
Fancy types for
provenance

James Cheney
University of Edinburgh

Thursday, November 25, 2010

The provenance crisis

Thursday, November 25, 2010

The provenance crisis

Thursday, November 25, 2010

The provenance crisis

Thursday, November 25, 2010

The provenance crisis

Thursday, November 25, 2010

The provenance crisis

Thursday, November 25, 2010

The provenance crisis

Thursday, November 25, 2010

The provenance crisis

Thursday, November 25, 2010

8W3C Provenance XG October 28, 2010http://www.w3.org/2005/Incubator/prov/wiki

Provenance in Science

"We need a paradigm that makes it simple [...] to
perform and publish reproducible
computational research. [...] A Reproducible
Research Environment (RRE) [...] provides
computational tools together with the ability to
automatically track the provenance of data,
analyses, and results and to package them (or
pointers to persistent versions of them) for
redistribution."

- Jill Mesirov, Chief Informatics Officer of the
MIT/Harvard Broad Institute, in Science, January
2010

! Illustrates the need for
provenance for
reproducibility and
verification of processes

The provenance crisis

Thursday, November 25, 2010

Where to start?

Thursday, November 25, 2010

Where to start?

Any view definition in our language can be expressed using a query tree,

with base tables as the leaf nodes and operators as inner nodes. Figures 4

and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation we logically assume that the view

contents are computed by evaluating the view definition query tree bottom-

up. Each operator in the tree generates its result table on the basis of the

results of its child nodes, and passes its result table upwards. We begin by

focusing on individual operators, defining derivations of the operator’s

result tuples based on its input tuples.

According to relational semantics, each operator can generate its result

tuple-by-tuple based on its operand tables. Intuitively, given a tuple t in

the result of operator Op, some subset of the input tuples produced t. We

say that tuples in this subset contribute to t, and we call the entire subset

the derivation of t. Input tuples not in t ’s derivation either contribute to

nothing, or only contribute to result tuples other than t. Figure 9 illus-

trates the derivation of a result tuple. In the figure, operator Op is applied

to tables T1 and T2, which may be base tables or temporary results from

other operators. (In general, we use R ’s to denote base tables and T ’s to

denote tables that may be base or derived.) Table T is the operation result.

Given tuple t in T, only subsets T 1
* and T 2

* of T1 and T2 contribute to t.

!T 1
* , T 2

*" is called t ’s derivation. The formal definition of tuple derivation

for an operator is given next, followed by additional explanations.

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any rela-

tional operator over tables T1, . . . , Tm, and let T # Op$T1, . . . , Tm% be

the table that results from applying Op to T1, . . . , Tm. Given a tuple

t ! T, we define t’s derivation in T1, . . . , Tm according to Op to be

Op!T1, . . . Tm"
&1 $t% # !T 1

* , . . . T m
* ", where T 1

* , . . . , T m
* are maximal subsets of

T1, . . . , Tm such that

Op

t

T1*
T2*

T1 T2

T

Fig. 9. Derivation of tuple t.

View Data in a Warehousing Environment • 187

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

(a) Op!T 1
* , . . . T m

* " # $t%.

(b) @T i
* : @t* ! T i

*: Op!T 1
* , . . . , $t*%, . . . , T m

* " & A.

We also say that OpTi
'1!t" # T i

* is t’s derivation in Ti, and each tuple t* in

T i
* contributes to t, for i # 1..m.

In Definition 4.1, requirement (a) says that the derivation tuple sets (the

T i
*’s) derive exactly t. From relational semantics, we know that for any

result tuple t there must exist such tuple sets. Requirement (b) says that

each tuple in the derivation does in fact contribute something to t. For

example, with requirement (b) and given Op # !C, base tuples that do not

satisfy the selection condition C, and therefore make no contribution to any

result tuple, will not appear in any result tuple’s derivation. By defining

the T i
*’s to be the maximal subsets that satisfy requirements (a) and (b), we

make sure that the derivation contains exactly all the tuples that contrib-

ute to t. Thus, the derivation fully explains why a tuple exists in the

result.2

Op'1 can be extended to represent the derivation of a set of tuples:

Op(T1, . . . Tm)
'1 !T " # "

t!T

Op(T1, . . . Tm)
'1 !t"

where " represents the multiway union of relation lists, i.e., (S1, . . . , Sm)

(!R1 " S1", . . . , !Rm " Sm"). Theorem 1 shows that there is a unique

derivation for any operator and result tuple. Note that all proofs are

provided in the Appendix.

THEOREM 4.2 (DERIVATION UNIQUENESS). Given t ! Op!T1, . . . , Tm",

where t is a tuple in the result of applying operator Op to tables T1, . . . , Tm,

there exists a unique derivation of t in T1, . . . , Tm according to Op.

Example 4.3 (Tuple Derivation for Aggregation). Given table R in Fig-

ure 10(a) and tuple t # (2, 8) ! "X, sum!Y "!R" in Figure 10(b), the deriva-

tion of t is

"X, sum!Y "R
'1 !(2, 8)" # $(2, 0), (2, 3), (2, 5)%.

shown in Figure 10(c). Notice that R ’s subset $(2, 3), (2, 5)% also satisfies

requirements (a) and (b) in Definition 4.1; but it is not maximal. Intu-

itively, (2, 0) also contributes to the result tuple, since t # (2, 8) !

