Relating Nominal and Higher-Order Pattern Unification

James Cheney

University of Edinburgh

UNIF 2005

April 22, 2005

Motivation

- *Higher-order unification*: studied since ca. 1970
- Undecidable, infinitary, though [Huet 1975]'s algorithm often works well in practice
- Higher-order pattern unification [Miller 1991]: efficiently (O(n)) decidable, unitary special case
- Claim: HOPU "least extension of FOU with support for name-binding"

Motivation

- Nominal unification: unifies terms with names and binding axiomatized using swapping and freshness [Urban, Pitts, and Gabbay 2003]
- Nice properties: $O(n^2)$, unitary
- [UPG03] observed similarities and possible reduction from NU to HOPU

Our goal

- Understand exact relationship between two approaches
- What can one do that the other cannot?
- Efficient (linear) nominal unification via HOPU?
- Semantics for higher-order patterns via nominal terms?

• Higher-order patterns are λ -terms (with "metavariables" F, G) such that for every subterm of the form $F \bar{t}$, we have \bar{t} a list of *distinct* bound variables.

• Yes:

$$\lambda x, y.F y x \qquad \lambda x, y.x (F y x) (\lambda z.G z y)$$

• No:

 $\lambda x, y.F(y x) \qquad \lambda x, y, z.F(x y z) (G z y)$

• We will use a refined language and type system for higher-order patterns.

x, y	\in	A	Vars
c,d	\in	CnstSym	Uninterpreted constant symbols
au	::=	$\delta \mid \tau \to \tau'$	types
Σ	::=	$\cdot \mid \mathbf{\Sigma}, c \mathrel{\colon} au$	signatures
Г	::=	$\cdot \mid \Gamma, X \mathrel{:} \tau$	contexts
t, u	::=	$c \mid x_{\tau} \mid t \; t' \mid \lambda x_{\tau}.t$	λ -terms
		$X \mid t \hat{x}_{\tau}$	flexible terms

 Note that bound variables are tagged with types, whereas metavariables are typed in Γ.

• Three judgments: normal (\uparrow), rigid atomic (\downarrow), and flexible atomic (\Downarrow)

$$\frac{\Gamma \vdash t \downarrow \delta}{\Gamma \vdash t \uparrow \delta} \quad \frac{\Gamma \vdash t \Downarrow \delta}{\Gamma \vdash t \uparrow \delta} \quad \frac{\Gamma \vdash t \uparrow \tau'}{\Gamma \vdash \lambda \mathsf{x}_{\tau} \cdot t \uparrow \tau \to \tau'} \quad \text{Normal}$$

$$\frac{c \colon \tau \in \Sigma}{\Gamma \vdash c \downarrow \tau} \quad \frac{\Gamma \vdash t \downarrow \tau \to \tau' \quad \Gamma \vdash u \uparrow \tau}{\Gamma \vdash t \downarrow \tau} \quad \frac{\Gamma \vdash t \downarrow \tau \to \tau' \quad \Gamma \vdash u \uparrow \tau}{\Gamma \vdash t \downarrow \tau'} \quad \text{Rigid atomic}$$

$$\frac{\Gamma \vdash t \Downarrow \tau \to \tau' \quad (\mathsf{x} \notin FV(t))}{\Gamma \vdash t \uparrow \mathsf{x}_{\tau} \Downarrow \tau'} \quad \frac{\Gamma \vdash t \Downarrow \tau \to \tau' \quad (\mathsf{x} \notin FV(t))}{\Gamma \vdash t \uparrow \mathsf{x}_{\tau} \Downarrow \tau'} \quad \text{Flexible atomic}$$

• Equational laws:

 $(\lambda \mathbf{x}.t) \mathbf{y} \approx_{\beta_0} t[\mathbf{y}/\mathbf{x}] \qquad t : \tau \to \tau' \approx_{\eta} \lambda \mathbf{x}.(t \mathbf{x}) \quad (\mathbf{x} \notin FV(t))$

7

• Three judgments: normal (\uparrow), rigid atomic (\downarrow), and flexible atomic (\Downarrow)

$$\frac{\Gamma \vdash t \downarrow \delta}{\Gamma \vdash t \uparrow \delta} \quad \frac{\Gamma \vdash t \Downarrow \delta}{\Gamma \vdash t \uparrow \delta} \quad \frac{\Gamma \vdash t \uparrow \tau'}{\Gamma \vdash \lambda \mathsf{x}_{\tau} \cdot t \uparrow \tau \to \tau'} \quad \text{Normal}$$

$$\frac{c : \tau \in \Sigma}{\Gamma \vdash c \downarrow \tau} \quad \frac{\Gamma \vdash \mathsf{x}_{\tau} \downarrow \tau}{\Gamma \vdash \mathsf{x}_{\tau} \downarrow \tau} \quad \frac{\Gamma \vdash t \downarrow \tau \to \tau' \quad \Gamma \vdash u \uparrow \tau}{\Gamma \vdash t \downarrow \tau'} \quad \text{Rigid atomic}$$

$$\frac{\Gamma \vdash t \Downarrow \tau \to \tau' \quad (\mathsf{x} \notin FV(t))}{\Gamma \vdash t \uparrow \mathsf{x}_{\tau} \Downarrow \tau'} \quad \text{Flexible atomic}$$

