
Relating Nominal and Higher-Order Pattern
Unification

James Cheney

University of Edinburgh

UNIF 2005

April 22, 2005

1

Motivation

• Higher-order unification: studied since ca. 1970

• Undecidable, infinitary, though [Huet 1975]’s algorithm often works
well in practice

• Higher-order pattern unification [Miller 1991]: efficiently (O(n)) decid-
able, unitary special case

• Claim: HOPU “least extension of FOU with support for name-binding”

2

Motivation

• Nominal unification: unifies terms with names and binding axiomatized
using swapping and freshness [Urban, Pitts, and Gabbay 2003]

• Nice properties: O(n2), unitary

• [UPG03] observed similarities and possible reduction from NU to HOPU

3

Our goal

• Understand exact relationship between two approaches

• What can one do that the other cannot?

• Efficient (linear) nominal unification via HOPU?

• Semantics for higher-order patterns via nominal terms?

4

Higher-order patterns

• Higher-order patterns are λ-terms (with “metavariables” F, G) such
that for every subterm of the form F t, we have t a list of distinct bound
variables.

• Yes:

λx, y.F y x λx, y.x (F y x) (λz.G z y)

• No:

λx, y.F (y x) λx, y, z.F (x y z) (G z y)

5

Higher-order patterns

• We will use a refined language and type system for higher-order pat-
terns.

x, y ∈ A Vars
c, d ∈ CnstSym Uninterpreted constant symbols

τ ::= δ | τ → τ ′ types
Σ ::= · | Σ, c : τ signatures
Γ ::= · | Γ, X : τ contexts

t, u ::= c | xτ | t t′ | λxτ .t λ-terms
| X | tˆxτ flexible terms

• Note that bound variables are tagged with types, whereas metavari-
ables are typed in Γ.

6

Higher-order patterns

• Three judgments: normal (↑), rigid atomic (↓), and flexible atomic (⇓)

Γ ` t ↓ δ
Γ ` t ↑ δ

Γ ` t ⇓ δ
Γ ` t ↑ δ

Γ ` t ↑ τ ′

Γ ` λxτ .t ↑ τ → τ ′ Normal

c : τ ∈ Σ
Γ ` c ↓ τ Γ ` xτ ↓ τ

Γ ` t ↓ τ → τ ′ Γ ` u ↑ τ
Γ ` t u ↓ τ ′ Rigid atomic

Γ, X : τ ` X ⇓ τ
Γ ` t ⇓ τ → τ ′ (x 6∈ FV (t))

Γ ` tˆxτ ⇓ τ ′ Flexible atomic

• Equational laws:

(λx.t) y ≈β0
t[y/x] t : τ → τ ′ ≈η λx.(t x) (x 6∈ FV (t))

7

Higher-order patterns

• Three judgments: normal (↑), rigid atomic (↓), and flexible atomic (⇓)

Γ ` t ↓ δ
Γ ` t ↑ δ

Γ ` t ⇓ δ
Γ ` t ↑ δ

Γ ` t ↑ τ ′

Γ ` λxτ .t ↑ τ → τ ′ Normal

c : τ ∈ Σ
Γ ` c ↓ τ Γ ` xτ ↓ τ

Γ ` t ↓ τ → τ ′ Γ ` u ↑ τ
Γ ` t u ↓ τ ′ Rigid atomic

Γ, X : τ ` X ⇓ τ
Γ ` t ⇓ τ → τ ′ (x 6∈ FV (t))

Γ ` tˆxτ ⇓ τ ′ Flexible atomic

• Note: pattern restriction enforced here

8

Nominal patterns

• We consider nominal terms of the following restricted form:

a, b ∈ A Names
c, d ∈ CnstSym Uninterpreted constant symbols

τ ::= δ | σ → τ first-order types
σ ::= δ | ν | 〈ν〉σ base types
Σ ::= · | Σ, c : τ signatures
Γ ::= · | Γ, X : σ contexts
t ::= c | t t′ | X first-order terms

| aν | 〈aν〉t | t@ aν nominal patterns

• Note that names are tagged with name-types ν, whereas metavari-
ables are assigned σ-types in Γ.