"X, sum!Y "!R" is computed by adding the Y attributes of (2, 3), (2, 5), and

(2, 0) in R.

2By Definition 5.2, if V # R ' S, then t ’s derivation not only includes t from R, but also

includes all tuples t* & t in S. We discuss this definition of derivation for set difference in

more detail in Section 7.

188 • Y. Cui et al.

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

Thursday, November 25, 2010

Where to start?

Any view definition in our language can be expressed using a query tree,

with base tables as the leaf nodes and operators as inner nodes. Figures 4

and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation we logically assume that the view

contents are computed by evaluating the view definition query tree bottom-

up. Each operator in the tree generates its result table on the basis of the

results of its child nodes, and passes its result table upwards. We begin by

focusing on individual operators, defining derivations of the operator’s

result tuples based on its input tuples.

According to relational semantics, each operator can generate its result

tuple-by-tuple based on its operand tables. Intuitively, given a tuple t in

the result of operator Op, some subset of the input tuples produced t. We

say that tuples in this subset contribute to t, and we call the entire subset

the derivation of t. Input tuples not in t ’s derivation either contribute to

nothing, or only contribute to result tuples other than t. Figure 9 illus-

trates the derivation of a result tuple. In the figure, operator Op is applied

to tables T1 and T2, which may be base tables or temporary results from

other operators. (In general, we use R ’s to denote base tables and T ’s to

denote tables that may be base or derived.) Table T is the operation result.

Given tuple t in T, only subsets T 1
* and T 2

* of T1 and T2 contribute to t.

!T 1
* , T 2

*" is called t ’s derivation. The formal definition of tuple derivation

for an operator is given next, followed by additional explanations.

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any rela-

tional operator over tables T1, . . . , Tm, and let T # Op$T1, . . . , Tm% be

the table that results from applying Op to T1, . . . , Tm. Given a tuple

t ! T, we define t’s derivation in T1, . . . , Tm according to Op to be

Op!T1, . . . Tm"
&1 $t% # !T 1

* , . . . T m
* ", where T 1

* , . . . , T m
* are maximal subsets of

T1, . . . , Tm such that

Op

t

T1*
T2*

T1 T2

T

Fig. 9. Derivation of tuple t.

View Data in a Warehousing Environment • 187

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

(a) Op!T 1
* , . . . T m

* " # $t%.

(b) @T i
* : @t* ! T i

*: Op!T 1
* , . . . , $t*%, . . . , T m

* " & A.

We also say that OpTi
'1!t" # T i

* is t’s derivation in Ti, and each tuple t* in

T i
* contributes to t, for i # 1..m.

In Definition 4.1, requirement (a) says that the derivation tuple sets (the

T i
*’s) derive exactly t. From relational semantics, we know that for any

result tuple t there must exist such tuple sets. Requirement (b) says that

each tuple in the derivation does in fact contribute something to t. For

example, with requirement (b) and given Op # !C, base tuples that do not

satisfy the selection condition C, and therefore make no contribution to any

result tuple, will not appear in any result tuple’s derivation. By defining

the T i
*’s to be the maximal subsets that satisfy requirements (a) and (b), we

make sure that the derivation contains exactly all the tuples that contrib-

ute to t. Thus, the derivation fully explains why a tuple exists in the

result.2

Op'1 can be extended to represent the derivation of a set of tuples:

Op(T1, . . . Tm)
'1 !T " # "

t!T

Op(T1, . . . Tm)
'1 !t"

where " represents the multiway union of relation lists, i.e., (S1, . . . , Sm)

(!R1 " S1", . . . , !Rm " Sm"). Theorem 1 shows that there is a unique

derivation for any operator and result tuple. Note that all proofs are

provided in the Appendix.

THEOREM 4.2 (DERIVATION UNIQUENESS). Given t ! Op!T1, . . . , Tm",

where t is a tuple in the result of applying operator Op to tables T1, . . . , Tm,

there exists a unique derivation of t in T1, . . . , Tm according to Op.

Example 4.3 (Tuple Derivation for Aggregation). Given table R in Fig-

ure 10(a) and tuple t # (2, 8) ! "X, sum!Y "!R" in Figure 10(b), the deriva-

tion of t is

"X, sum!Y "R
'1 !(2, 8)" # $(2, 0), (2, 3), (2, 5)%.

shown in Figure 10(c). Notice that R ’s subset $(2, 3), (2, 5)% also satisfies

requirements (a) and (b) in Definition 4.1; but it is not maximal. Intu-

itively, (2, 0) also contributes to the result tuple, since t # (2, 8) !

"X, sum!Y "!R" is computed by adding the Y attributes of (2, 3), (2, 5), and

(2, 0) in R.

2By Definition 5.2, if V # R ' S, then t ’s derivation not only includes t from R, but also

includes all tuples t* & t in S. We discuss this definition of derivation for set difference in

more detail in Section 7.

188 • Y. Cui et al.

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

Thursday, November 25, 2010

Where to start?

Any view definition in our language can be expressed using a query tree,

with base tables as the leaf nodes and operators as inner nodes. Figures 4

and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation we logically assume that the view

contents are computed by evaluating the view definition query tree bottom-

up. Each operator in the tree generates its result table on the basis of the

results of its child nodes, and passes its result table upwards. We begin by

focusing on individual operators, defining derivations of the operator’s

result tuples based on its input tuples.

