Relating Nominal and Higher-Order Pattern
Unification

James Cheney
University of Edinburgh
UNIF 2005

April 22, 2005

Motivation

e Higher-order unification: studied since ca. 1970

e Undecidable, infinitary, though [Huet 1975]'s algorithm often works
well in practice

e Higher-order pattern unification [Miller 1991]: efficiently (O(n)) decid-
able, unitary special case

e Claim: HOPU *“least extension of FOU with support for name-binding”

Motivation

e Nominal unification: unifies terms with names and binding axiomatized
using swapping and freshness [Urban, Pitts, and Gabbay 2003]

e Nice properties: O(n?), unitary

e [UPGO3] observed similarities and possible reduction from NU to HOPU

Our goal

e Understand exact relationship between two approaches

e What can one do that the other cannot?

e Efficient (linear) nominal unification via HOPU?

e Semantics for higher-order patterns via nominal terms?

Higher-order patterns

e Higher-order patterns are A-terms (with “metavariables” F, &) such
that for every subterm of the form F' ¢, we have ¢ a list of distinct bound

variables.

e Yes:

AX,y.Fy x M, y.x (F'yx) (A\z.G zy)

e NO:
A,y F (yx) Axy,z.F (xyz) (Gzy)

Higher-order patterns

e We will use a refined language and type system for higher-order pat-

terns.

X,y € A Vars

c,d € (CnstSym Uninterpreted constant symbols
T = 6|t —7 types
> = | X,e:T signatures
r = |MLX:r contexts

t,u = cl|xr|tt | Axr.t Aterms

| X | t7xr flexible terms

e Note that bound variables are tagged with types, whereas metavari-
ables are typed in I".

Higher-order patterns

e Three judgments: normal (7), rigid atomic (), and flexible atomic ({})

F-¢16 THtY6 r-e7 7
FCHEt1Td THtT6 THEXMtTT— T Normal
c'TrEY FrFtlr—7 TrRulT
FCFel7T ThEx |7 FCHtu | 7/ Rigid atomic
Fr-tdr—17 (x&€FV(t))
X 7HFX{T CEt7x 47/ Flexible atomic

e Equational laws:

(Ax.t) y =g, tly/x] t:r — 1 &y M (tx) (x€ FV(t))

Higher-order patterns

e Three judgments: normal (7), rigid atomic (|), and flexible atomic ({})

FrHtls THtys rHt1 7
FTFtT6 THtT6 TEMETT—T Normal
c'TrEY FFtlr—7 TrhRulT
FCFcel7T ThEx | T FCEtuw | 7 Rigid atomic
Fr-tyr—7 (x€FV())
LX:7HFX {1 C-t"x 7 Flexible atomic

e Note: pattern restriction enforced here

Nominal patterns

e We consider nominal terms of the following restricted form:

a,b € A Names
c,d € CnstSym Uninterpreted constant symbols
T = §|lo—T first-order types
o = d|v|{v)o base types
> = | X,e:T signatures
r = - |INX:o contexts
t cltt' | X first-order terms

ay | (ay)t | t@a, nominal patterns

e Note that names are tagged with name-types v, whereas metavari-
ables are assigned o-typesin I".

Nominal patterns

e Two judgments: normal (T), atomic ()

FHtle (e=d,v) FrEtTo
CHt7Te M F (ay)t T (v)o Normal
c'TrEeEY Fr-t|lr7—7 TkFulrT
el Thay v FCHtuw | 7 Atomic
FEt] (v)o (@€ FN(t))
MMX:oFX|o [Ft@ay | o Atomic

e Equational laws (where (a b) -t = t[a/b,b/a]:
((a)t) @b =g (ab) -t t: (V)T =y (a)(t@a)

10

Metavariables

e In HOPU, metavariables can only be replaced with closed terms (no
free variables).

e We adopt this convention for nominal pattern unification also (no free
names).

e This is not the case in ordinary NU: metavariables can be replaced
with terms mentioning “free names”.

e \We will return to this at the end.

11

Key result

e Nominal pattern unification translates to a special case of HOPU.

*

C
(tu)*
X*

c
t* u*

X

a>l<

((an)t)*
(t @ a,/)*

dy
Aap.t*
(t*)AaV

Lemma l. If [¢ : 7is a nominal pattern and b ¢ FN(t), then

((ab) - t)" = (t[a/b,b/a])* = (t[b/a])" = t"[b/a]

e The translation preserves types and 8 and n laws and is one-to-one.

So, unification can be decided by translation.

