another fun example

e IS this satisfiable?

X # (XY)-(XY)- X(XY) - (XY) - X)- X(XX) V) (XY)-

12

Another fun example

e IS this satisfiable? No

X # (X)) - XY)- X(XY)-(XY)- X)- X (XX)-YV)-(XY)-
(XY)- (XY)- X(XY)-(XY)-X)- X(XX)-Y) Y
(X X)- X (XX) Y)Y
(XY)-Y
X

13

Outline

e UPG nominal unification

tbu = X[Q[&w | @) [@t|M-t]a
N = (ab)|id| Mol
C = tx=u|a#t

e Note: names a,bin (a b), (a)t, a # t must be ground.

14

Outline

e Full nominal unification: allow name-variables anywhere.

a,b,t,u = X | (| (Gu) | f(@E) [(@)t |[N-t]a
N = (ab)|id|Nol
C = tx=u|a#t

e This is N P-complete because guessing is needed to deal with swap-
ping [C 04]

15

Outline

e Equivariant unification: allow permutation variables & inverses

a,bt,u = X | ([{uw | fQ)[(@)|MN-t]a
N = (ab)|id|Non’|N 1P
C = tx=u|a#t

e t and u unify “up to a permutation” if P - t = wu is satisfiable.

e Also N P-hard [C 04]

16

Our approach

e Phase I: Get rid of term symbols (unit, pair, functions, abstractions)

e Phase II: Get rid of permutation operations (id, inverse, composition,
swapping)

e This leaves problems of the form P - a = b, a # b only.

e Phase lll: Solve remaining problems using permutation graphs

17

Our approach (I)

e First, get rid of unit, pair, function symbols and abstractions:

a,b,t,u
[l
C

X 1O Eu [f@) [(at|M-t]a
(ab) |id| Mol | N1 |P
t~ul|la##t

18

Our approach (I)

e Reduction rules for equality in phase I:

(=71) S,() =7() —1 S
(=7?x) S, (t1,t2) =7 (ug,u2) —1 S,t1 7u1,t2 7 up
(~7) S F(t) =7 f(u) —1 St~
S a~x"?btx?u
~7 ~7
(=7as) S, (a) (byu —1 { VS,a#?ut~?(ab)- u}
(=7var) SN-X~?t —1 SX:=N"1.¢,x~72n"1.¢

(where X € F'V(t),X € FV(S))

e Note the 2-way choice point in rule for abstraction

e Otherwise, rules similar to UPG algorithm

19

Our approach (I)

e Reduction rules for freshness in phase I:

(#71) S,a#?7{) —1 S
(#7?x) S,a #7 (up,u) —1 S,a#?up,a #7 uo
(#7¢) S,a #7 f(u) —1 S,a#7?u

S,a ~=7b

(## 7 abs) S,a #? (bu —1 { v S.a#7 u }
e Note the 2-way choice point in rule for abstraction

e Otherwise, rules similar to UPG algorithm

20

Our approach (II)

e Next, get rid of complex permutation terms:

a,b,t,u
[l
C

X[Ot | [[(a)t[M-t]a
(ab) |id|Non |71 |P
t~ul|la##t

21

Our approach (II)

e Reduction rules, phase II:

(id) S[id - v]
(inv) S[N—1.4]
(comp) S[Moll -]

(swap) S[(aa’) -]

(#Q) S)Q'”#w

—2
—2
2

—2

—2

S[v]

3X.S[X],M - X ~ v
3X.S[M - X], 1 - v~ X)
{ Sla],a’ ~ v

Vv S[d],a =~ v

VIX.S[X],vr~ X,a# X,a # X

dX.5,Q -v~ X, X # w

e Note the 3-way choice point in rule for swapping

22

|

Our approach (lI)

e The remaining constraints involve only names, variables, and permu-
tation variables.

a,byt,u = X[([(tu) | f(0)[(a)][M-t]a
N = (ab)|id|Nor N 1P
C = tx=u|a#t

e Problems of this form can be solved by graph reduction in PTIME.

e |dea: Build a graph with “equality”, “freshness”, and “permutation”
edges; reduce using permutation laws

23

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

24

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

25

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

26

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

:

)
10

27

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

e |

28

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

29

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

30

An example

e Here’s how to reduce a permutation graph corresponding to:

QPPa~b PQPa~b PPax~b PQP la#a

e Unsatisfiable because Qa # a and Qa ~ a

31

Results

e Phase | (term reduction): N P time, finitary (possible improvement to
PTIME, unitary.)

e Phase Il (permutation reduction): N P time, finitary

e Phase Ill (graph reduction): P time, unitary.

e Overall: NP time, finitely many answers.

32

Equivariant matching

e Recall that nondeterminism comes from abstractions and swappings
only.

e Based on this observation, developed a PTIME case of equivariant
matching

e Solves P -t =~ u when t, u are “swapping-free”, that is, of the form

twi=X | {u | fE#)]@)t]a

and u is ground.

33

Related work

e Solving and counting solutions to group equations well-studied, but not
group action equations.

e Our results complement recent work on avoiding equivariance in nomi-
nal term rewriting/logic programming [Fernandez et al. 2004; Urban+C
2005]

e FreshML [Shinwell et al. 2003] pattern matching doesn’t need equiv-
ariance & restricts patterns to keep matching efficient.

34

Future work

e Prototyped using constraint handling rules, “real” implementation pend-
Ing.

e Managing nondeterminism (delaying/residuation)?

e Finding satisfactory efficient special cases?

e Applications to E-unification of nominal equational theories (e.g., -
calculus)?

35

Conclusions

e Equivariant unification (“unification up to a permutation”) is a difficult
and previously unstudied problem arising in automated reasoning for
nominal logic

e We have developed the first complete, terminating algorithm.

e Not the end of the story: experience with practical issues and common
cases needed.

36

Determinizing phase |

e Idea: Replace rules of the form

’ S,a ~? bt &7 u
(R7aps) S ()t &7 (bju —1 VS ia#?u,t=x? (ab)-u}
0
47) S a #7 (b S,a=x7?b
(Flabs) S0 #T O =15, 7y

e Wwith deterministic rules

(=?uws) ()t =7 (b)u —1 WNc.(ac)-t=?(bc)-u
(F#?ws) aF?bDu —q1 WNca#?(bc)- u

e Problem: more swappings so maybe more nondeterminism later

37