According to relational semantics, each operator can generate its result

tuple-by-tuple based on its operand tables. Intuitively, given a tuple t in

the result of operator Op, some subset of the input tuples produced t. We

say that tuples in this subset contribute to t, and we call the entire subset

the derivation of t. Input tuples not in t ’s derivation either contribute to

nothing, or only contribute to result tuples other than t. Figure 9 illus-

trates the derivation of a result tuple. In the figure, operator Op is applied

to tables T1 and T2, which may be base tables or temporary results from

other operators. (In general, we use R ’s to denote base tables and T ’s to

denote tables that may be base or derived.) Table T is the operation result.

Given tuple t in T, only subsets T 1
* and T 2

* of T1 and T2 contribute to t.

!T 1
* , T 2

*" is called t ’s derivation. The formal definition of tuple derivation

for an operator is given next, followed by additional explanations.

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any rela-

tional operator over tables T1, . . . , Tm, and let T # Op$T1, . . . , Tm% be

the table that results from applying Op to T1, . . . , Tm. Given a tuple

t ! T, we define t’s derivation in T1, . . . , Tm according to Op to be

Op!T1, . . . Tm"
&1 $t% # !T 1

* , . . . T m
* ", where T 1

* , . . . , T m
* are maximal subsets of

T1, . . . , Tm such that

Op

t

T1*
T2*

T1 T2

T

Fig. 9. Derivation of tuple t.

View Data in a Warehousing Environment • 187

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

(a) Op!T 1
* , . . . T m

* " # $t%.

(b) @T i
* : @t* ! T i

*: Op!T 1
* , . . . , $t*%, . . . , T m

* " & A.

We also say that OpTi
'1!t" # T i

* is t’s derivation in Ti, and each tuple t* in

T i
* contributes to t, for i # 1..m.

In Definition 4.1, requirement (a) says that the derivation tuple sets (the

T i
*’s) derive exactly t. From relational semantics, we know that for any

result tuple t there must exist such tuple sets. Requirement (b) says that

each tuple in the derivation does in fact contribute something to t. For

example, with requirement (b) and given Op # !C, base tuples that do not

satisfy the selection condition C, and therefore make no contribution to any

result tuple, will not appear in any result tuple’s derivation. By defining

the T i
*’s to be the maximal subsets that satisfy requirements (a) and (b), we

make sure that the derivation contains exactly all the tuples that contrib-

ute to t. Thus, the derivation fully explains why a tuple exists in the

result.2

Op'1 can be extended to represent the derivation of a set of tuples:

Op(T1, . . . Tm)
'1 !T " # "

t!T

Op(T1, . . . Tm)
'1 !t"

where " represents the multiway union of relation lists, i.e., (S1, . . . , Sm)

(!R1 " S1", . . . , !Rm " Sm"). Theorem 1 shows that there is a unique

derivation for any operator and result tuple. Note that all proofs are

provided in the Appendix.

THEOREM 4.2 (DERIVATION UNIQUENESS). Given t ! Op!T1, . . . , Tm",

where t is a tuple in the result of applying operator Op to tables T1, . . . , Tm,

there exists a unique derivation of t in T1, . . . , Tm according to Op.

Example 4.3 (Tuple Derivation for Aggregation). Given table R in Fig-

ure 10(a) and tuple t # (2, 8) ! "X, sum!Y "!R" in Figure 10(b), the deriva-

tion of t is

"X, sum!Y "R
'1 !(2, 8)" # $(2, 0), (2, 3), (2, 5)%.

shown in Figure 10(c). Notice that R ’s subset $(2, 3), (2, 5)% also satisfies

requirements (a) and (b) in Definition 4.1; but it is not maximal. Intu-

itively, (2, 0) also contributes to the result tuple, since t # (2, 8) !

"X, sum!Y "!R" is computed by adding the Y attributes of (2, 3), (2, 5), and

(2, 0) in R.

2By Definition 5.2, if V # R ' S, then t ’s derivation not only includes t from R, but also

includes all tuples t* & t in S. We discuss this definition of derivation for set difference in

more detail in Section 7.

188 • Y. Cui et al.

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

Thursday, November 25, 2010

Where to start?

Any view definition in our language can be expressed using a query tree,

with base tables as the leaf nodes and operators as inner nodes. Figures 4

and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation we logically assume that the view

contents are computed by evaluating the view definition query tree bottom-

up. Each operator in the tree generates its result table on the basis of the

results of its child nodes, and passes its result table upwards. We begin by

focusing on individual operators, defining derivations of the operator’s

result tuples based on its input tuples.

According to relational semantics, each operator can generate its result

tuple-by-tuple based on its operand tables. Intuitively, given a tuple t in

the result of operator Op, some subset of the input tuples produced t. We

say that tuples in this subset contribute to t, and we call the entire subset

the derivation of t. Input tuples not in t ’s derivation either contribute to

nothing, or only contribute to result tuples other than t. Figure 9 illus-

trates the derivation of a result tuple. In the figure, operator Op is applied

to tables T1 and T2, which may be base tables or temporary results from

other operators. (In general, we use R ’s to denote base tables and T ’s to

denote tables that may be base or derived.) Table T is the operation result.

Given tuple t in T, only subsets T 1
* and T 2

* of T1 and T2 contribute to t.

!T 1
* , T 2

*" is called t ’s derivation. The formal definition of tuple derivation

for an operator is given next, followed by additional explanations.