12

Next step

e (—)* injective & total but not surjective

e Example:
AX, Y. XY = A, Y. F xy

since x used as a function.

e Nevertheless, it can be translated to the equivalent problem

(x)(y)app(var(x),y) = (x)(y)FF @x@y

13

|dea

e Idea: Let the base types be V. of “variable names of type 7", E5 of
“expressions of type §”

o Define E__,_» = (Vr)E

e Use explicit function symbols var : V; — Erandapp : E__ .+ —
E’T — ET,'

e Translate as follows:

c** = ¢ (tuw)™ = app(t*™, u**)
XT** — U&T(XVT) X** = X
(Ax.t)™ = (x)t** t™x)™ = t**@x

14

Main result

e This translation is injective and preserves types, 3, and n. So any
HOPU problem can be solved by translation.

Theorem 2. A higher-order pattern unification problem ¢t =7 w in nl@n-
normal form has a solution if and only if its translation ¢** ~7 u** has
a nominal pattern unifier.

15

Not done yet

e Nominal patterns were invented for the purpose of relating HOPU to
NU.

e Still need to relate nominal patterns with “full” nominal unification.

e In particular, can NPU problems actually be translated to NU prob-
lems?

e Two problems: NU lacks concretion, and NU unifiers can substitute
open terms for metavariables

16

Nominal terms

a,b € A Names
c,d € (CnstSym Uninterpreted constant symbols
> = | X,ciT signatures
r = -|INX:o contexts
t,bu = X|c|tu First-order terms (applicative style)
| (a)t| (ab)-t|a Nominal terms
C = t=ula#t Equality, freshness constraints

Note: metavariables can mention free names!

17

Ground swapping

The result of applying a swapping permutation to a ground term is:

b (a=¢c)
(ab)-c = a (b=¢)
c (a#=c#b)
(ab)-c = ¢
(@ab)-(tu) = ((ab)-t) ((@ab)-wu)
(ab) (gt = ((ab)-c)(ab)-t

For nominal terms, permutations applied to metavariables are “suspended”
(since metavariables can mention names).

18

Ground freshness theory

(a7 b)
aF#b Different names fresh
a#c Anything fresh for constant
aFt a#HFu
a##tu Freshness ignores function application
a # (a)t Fresh if bound
(a#&Eb) a#t

a # (b)t Fresh if fresh for body

19

Ground equational theory

a = a

CX C
t1 =R u; tr=up !
t1 to =~ uq uo

I~ Uu
(a)t =~ (a)u)

(ax=b) a#u t=x(ab)-u

(@)t ~ (b)u

Standard equational rules

a-equivalence for abstractions

20

Solving the first problem

We can translate out concretion using the following property:

(At~ u <= t~u@a

This works only if a #£ u, that is, u © a is well-formed.

Thus, we can remove concretion by translating:

Plt@a] <= 3X.P[X]A (a)X ~ ¢

Note that X may mention a.

21

Solving the second problem

e We need to translate nominal unifiers (V, 8) (6 open) to nominal pat-
tern unifiers 6’ (closed)

e This is tricky; I'll show an example and gloss over details.

e Also need to be careful about empty types, but this is a standard prob-
lem.

22

An example

Given

(a)(b) X @b@a~ (a)(b)Y ©@a

we assume a, b # X, Y and substitute

X = (b){(a)X"Y = (a)Y’

This gives us a NU problem

{a,b} # {(b){a) X", (2)Y"}, (a) (b) X’

with solution ({b # Y'}, [X' = Y"])

a4
Y

(a) (b)Y

23

An example

e \We have:

X ={E)Y,Y =_@aY' b#Y

e Now we want to solve for X, Y in terms of closed metavariables.

e Since b # Y/, substitute Y/ = Z @ a to obtain
X =(b)(a)Z®@a,Y = (a)Z @a

e which is the most general solution:

(a)(b)((b)(a)Z @a) @b@a~ (a)(h)Z @a = (a)(b)((a)Z @a) @a

24

Big picture

(Undecidable
HOU
A
SRR
4 @ NP-complete
(8]
° EV
N L _ _ I N _“ _______ Y,
k<]
O
£
()]
r £ o3)
s NU
7)) A
T2 o)
| :
|
HOPU &=—— NPU
N N\ Z J /

25

Related work

e [Miller 91] showed that full HOU could be translated to L, programs

e [Hamana 2001,2002] studied unification/LP for binding algebra terms,
similar but slightly less restricted than patterns. Apparently N P, exact
complexity unknown

e [Urban et al 2004] discuss reducing NU to HOPU; seems much harder
to translate answers back

26

Future work

e Translating L to aProlog, FOAY to NL?

e Exact complexity bounds for reductions, nominal unification? (better
than O(n?2)?)

e HOU, 3 unification, w-calculus structural congruence unification as
nominal equational unification?

27

Conclusion

e Showed that HOPU can be simulated by NU via a straightforward
translation.

e Reverse direction (HOPU to NU), exact complexity of NU still unclear.

e Intermediate NPU case seems interesting in its own right

e and provides an independent explanation for the pattern restriction.

28