9

Nominal patterns

• Two judgments: normal (↑), atomic (↓)

Γ ` t ↓ ε (ε = δ, ν)
Γ ` t ↑ ε

Γ ` t ↑ σ
Γ ` 〈aν〉t ↑ 〈ν〉σ Normal

c : τ ∈ Σ
Γ ` c ↓ τ Γ ` aν ↓ ν

Γ ` t ↓ τ → τ ′ Γ ` u ↑ τ
Γ ` t u ↓ τ ′ Atomic

Γ, X : σ ` X ↓ σ
Γ ` t ↓ 〈ν〉σ (a 6∈ FN(t))

Γ ` t@ aν ↓ σ Atomic

• Equational laws (where (a b) · t = t[a/b, b/a]:

(〈a〉t)@ b ≈β (a b) · t t : 〈ν〉τ ≈η 〈a〉(t@ a)

10

Metavariables

• In HOPU, metavariables can only be replaced with closed terms (no
free variables).

• We adopt this convention for nominal pattern unification also (no free
names).

• This is not the case in ordinary NU: metavariables can be replaced
with terms mentioning “free names”.

• We will return to this at the end.

11

Key result

• Nominal pattern unification translates to a special case of HOPU.

c∗ = c
(t u)∗ = t∗ u∗

X∗ = X

a∗ν = aν

(〈aν〉t)∗ = λaν.t∗

(t@ aν)∗ = (t∗)ˆaν

Lemma 1. If Γ ` t : τ is a nominal pattern and b 6∈ FN(t), then

((a b) · t)∗ = (t[a/b, b/a])∗ = (t[b/a])∗ = t∗[b/a]

• The translation preserves types and β and η laws and is one-to-one.
So, unification can be decided by translation.

12

Next step

• (−)∗ injective & total but not surjective

• Example:

λx, y.x y ≈ λx, y.F x y

since x used as a function.

• Nevertheless, it can be translated to the equivalent problem

〈x〉〈y〉app(var(x), y) ≈ 〈x〉〈y〉F @ x@ y

13

Idea

• Idea: Let the base types be Vτ of “variable names of type τ ”, Eδ of
“expressions of type δ”

• Define Eτ→τ ′ = 〈Vτ〉Eτ ′

• Use explicit function symbols var : Vτ → Eτ and app : Eτ→τ ′ →
Eτ → Eτ ′.

• Translate as follows:

c∗∗ = c
xτ
∗∗ = var(xντ)

(λx.t)∗∗ = 〈x〉t∗∗

(t u)∗∗ = app(t∗∗, u∗∗)
X∗∗ = X

(tˆx)∗∗ = t∗∗@ x

14

Main result

• This translation is injective and preserves types, β, and η. So any
HOPU problem can be solved by translation.

Theorem 2. A higher-order pattern unification problem t ≈? u in ηlβn-
normal form has a solution if and only if its translation t∗∗ ≈? u∗∗ has
a nominal pattern unifier.

15

Not done yet

• Nominal patterns were invented for the purpose of relating HOPU to
NU.

• Still need to relate nominal patterns with “full” nominal unification.

• In particular, can NPU problems actually be translated to NU prob-
lems?

• Two problems: NU lacks concretion, and NU unifiers can substitute
open terms for metavariables

16

Nominal terms

a, b ∈ A Names
c, d ∈ CnstSym Uninterpreted constant symbols
Σ ::= · | Σ, c : τ signatures
Γ ::= · | Γ, X : σ contexts

t, u ::= X | c | t u First-order terms (applicative style)
| 〈a〉t | (a b) · t | a Nominal terms

C ::= t ≈ u | a # t Equality, freshness constraints

Note: metavariables can mention free names!