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any rela-

tional operator over tables T1, . . . , Tm, and let T # Op$T1, . . . , Tm% be

the table that results from applying Op to T1, . . . , Tm. Given a tuple

t ! T, we define t’s derivation in T1, . . . , Tm according to Op to be

Op!T1, . . . Tm"
&1 $t% # !T 1

* , . . . T m
* ", where T 1

* , . . . , T m
* are maximal subsets of

T1, . . . , Tm such that

Op

t

T1*
T2*

T1 T2

T

Fig. 9. Derivation of tuple t.

View Data in a Warehousing Environment • 187

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

(a) Op!T 1
* , . . . T m

* " # $t%.

(b) @T i
* : @t* ! T i

*: Op!T 1
* , . . . , $t*%, . . . , T m

* " & A.

We also say that OpTi
'1!t" # T i

* is t’s derivation in Ti, and each tuple t* in

T i
* contributes to t, for i # 1..m.

In Definition 4.1, requirement (a) says that the derivation tuple sets (the

T i
*’s) derive exactly t. From relational semantics, we know that for any

result tuple t there must exist such tuple sets. Requirement (b) says that

each tuple in the derivation does in fact contribute something to t. For

example, with requirement (b) and given Op # !C, base tuples that do not

satisfy the selection condition C, and therefore make no contribution to any

result tuple, will not appear in any result tuple’s derivation. By defining

the T i
*’s to be the maximal subsets that satisfy requirements (a) and (b), we

make sure that the derivation contains exactly all the tuples that contrib-

ute to t. Thus, the derivation fully explains why a tuple exists in the

result.2

Op'1 can be extended to represent the derivation of a set of tuples:

Op(T1, . . . Tm)
'1 !T " # "

t!T

Op(T1, . . . Tm)
'1 !t"

where " represents the multiway union of relation lists, i.e., (S1, . . . , Sm)

(!R1 " S1", . . . , !Rm " Sm"). Theorem 1 shows that there is a unique

derivation for any operator and result tuple. Note that all proofs are

provided in the Appendix.

THEOREM 4.2 (DERIVATION UNIQUENESS). Given t ! Op!T1, . . . , Tm",

where t is a tuple in the result of applying operator Op to tables T1, . . . , Tm,

there exists a unique derivation of t in T1, . . . , Tm according to Op.

Example 4.3 (Tuple Derivation for Aggregation). Given table R in Fig-

ure 10(a) and tuple t # (2, 8) ! "X, sum!Y "!R" in Figure 10(b), the deriva-

tion of t is

"X, sum!Y "R
'1 !(2, 8)" # $(2, 0), (2, 3), (2, 5)%.

shown in Figure 10(c). Notice that R ’s subset $(2, 3), (2, 5)% also satisfies

requirements (a) and (b) in Definition 4.1; but it is not maximal. Intu-

itively, (2, 0) also contributes to the result tuple, since t # (2, 8) !

"X, sum!Y "!R" is computed by adding the Y attributes of (2, 3), (2, 5), and

(2, 0) in R.

2By Definition 5.2, if V # R ' S, then t ’s derivation not only includes t from R, but also

includes all tuples t* & t in S. We discuss this definition of derivation for set difference in

more detail in Section 7.

188 • Y. Cui et al.

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

Not compositional

Thursday, November 25, 2010

Where to start?

Any view definition in our language can be expressed using a query tree,

with base tables as the leaf nodes and operators as inner nodes. Figures 4

and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation we logically assume that the view

contents are computed by evaluating the view definition query tree bottom-

up. Each operator in the tree generates its result table on the basis of the

results of its child nodes, and passes its result table upwards. We begin by

focusing on individual operators, defining derivations of the operator’s

result tuples based on its input tuples.

According to relational semantics, each operator can generate its result

tuple-by-tuple based on its operand tables. Intuitively, given a tuple t in

the result of operator Op, some subset of the input tuples produced t. We

say that tuples in this subset contribute to t, and we call the entire subset

the derivation of t. Input tuples not in t ’s derivation either contribute to

nothing, or only contribute to result tuples other than t. Figure 9 illus-

trates the derivation of a result tuple. In the figure, operator Op is applied

to tables T1 and T2, which may be base tables or temporary results from

other operators. (In general, we use R ’s to denote base tables and T ’s to

denote tables that may be base or derived.) Table T is the operation result.

Given tuple t in T, only subsets T 1
* and T 2

* of T1 and T2 contribute to t.

!T 1
* , T 2

*" is called t ’s derivation. The formal definition of tuple derivation

for an operator is given next, followed by additional explanations.

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any rela-

tional operator over tables T1, . . . , Tm, and let T # Op$T1, . . . , Tm% be

the table that results from applying Op to T1, . . . , Tm. Given a tuple

t ! T, we define t’s derivation in T1, . . . , Tm according to Op to be

Op!T1, . . . Tm"
&1 $t% # !T 1

* , . . . T m
* ", where T 1

* , . . . , T m
* are maximal subsets of

T1, . . . , Tm such that

Op

t

T1*
T2*

T1 T2

T

Fig. 9. Derivation of tuple t.

View Data in a Warehousing Environment • 187

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

(a) Op!T 1
* , . . . T m

* " # $t%.

(b) @T i
* : @t* ! T i

*: Op!T 1
* , . . . , $t*%, . . . , T m

* " & A.