• Note: pattern restriction enforced here

Nominal patterns

• We consider *nominal terms* of the following restricted form:

a,b	\in	A	Names
c,d	\in	CnstSym	Uninterpreted constant symbols
au	::=	$\delta \mid \sigma \to \tau$	first-order types
σ	::=	$\delta \mid \nu \mid \langle \nu angle \sigma$	base types
Σ	::=	$\cdot \mid \mathbf{\Sigma}, c : au$	signatures
Г	::=	$\cdot \mid \Gamma, X : \sigma$	contexts
t	::=	$c \mid t \; t' \mid X$	first-order terms
		$a_{ u} \mid \langle a_{ u} angle t \mid t @ a_{ u}$	nominal patterns

 Note that names are tagged with name-types ν, whereas metavariables are assigned σ-types in Γ.

Nominal patterns

• Two judgments: *normal* (↑), *atomic* (↓)

$$\frac{\Gamma \vdash t \downarrow \epsilon \quad (\epsilon = \delta, \nu)}{\Gamma \vdash t \uparrow \epsilon} \quad \frac{\Gamma \vdash t \uparrow \sigma}{\Gamma \vdash \langle a_{\nu} \rangle t \uparrow \langle \nu \rangle \sigma} \qquad \text{Normal}$$

$$\frac{c : \tau \in \Sigma}{\Gamma \vdash c \downarrow \tau} \quad \frac{\Gamma \vdash a_{\nu} \downarrow \nu}{\Gamma \vdash a_{\nu} \downarrow \nu} \quad \frac{\Gamma \vdash t \downarrow \tau \to \tau' \quad \Gamma \vdash u \uparrow \tau}{\Gamma \vdash t \downarrow \tau'} \quad \text{Atomic}$$

$$\frac{\Gamma \vdash t \downarrow \langle \nu \rangle \sigma \quad (a \notin FN(t))}{\Gamma \vdash t @ a_{\nu} \downarrow \sigma} \quad \text{Atomic}$$

• Equational laws (where $(a b) \cdot t = t[a/b, b/a]$:

$$(\langle \mathsf{a} \rangle t) \otimes \mathsf{b} \approx_{\beta} (\mathsf{a} \mathsf{b}) \cdot t \qquad t : \langle \nu \rangle \tau \approx_{\eta} \langle \mathsf{a} \rangle (t \otimes \mathsf{a})$$

Metavariables

- In HOPU, metavariables can only be replaced with *closed terms* (no free variables).
- We adopt this convention for nominal pattern unification also (no free names).
- This is not the case in ordinary NU: metavariables can be replaced with terms mentioning "free names".
- We will return to this at the end.

Key result

• Nominal pattern unification translates to a special case of HOPU.

$$c^{*} = c \qquad a_{\nu}^{*} = a_{\nu} (t u)^{*} = t^{*} u^{*} \qquad (\langle a_{\nu} \rangle t)^{*} = \lambda a_{\nu} t^{*} X^{*} = X \qquad (t @ a_{\nu})^{*} = (t^{*})^{\hat{}} a_{\nu}$$

Lemma 1. If $\Gamma \vdash t : \tau$ is a nominal pattern and $b \notin FN(t)$, then

$$((a b) \cdot t)^* = (t[a/b, b/a])^* = (t[b/a])^* = t^*[b/a]$$

• The translation preserves types and β and η laws and is one-to-one. So, unification can be decided by translation.

Next step

- $(-)^*$ injective & total but not surjective
- Example:

$$\lambda$$
x, y.x y $pprox \lambda$ x, y. F x y

since x used as a function.

• Nevertheless, it *can* be translated to the equivalent problem

 $\langle x \rangle \langle y \rangle app(var(x), y) \approx \langle x \rangle \langle y \rangle F @ x @ y$

Idea

- Idea: Let the base types be V_{τ} of "variable names of type τ ", E_{δ} of "expressions of type δ "
- Define $E_{\tau \to \tau'} = \langle V_{\tau} \rangle E_{\tau'}$
- Use explicit function symbols $var : V_{\tau} \to E_{\tau}$ and $app : E_{\tau \to \tau'} \to E_{\tau} \to E_{\tau'}$.
- Translate as follows:

$$c^{**} = c \qquad (t \ u)^{**} = app(t^{**}, u^{**}) x_{\tau}^{**} = var(x_{\nu_{\tau}}) \qquad X^{**} = X (\lambda x.t)^{**} = \langle x \rangle t^{**} \qquad (t^{x})^{**} = t^{**} @ x$$

Main result

• This translation is injective and preserves types, β , and η . So any HOPU problem can be solved by translation.