17

Ground swapping

The result of applying a swapping permutation to a ground term is:

(a b) · c =

b (a = c)
a (b = c)
c (a 6= c 6= b)

(a b) · c = c
(a b) · (t u) = ((a b) · t) ((a b) · u)
(a b) · 〈c〉t = 〈(a b) · c〉(a b) · t

For nominal terms, permutations applied to metavariables are “suspended”
(since metavariables can mention names).

18

Ground freshness theory

(a 6= b)
a # b Different names fresh

a # c Anything fresh for constant
a # t a # u

a # t u Freshness ignores function application

a # 〈a〉t Fresh if bound
(a 6= b) a # t

a # 〈b〉t Fresh if fresh for body

19

Ground equational theory

a ≈ a

c ≈ c

t1 ≈ u1 t2 ≈ u2
t1 t2 ≈ u1 u2

t ≈ u
〈a〉t ≈ 〈a〉u

Standard equational rules

(a 6= b) a # u t ≈ (a b) · u
〈a〉t ≈ 〈b〉u α-equivalence for abstractions

20

Solving the first problem

• We can translate out concretion using the following property:

〈a〉t ≈ u ⇐⇒ t ≈ u@ a

• This works only if a # u, that is, u@ a is well-formed.

• Thus, we can remove concretion by translating:

P [t@ a] ⇐⇒ ∃X.P [X] ∧ 〈a〉X ≈ t

• Note that X may mention a.

21

Solving the second problem

• We need to translate nominal unifiers 〈∇, θ〉 (θ open) to nominal pat-
tern unifiers θ′ (closed)

• This is tricky; I’ll show an example and gloss over details.

• Also need to be careful about empty types, but this is a standard prob-
lem.

22

An example

• Given

〈a〉〈b〉X @ b@ a ≈ 〈a〉〈b〉Y @ a

• we assume a, b # X, Y and substitute

X = 〈b〉〈a〉X ′, Y = 〈a〉Y ′

• This gives us a NU problem

{a, b} # {〈b〉〈a〉X ′, 〈a〉Y ′}, 〈a〉〈b〉X ′ ≈ 〈a〉〈b〉Y ′

• with solution 〈{b # Y ′}, [X ′ = Y ′]〉

23

An example

• We have:

X = 〈b〉〈a〉Y ′, Y = 〈a〉Y ′, b # Y ′

• Now we want to solve for X, Y in terms of closed metavariables.

• Since b # Y ′, substitute Y ′ = Z @ a to obtain

X = 〈b〉〈a〉Z @ a, Y = 〈a〉Z @ a

• which is the most general solution:

〈a〉〈b〉(〈b〉〈a〉Z @ a)@ b@ a ≈ 〈a〉〈b〉Z @ a ≈ 〈a〉〈b〉(〈a〉Z @ a)@ a

24

Big picture

NPUHOPU

HOU

O(n)

O(n)2

Undecidable

NP-complete

NU

EVU

lo
ts

 o
f i

nt
er

m
ed

ia
te

 c
as

es
...

25

Related work

• [Miller 91] showed that full HOU could be translated to Lλ programs

• [Hamana 2001,2002] studied unification/LP for binding algebra terms,
similar but slightly less restricted than patterns. Apparently NP , exact
complexity unknown

• [Urban et al 2004] discuss reducing NU to HOPU; seems much harder
to translate answers back

26

Future work

• Translating Lλ to αProlog, FOλ∇ to NL?

• Exact complexity bounds for reductions, nominal unification? (better
than O(n2)?)

• HOU, β0 unification, π-calculus structural congruence unification as
nominal equational unification?

27

Conclusion

• Showed that HOPU can be simulated by NU via a straightforward
translation.

• Reverse direction (HOPU to NU), exact complexity of NU still unclear.

• Intermediate NPU case seems interesting in its own right

• and provides an independent explanation for the pattern restriction.

28