We also say that OpTi
'1!t" # T i

* is t’s derivation in Ti, and each tuple t* in

T i
* contributes to t, for i # 1..m.

In Definition 4.1, requirement (a) says that the derivation tuple sets (the

T i
*’s) derive exactly t. From relational semantics, we know that for any

result tuple t there must exist such tuple sets. Requirement (b) says that

each tuple in the derivation does in fact contribute something to t. For

example, with requirement (b) and given Op # !C, base tuples that do not

satisfy the selection condition C, and therefore make no contribution to any

result tuple, will not appear in any result tuple’s derivation. By defining

the T i
*’s to be the maximal subsets that satisfy requirements (a) and (b), we

make sure that the derivation contains exactly all the tuples that contrib-

ute to t. Thus, the derivation fully explains why a tuple exists in the

result.2

Op'1 can be extended to represent the derivation of a set of tuples:

Op(T1, . . . Tm)
'1 !T " # "

t!T

Op(T1, . . . Tm)
'1 !t"

where " represents the multiway union of relation lists, i.e., (S1, . . . , Sm)

(!R1 " S1", . . . , !Rm " Sm"). Theorem 1 shows that there is a unique

derivation for any operator and result tuple. Note that all proofs are

provided in the Appendix.

THEOREM 4.2 (DERIVATION UNIQUENESS). Given t ! Op!T1, . . . , Tm",

where t is a tuple in the result of applying operator Op to tables T1, . . . , Tm,

there exists a unique derivation of t in T1, . . . , Tm according to Op.

Example 4.3 (Tuple Derivation for Aggregation). Given table R in Fig-

ure 10(a) and tuple t # (2, 8) ! "X, sum!Y "!R" in Figure 10(b), the deriva-

tion of t is

"X, sum!Y "R
'1 !(2, 8)" # $(2, 0), (2, 3), (2, 5)%.

shown in Figure 10(c). Notice that R ’s subset $(2, 3), (2, 5)% also satisfies

requirements (a) and (b) in Definition 4.1; but it is not maximal. Intu-

itively, (2, 0) also contributes to the result tuple, since t # (2, 8) !

"X, sum!Y "!R" is computed by adding the Y attributes of (2, 3), (2, 5), and

(2, 0) in R.

2By Definition 5.2, if V # R ' S, then t ’s derivation not only includes t from R, but also

includes all tuples t* & t in S. We discuss this definition of derivation for set difference in

more detail in Section 7.

188 • Y. Cui et al.

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

Not compositional

Hard to
separate "policy" from

"mechanism"

Thursday, November 25, 2010

Where to start?

Any view definition in our language can be expressed using a query tree,

with base tables as the leaf nodes and operators as inner nodes. Figures 4

and 7 are examples of query trees.

4.2 Tuple Derivations for Operators

To define the concept of derivation we logically assume that the view

contents are computed by evaluating the view definition query tree bottom-

up. Each operator in the tree generates its result table on the basis of the

results of its child nodes, and passes its result table upwards. We begin by

focusing on individual operators, defining derivations of the operator’s

result tuples based on its input tuples.

According to relational semantics, each operator can generate its result

tuple-by-tuple based on its operand tables. Intuitively, given a tuple t in

the result of operator Op, some subset of the input tuples produced t. We

say that tuples in this subset contribute to t, and we call the entire subset

the derivation of t. Input tuples not in t ’s derivation either contribute to

nothing, or only contribute to result tuples other than t. Figure 9 illus-

trates the derivation of a result tuple. In the figure, operator Op is applied

to tables T1 and T2, which may be base tables or temporary results from

other operators. (In general, we use R ’s to denote base tables and T ’s to

denote tables that may be base or derived.) Table T is the operation result.

Given tuple t in T, only subsets T 1
* and T 2

* of T1 and T2 contribute to t.

!T 1
* , T 2

*" is called t ’s derivation. The formal definition of tuple derivation

for an operator is given next, followed by additional explanations.

Definition 4.1 (Tuple Derivation for an Operator). Let Op be any rela-

tional operator over tables T1, . . . , Tm, and let T # Op$T1, . . . , Tm% be

the table that results from applying Op to T1, . . . , Tm. Given a tuple

t ! T, we define t’s derivation in T1, . . . , Tm according to Op to be

Op!T1, . . . Tm"
&1 $t% # !T 1

* , . . . T m
* ", where T 1

* , . . . , T m
* are maximal subsets of

T1, . . . , Tm such that

Op

t

T1*
T2*

T1 T2

T

Fig. 9. Derivation of tuple t.

View Data in a Warehousing Environment • 187

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

(a) Op!T 1
* , . . . T m

* " # $t%.

(b) @T i
* : @t* ! T i

*: Op!T 1
* , . . . , $t*%, . . . , T m

* " & A.

We also say that OpTi
'1!t" # T i

* is t’s derivation in Ti, and each tuple t* in

T i
* contributes to t, for i # 1..m.