Theorem 2. A higher-order pattern unification problem $t \approx ? u$ in $\eta |\beta n$ normal form has a solution if and only if its translation $t^{**} \approx ? u^{**}$ has a nominal pattern unifier.

Not done yet

- Nominal patterns were invented for the purpose of relating HOPU to NU.
- Still need to relate nominal patterns with "full" nominal unification.
- In particular, can NPU problems actually be translated to NU problems?
- Two problems: NU lacks concretion, and NU unifiers can substitute open terms for metavariables

Nominal terms

Note: metavariables can mention free names!

Ground swapping

The result of applying a swapping permutation to a ground term is:

$$(a b) \cdot c = \begin{cases} b & (a = c) \\ a & (b = c) \\ c & (a \neq c \neq b) \end{cases}$$
$$(a b) \cdot c = c$$
$$(a b) \cdot (t u) = ((a b) \cdot t) ((a b) \cdot u)$$
$$(a b) \cdot \langle c \rangle t = \langle (a b) \cdot c \rangle (a b) \cdot t \end{cases}$$

For nominal terms, permutations applied to metavariables are "suspended" (since metavariables can mention names).

Ground freshness theory

Different names fresh
Anything fresh for constant
Freshness ignores function application
Fresh if bound
Fresh if fresh for body

Ground equational theory

Standard equational rules

Solving the first problem

• We can translate out concretion using the following property:

 $\langle \mathsf{a} \rangle t pprox u \iff t pprox u$ @ a

- This works only if a # u, that is, u @ a is well-formed.
- Thus, we can remove concretion by translating:

 $P[t \otimes \mathsf{a}] \iff \exists X.P[X] \land \langle \mathsf{a} \rangle X \approx t$

• Note that X may mention a.

Solving the second problem

- We need to translate nominal unifiers (∇, θ) (θ open) to nominal pattern unifiers θ' (closed)
- This is tricky; I'll show an example and gloss over details.
- Also need to be careful about empty types, but this is a standard problem.

An example

• Given

$$\langle {\rm a}\rangle \langle {\rm b}\rangle X$$
 @ b @ a $\approx \langle {\rm a}\rangle \langle {\rm b}\rangle Y$ @ a

• we assume $a, b \not\equiv X, Y$ and substitute

$$X = \langle \mathsf{b} \rangle \langle \mathsf{a} \rangle X', Y = \langle \mathsf{a} \rangle Y'$$

• This gives us a NU problem

{a, b} # { $\langle b \rangle \langle a \rangle X', \langle a \rangle Y'$ }, $\langle a \rangle \langle b \rangle X' \approx \langle a \rangle \langle b \rangle Y'$

• with solution $\langle \{b \not\equiv Y'\}, [X' = Y'] \rangle$

An example

• We have:

$$X = \langle \mathsf{b} \rangle \langle \mathsf{a} \rangle Y', Y = \langle \mathsf{a} \rangle Y', \mathsf{b} \# Y'$$

- Now we want to solve for X, Y in terms of closed metavariables.
- Since b # Y', substitute Y' = Z @ a to obtain

$$X = \langle \mathsf{b} \rangle \langle \mathsf{a} \rangle Z \, @\, \mathsf{a}, Y = \langle \mathsf{a} \rangle Z \, @\, \mathsf{a}$$

• which is the most general solution:

 $\langle a \rangle \langle b \rangle (\langle b \rangle \langle a \rangle Z @ a) @ b @ a \approx \langle a \rangle \langle b \rangle Z @ a \approx \langle a \rangle \langle b \rangle (\langle a \rangle Z @ a) @ a$

Big picture

Related work

- [Miller 91] showed that full HOU could be translated to L_{λ} programs
- [Hamana 2001,2002] studied unification/LP for binding algebra terms, similar but slightly less restricted than patterns. Apparently *NP*, exact complexity unknown
- [Urban et al 2004] discuss reducing NU to HOPU; seems much harder to translate answers back

Future work

- Translating L_{λ} to α Prolog, $FO\lambda^{\nabla}$ to NL?
- Exact complexity bounds for reductions, nominal unification? (better than $O(n^2)$?)
- HOU, β_0 unification, π -calculus structural congruence unification as nominal equational unification?

Conclusion

- Showed that HOPU can be simulated by NU via a straightforward translation.
- Reverse direction (HOPU to NU), exact complexity of NU still unclear.
- Intermediate NPU case seems interesting in its own right
- and provides an independent explanation for the pattern restriction.