
An Empirical Evaluation of Simple
DTD-Conscious Compression Techniques

James Cheney

Database Group/Digital Curation Centre
University of Edinburgh

WebDB 2005

June 17, 2005

1

Always start with a joke...

Why did the chicken cross the road?

To get to the other side!

2

Always start with a joke...

<?xml version="1.0"?>

<!DOCTYPE joke SYSTEM "joke.dtd">

<joke type="question-answer">

<setup>

Why did the chicken cross the road?

</setup>

<punch-line>

To get to the other side!

</punch-line>

<laughter type="optional"/>

</joke>

XML is verbose.
3

XML Compression

The term XML compression has been used in several different contexts:

1. minimum-length encoding for efficient XML storage and transmission

2. compact binary formats for efficient XML stream processing

3. techniques for efficient in-database XML storage and query process-
ing

For us, XML compression means (1).

4

Prior work: XML compression

• State of practice: use gzip or bzip2 (or library variants) to compress
XML as text

• [Liefke, Suciu 2000] XMill: transform XML document to bring similar
text closer together, then use gzip/bzip2

• [Cheney 2001] XMLPPM: compress XML by leveraging advanced sta-
tistical text compression techniques

– XMLPPM/variants have best published results so far.

5

DTD-conscious compression

DTD/schema information tells us what valid XML documents to expect, so
“obviously” should help compression

Assume encoder and decoder have access to (identical) DTD

DTD

Encoder

DTD

Decoder
DTD-specific
encoding

XML XML

6

Prior work: DTD-conscious compression

[Levene and Wood, 2002]: use DTD regexp content models to encode
element structure

Example: In regexp model (c + d)(ab)∗d?, encode

cabababd

as

011101

Bits indicate decisions made at choice points during validation.

7

Prior work: DTD-conscious compression

While likely much more compact than XML text, LW02 technique does not
compress better than XMLPPM

Why? XMLPPM already “learns” a lot about data structure, and uses a
more advanced statistical model than Levene and Wood’s encoding.

Moreover, LW02’s technique is not easy to incorporate into XMLPPM

Why? LW02’s encoding breaks byte alignment, confusing later text com-
pression stages

Lesson: Need to avoid stepping on toes of later stages

8

Why DTDs vs XML Schemas?

• Pro: DTDs simpler, more stable, less work to validate; techniques
should generalize

• Con: XML Schemas more descriptive (especially datatypes), appear
to be more popular now

It is a lot of work to implement DTD-conscious, let alone XML Schema-
conscious compression; is it worth the effort?

9

Our approach

Look for simple techniques for leveraging DTD information in XMLPPM.

Easier to implement, easier to test, easier to incorporate into XMLPPM.

If simple techniques are effective, more complex techniques may be
worthwhile.

Implemented in DTDPPM, an XMLPPM variant that simultaneously vali-
dates and compresses

10

Four simple optimizations

• Strip ignorable (non-PCDATA) whitespace — obvious but necessary
for good compression due to properties of underlying compressor

• Re-use element, attribute, default symbols found in DTDs

• Predict element symbols (open and close-element tags) using regular
expression context

• Sort and encode attribute lists using bitmaps; use types and default
information also

11

Example

Given element declaration

<!ELEMENT book (title,author+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>

Encode

<book>
<title>Title</title>
<author>Auth1</author>
<author>Auth2</author> </book>

as

00 ’f’ ’o’ ’o’ ’A’ ’u’ ’t’ ’h’ ’1’ 01 ... FF FF
12

Example: attribute list coding

Given attribute list declaration

<!ATTLIST elt att1 CDATA #FIXED "foo"
att2 (x|y|z) #REQUIRED
att3 CDATA #IMPLIED
att4 CDATA "bar">

we can encode the attribute list of

<elt att1=’foo’ att2=’y’ att4=’baz’ >

as

01000000 2 01 ’b’ ’a’ ’z’ 00

13

Evaluation

• “XMLPPM benchmark”: corpus used in [Cheney 2001]; mostly histori-
cal interest (5MB, mixed sources)

• NewsML: Reuters news reports (2.7MB total, 11KB avg)

• MusicXML: Musical scores (1.8MB total, 101KB avg)

• Medium data sets (Washington corpus, 3MB total, mixed sources)

• Large data sets (DBLP, XMark, PSD, Medline, 100-700MB each)

14

Setup

Experimental setup: AMD64 3000+, 512MB RAM, FC3

Measured

• compression effectiveness (compressed bits per input character)

• compression time (ns per input character)

Note: Decompression for PPM techniques ≈ compression time (but gzip,
bzip2 decompress faster than they compress)

15

xmlppm newsml musicxml uw xmark medline psd dblp
0

500

1000

1500

2000

2500
Compression speed (ns per input character)

gzip
bzip2
xmlppm
dtdppm

xmlppm newsml musicxml uw xmark medline psd dblp
0.000
0.500

1.000
1.500

2.000
2.500

3.000
Compression rate (bits per input character) gzip

bzip2
xmlppm
dtdppm

 (5.3MB) (2.7MB) (1.8MB) (3,9MB) (116MB) (127MB) (717MB) (103MB)

 (5.3MB) (2.7MB) (1.8MB) (3,9MB) (116MB) (127MB) (717MB) (103MB)

Observations

Short documents (NewsML) compress better, but re-parsing DTD is very
expensive.

Highly-structured documents (MusicXML) compress much better

Flat data sets or very large irregular documents compress no better than
bzip2, but xmlppm/dtdppm are faster than bzip2

XMark compresses no better, but may not be a realistic compression bench-
mark (since randomly generated)

16

Which technique is best?

No single technique dominates.

In particular, improvement is not all from WS stripping; each technique can
account for 0-80% of improvement.

Need a variety of techniques because XML data structure varies widely.

WS stripping is probably the best value for effort: everyone should (and
many already) do it when compressing XML.

17

Conclusions

DTD information: “obviously” should be useful for compression

However, real improvements over advanced XML-only techniques do not
come easily

We have explored many alternatives and identified four that do work (in the
context of one XML compressor, XMLPPM).

Future work: Improving efficiency, more advanced techniques, XML Schema

http://sourceforge.net/projects/xmlppm

18