In Definition 4.1, requirement (a) says that the derivation tuple sets (the

T i
*’s) derive exactly t. From relational semantics, we know that for any

result tuple t there must exist such tuple sets. Requirement (b) says that

each tuple in the derivation does in fact contribute something to t. For

example, with requirement (b) and given Op # !C, base tuples that do not

satisfy the selection condition C, and therefore make no contribution to any

result tuple, will not appear in any result tuple’s derivation. By defining

the T i
*’s to be the maximal subsets that satisfy requirements (a) and (b), we

make sure that the derivation contains exactly all the tuples that contrib-

ute to t. Thus, the derivation fully explains why a tuple exists in the

result.2

Op'1 can be extended to represent the derivation of a set of tuples:

Op(T1, . . . Tm)
'1 !T " # "

t!T

Op(T1, . . . Tm)
'1 !t"

where " represents the multiway union of relation lists, i.e., (S1, . . . , Sm)

(!R1 " S1", . . . , !Rm " Sm"). Theorem 1 shows that there is a unique

derivation for any operator and result tuple. Note that all proofs are

provided in the Appendix.

THEOREM 4.2 (DERIVATION UNIQUENESS). Given t ! Op!T1, . . . , Tm",

where t is a tuple in the result of applying operator Op to tables T1, . . . , Tm,

there exists a unique derivation of t in T1, . . . , Tm according to Op.

Example 4.3 (Tuple Derivation for Aggregation). Given table R in Fig-

ure 10(a) and tuple t # (2, 8) ! "X, sum!Y "!R" in Figure 10(b), the deriva-

tion of t is

"X, sum!Y "R
'1 !(2, 8)" # $(2, 0), (2, 3), (2, 5)%.

shown in Figure 10(c). Notice that R ’s subset $(2, 3), (2, 5)% also satisfies

requirements (a) and (b) in Definition 4.1; but it is not maximal. Intu-

itively, (2, 0) also contributes to the result tuple, since t # (2, 8) !

"X, sum!Y "!R" is computed by adding the Y attributes of (2, 3), (2, 5), and

(2, 0) in R.

2By Definition 5.2, if V # R ' S, then t ’s derivation not only includes t from R, but also

includes all tuples t* & t in S. We discuss this definition of derivation for set difference in

more detail in Section 7.

188 • Y. Cui et al.

ACM Transactions on Database Systems, Vol. 25, No. 2, June 2000.

Not compositional

Hard to
separate "policy" from

"mechanism"
Hard to implement

Thursday, November 25, 2010

Databases and
programming languages
• Database query languages are purely functional

• optimization by equational rewriting basis of £109 DB industry

• Programming languages ideas can...

• Help in analyzing, optimizing database queries (types,
compilation, equational rewriting)

• Integrate database or Web capabilities into higher-level
languages (LINQ, Links)

• Database ideas can...

• Lead to new programming idioms (Datalog, atomicity, STM)

• Open up new problem spaces (high-level updates, provenance)

Thursday, November 25, 2010

Provenance in
curated databases

Thursday, November 25, 2010

Provenance in
curated databases

(1) delete c5 from T;

(2) copy S1/a1/y into T/c1/y;

(3) insert {c2 : {}} into T;

(4) copy S1/a2 into T/c2;

(5) insert {y : 10} into T/c2;

(6) insert {c3 : {}} into T;

(7) copy S1/a3 into T/c3;

(8) copy S2/b3/y into T/c3/y;

(9) insert {c4 : {}} into T;

(10) copy S2/b2 into T/c4;

(11) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.

b1 b2 b3
a1 a2 a3

x y x x y x y x x y

1 2 3 7 5 1 2 4 7 6

c1 c2 c3

x x x y

1 3 7 6

y

2

c4

x

4

y

12

y

c5

x

9

y

7

S1
S2

T
T’ 8 10

7

4

2

c1

x

1

y

3

1

11

10

5
11

Figure 4: An example of executing the update in Figure 3. The

upper two trees S1, S2 are tree views of source databases; the

bottom trees T , T ′ are tree views of part of the target database

at the beginning and end of the transaction. White nodes are

unchanged; black nodes represent inserted or deleted nodes;

other shadings indicate whether the node came from S1 or S2.

Dashed lines indicate provenance links. Boxed numbers indi-

cate the relevant copy-paste operation in Figure 3. Additional

provenance links can be inferred from context.

field is ignored for inserts and deletes. Note that {Tid, Loc} forms

a key for Prov; that is, for each transaction, each location has ei-

ther been inserted, deleted, or copied from somewhere in the input.

Thus, Tid and Loc are natural candidates for indexing. Additional

information about each transaction, such as commit time and user

identity, can be stored in a separate table with key Tid.

We now examine several ways of storing provenance informa-

tion.

2.1.1 Naı̈ve provenance

The most straightforward method is to store one provenance rec-

ord for each copied, inserted, or deleted node. In addition, each up-

date operation is treated as a separate transaction. This technique

may be wasteful in terms of space, because it introduces one prove-

nance record for every node inserted, deleted, or copied throughout

the update. However, it retains the maximum possible information

about the user’s actions. In fact, the exact update operation de-

scribing the user’s sequence of actions can be recovered from the

provenance table.

(a) Prov

T id Op Loc Src

121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
122 C T/c1/y S1/a1/y

123 I T/c2 ⊥
124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x

127 C T/c3/y S1/a3/y

128 C T/c3/y S2/b3/y

129 I T/c4 ⊥
130 C T/c4 S2/b2

130 C T/c4/x S2/b2/x

131 I T/c4/y ⊥

(b) Prov

T id Op Loc Src

121 D T/c5 ⊥
121 D T/c5/x ⊥
121 D T/c5/y ⊥
121 C T/c1/y S1/a1/y

121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x

121 C T/c3/y S2/b3/y

121 C T/c4 S2/b2

121 C T/c4/x S2/b2/x

121 I T/c4/y ⊥

(c) HProv

T id Op Loc Src

121 D T/c5 ⊥
122 C T/c1/y S1/a1/y

123 I T/c2 ⊥
124 C T/c2 S1/a2

125 I T/c2/y ⊥
126 I T/c3 ⊥
127 C T/c3 S1/a3

128 C T/c3/y S2/b3/y

129 I T/c4 ⊥
130 C T/c4 S2/b2

131 I T/c4/y ⊥

(d) HProv

T id Op Loc Src

121 D T/c5 ⊥
121 C T/c1/y S1/a1/y

121 C T/c2 S1/a2

121 I T/c2/y ⊥
121 C T/c3 S1/a3

121 C T/c3/y S2/b3/y

121 C T/c4 S2/b2

121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of

Figure 3. (a) One transaction per line. (b) Entire update as one

transaction. (c) Hierarchical version of (a). (d) Hierarchical

version of (b).

2.1.2 Transactional provenance

The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only

provenance links describing the net changes resulting from a trans-

action. For example, if the user copies data from S1, then on further

reflection deletes it and uses data from S2 instead, and finally com-

mits, this has the same effect on provenance as if the user had only

copied the data from S2. Thus, details about intermediate states or

temporary data storage in between “official” database versions are

not retained. Transactional provenance may be less precise than

the naı̈ve approach, because information about intermediate states

of the database is discarded. However, the decision when to com-

mit is in the hands of the user; frequent commits can be used to

record important intermediate states.

The storage cost for the provenance of a transaction is propor-

tional to the number of nodes touched in the input and output of

the transaction. That is, the number of transactional provenance

records produced by an update transaction t is i + d + c, where i

is the number of inserted nodes in the output, d is the number of

nodes deleted from the input, and c is the number of copied nodes

in the output.

2.1.3 Hierarchical provenance

Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),

since in many cases the annotation of a child node can be inferred

542

SIGMOD 2006

Thursday, November 25, 2010

Provenance in
curated databases

R

R'

S

A B C

1 2 2

5 6 3

2 3 4

A B C

1 2 2

1 2 3

2 3 4

C D

1 2

2 2

2 3

ICDT 2007/TODS 2008

update R
set (A,B) =
 (select S.C A, S.D B
 from S where S.A = 1)
where R.C = 3

Thursday, November 25, 2010

Formalization
• Consider types:

T ::= int | ... | T * T | T set

• And expressions:

• e ::= x | let x = e1 in e2 | i | ...

• | (e1,e2) | πi(e)

• | ∅ | {e} | e1 ∪ e2 | ∪{e2 | x ← e1}

Thursday, November 25, 2010

Type translation
• Translate:

P[int] = int * 'a option

P[T1 * T2] = P[T1] * P[T2] * 'a option

P[T set] = P[T] set * 'a option

Annotations 'a represent "pointers" to
optional sources

Thursday, November 25, 2010

Term Translation
Given x1:T1,...,xn:Tn |- e : T

Want P[e] such that

x1: P[T1]...xn:P[Tn] |- P[e] : P[T]

s.t. each SOME-pointer points to the "source"

Simple cases:

P[x] = x

P[i] = (i,NONE)

P[let x = e1 in e2] = let x = P[e1] in P[e2]

Thursday, November 25, 2010

Pairs
P[(e1,e2)] = (P[e1],P[e2],NONE)

P[πi(e)] = πi(π1(P[e]))

Thursday, November 25, 2010

Sets
P[∅] = (∅,NONE)

P[e1∪e2] = let (v1,_) = P[e1]

 (v2,_) = P[e2]

 in (v1 ∪ v2, NONE)

P[{e}] = ({P[e]},NONE)

P[∪{e2 | x ← e1}] = (∪{P[e2] | x ← π1(P[e1])},NONE)

Thursday, November 25, 2010

Dependency provenance
[CAA DBPL07,MSCS11]

cf. Dependency Core Calculus [Abadi et al. 1999]

Thursday, November 25, 2010

Dependency provenance
[CAA DBPL07,MSCS11]

What input parts
may given output depend

upon?

cf. Dependency Core Calculus [Abadi et al. 1999]

Thursday, November 25, 2010

Dependency provenance
[CAA DBPL07,MSCS11]

cf. Dependency Core Calculus [Abadi et al. 1999]

"Good" players on
winning teams

Thursday, November 25, 2010

Basic idea

DB

Thursday, November 25, 2010

Basic idea

DB Q(DB)
Q

Thursday, November 25, 2010

Basic idea

DB Q(DB)
Q

v v2
v1

Thursday, November 25, 2010

Basic idea

DB Q(DB)
Q

v v2
v1

Link output parts
to sets of input parts

such that...

Thursday, November 25, 2010

Basic idea

DB Q(DB)
Q

DB'

v

v'

v2
v1

Whenever DB
and DB' are same

except for annotated
inputs...

Thursday, November 25, 2010

Basic idea

DB Q(DB)
Q

DB' Q(DB')
Q

v

v'

v2
v1

Whenever DB
and DB' are same

except for annotated
inputs...

Thursday, November 25, 2010

Basic idea

DB Q(DB)
Q

DB' Q(DB')
Q

v

v'

v2
v1

v2
v1'

query results only
differ at linked outputs

Thursday, November 25, 2010

Basic idea

DB Q(DB)
Q

DB' Q(DB')
Q

v

v'

v2
v1

v2
v1'

Can
overapproximate!

Thursday, November 25, 2010

Formalization
• Consider types:

T ::= int | ... | T * T | T set

• Translate:

P[int] = int * 'a set

P[T1 * T2] = P[T1] * P[T2] * 'a set

P[T set] = P[T] set * 'a set

Annotations 'a represent "pointers" to sets of sources

Thursday, November 25, 2010

Term Translation
Given x1:T1,...,xn:Tn |- e : T

Want P[e] such that

x1: P[T1]...xn:P[Tn] |- P[e] : P[T]

s.t. all "dependencies" are captured.

Simple cases:

P[x] = x

P[i] = (i,∅)

P[let x = e1 in e2] = let x = P[e1] in P[e2]

Thursday, November 25, 2010

Pairs
P[(e1,e2)] = (P[e1],P[e2],∅)

P[πi(e)] = let (v,a) = P[e]

 (vi', b) = πi(v)

 in (vi,a∪b)

Thursday, November 25, 2010

Sets
P[∅] = (∅,∅)

P[e1∪e2] = let (v1,a1) = P[e1]

 (v2,a2) = P[e2]

 in (v1 ∪ v2, a1 ∪ a2)

P[{e}] = ({P[e]},∅)

P[∪{e2 | x ← e1}] = let (v,a) = P[e1]

 in (∪{P[e2] | x ← v},a)

Thursday, November 25, 2010

Question
• The translations seem to have a lot in

common...

• Can we implement them "once and for all"

• generic/dynamic typing?

• dependent types?

• Can we implement them in a way that
runs efficiently against database?

Thursday, November 25, 2010

Links
• Currently supports superset of NRC core-

language

• Higher-order, impure features

• Effect typing allows safe combination, query
extraction [Cooper 2009]

• Ferry [Grust et al. 2010]: extending to
support nested data

• number of queries bounded by types, not data

Thursday, November 25, 2010

Generic/Dependent
Links?

• Ur/WEB also supports some generic web
programming

• Would like to write something like this:

type family P a Int = (Int,a)

type family P a (b,c) =

 (P a b, P a c, a)

type family P a [b] = ([P a b],a)

Thursday, November 25, 2010

Dependent/Generic
Links?

• Would like to write something like this:

whereprov :: Exp e t' →
 Exp (P e (Maybe a))

 (P t' (Maybe a))

whereprov (Const c) =

 Pair (Const c) Nothing

whereprov (Var x) = Var x

...

Thursday, November 25, 2010

Other ways forward?
• Haskell: GADTs + type families/type-level

computaion + HaskellDB?

• Agda: dependent types ✓, but not DB?

• Idris: dependent types ✓; can we implement query
normalization & DB communication as a EDSL?

• Ur/Web: Maybe already has enough GP, but still
learning

• (ideally: compile Links to another language that
has a mature compiler :)

Thursday, November 25, 2010

Database Wiki
• Idea: Wiki-like Web interface to (semi)structured data

• Joint work with Buneman, Mueller, Lindley

• Prototype showcases prior research on provenance,
archiving, annotation, security

• to present at workshop on "Biological Wikis" [NETTAB 2010]

Thursday, November 25, 2010

Database Wiki
• Idea: Wiki-like Web interface to (semi)structured data

• Joint work with Buneman, Mueller, Lindley

• Prototype showcases prior research on provenance,
archiving, annotation, security

• to present at workshop on "Biological Wikis" [NETTAB 2010]

Thursday, November 25, 2010

Database Wiki
• Idea: Wiki-like Web interface to (semi)structured data

• Joint work with Buneman, Mueller, Lindley

• Prototype showcases prior research on provenance,
archiving, annotation, security

• to present at workshop on "Biological Wikis" [NETTAB 2010]

Thursday, November 25, 2010

Database Wiki
• Idea: Wiki-like Web interface to (semi)structured data

• Joint work with Buneman, Mueller, Lindley

• Prototype showcases prior research on provenance,
archiving, annotation, security

• to present at workshop on "Biological Wikis" [NETTAB 2010]

Thursday, November 25, 2010

Database Wiki
• Idea: Wiki-like Web interface to (semi)structured data

• Joint work with Buneman, Mueller, Lindley

• Prototype showcases prior research on provenance,
archiving, annotation, security

• to present at workshop on "Biological Wikis" [NETTAB 2010]

Thursday, November 25, 2010

Database Wiki
• Idea: Wiki-like Web interface to (semi)structured data

• Joint work with Buneman, Mueller, Lindley

• Prototype showcases prior research on provenance,
archiving, annotation, security

• to present at workshop on "Biological Wikis" [NETTAB 2010]

Thursday, November 25, 2010

Database Wiki
• Idea: Wiki-like Web interface to (semi)structured data

• Joint work with Buneman, Mueller, Lindley

• Prototype showcases prior research on provenance,
archiving, annotation, security

• to present at workshop on "Biological Wikis" [NETTAB 2010]

Thursday, November 25, 2010

Conclusions
• Provenance techniques can be defined

as "type-dependent types/functions"

• Complex provenance transformations
challenging to implement against real
DBs

• Combining Links, Ur/WEB or LINQ
with generic or dependent typing might
be a good way to proceed

Thursday, November 25, 2010

