
Mechanized Metatheory
Model-Checking

WMM 2006

James Cheney

9/21/06

Mechanized Metatheory Model-Checking – p. 1/25



Mechanized (partial) Metatheory
Model-Checking

WMM 2006

James Cheney

9/21/06

Mechanized Metatheory Model-Checking – p. 2/25



A thought experiment

Let’s say, for whatever reason, you’ve been imprisoned
in cell with an IBM PCjr connected to a candy machine
and a poison machine.

Alice, of cryptography fame, slips under the door a
language reference manual together with a formal proof
(in your favorite system) that the language is “safe”

meaning; when run, no program crashes (thereby
activating the poison machine).

However, Alice also advises you that the language has
never been run or tested. You can’t do a “dry run”.

Your task: program the machine to produce candy so
you don’t starve, while also avoiding poisoning.

What do you do? Assume you have infinite coffee,
whiteboards, reference manuals, etc.

Mechanized Metatheory Model-Checking – p. 3/25



Experimental type theory — an oxymoron?

Any current verification approach introduces a “gap”
between formally verified language and implemented
version.

Type systems are theories of programming language
behavior.

Testing theories against reality by attempting
falsification and independent confirmation is a basic
scientific principle.

Though weaker than formal verification of “real” system,
rigorous testing complements informal verification (or
verification of abstract system).

Mechanized Metatheory Model-Checking – p. 4/25



Find the bug

λ→× typing

Γ ` () : unit

x:τ ∈ Γ
Γ ` x : τ

Γ ` e1 : τ → τ ′ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
Γ ` e : τ

Γ ` λx.e : τ → τ ′

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2

Γ ` π1(e) : τ1

Γ ` e : τ1 × τ2

Γ ` π2(e) : τ1

Mechanized Metatheory Model-Checking – p. 5/25



Find the bugs

λ→× typing

Γ ` () : unit

x:τ ∈ Γ
Γ ` x : τ

Γ ` e1 : τ → τ ′ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
(∗)

Γ ` e : τ
Γ ` λx.e : τ → τ ′

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2

Γ ` π1(e) : τ1

Γ ` e : τ1 × τ2

Γ ` π2(e) : τ1

(∗)

Claim: Trying to verify correctness is not the fastest way
to find such bugs.

Mechanized Metatheory Model-Checking – p. 6/25



Find the bugs, reloaded

λ→× typing

Γ ` () : unit

x:τ ∈ Γ
Γ ` x : τ

Γ ` e1 : τ → τ ′ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
(∗)

Γ, x:τ ` e : τ

Γ ` λx.e : τ → τ ′
(∗∗)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2

Γ ` π1(e) : τ1

Γ ` e : τ1 × τ2

Γ ` π2(e) : τ1

(∗)

Claim: Trying to verify correctness is not the fastest way
to find such bugs.

Also, it is dangerous to intentionally add errors to an
example; it keeps you from looking for the unintentional
ones.

Mechanized Metatheory Model-Checking – p. 7/25



Example

Consider reduction step π2(1, ()) → ()

Then we have

· ` 1 : int · ` () : unit

· ` (1, ()) : int × unit

· ` π2(1, ()) : int
(∗)

But no derivation of

· ` () : int

If only we had a way of systematically searching for
such counterexamples...

Mechanized Metatheory Model-Checking – p. 8/25



Metatheory model-checking?

Goal: Catch “shallow” bugs in type systems, operational
semantics, etc.

Model checking: attempt to verify finite system by
searching exhaustively for counterexamples

Highly successful for validating hardware designs
More helpful in (common) case that system has bug

Partial model checking: search for counterexamples
over some finite subset of infinite search space

Produces a counterexample if one exists, but cannot
verify system correct

Mechanized Metatheory Model-Checking – p. 9/25



Pros

Finds shallow counterexamples quickly

Separates concerns (researchers focus on efficiency,
engineers focus on real work)

Lifts user’s brain out of inner loop

Easy to use; theorem prover expertise/Kool-AidTM not
required

Easy to implement naive solution

(Buzzword-compatible? Guilty as charged)

Mechanized Metatheory Model-Checking – p. 10/25



Cons

Failure to find counterexample does not guarantee
property holds

Hard to tell what kinds of counterexamples might be
missed

“Nontrivial” bugs (e.g. ∀/ref, ≤ /ref) currently beyond
scope

Mechanized Metatheory Model-Checking – p. 11/25



Idea

Represent object system in a suitable meta-system.

Specify property it should have.

System searches exhaustively for counterexamples.

Meanwhile, you try to prove properties (or get coffee,
sleep, whatever).

Mechanized Metatheory Model-Checking – p. 12/25



Realization

Represent object system in a suitable meta-system.
I will use pure αProlog programs (but many other
possibilities)

Specify property it should have.
Universal Horn (Π1) formulas can specify type
preservation, progress, soundness, weakening,
substitution lemmas, etc.

System searches exhaustively for counterexamples.
Bounded DFS, negation as failure

Meanwhile, you try to prove properties (or get coffee,
sleep, whatever).

My office has an excellent coffee machine.

Mechanized Metatheory Model-Checking – p. 13/25



The “code” slide

αProlog: a simple extension of Prolog with nominal
abstract syntax.

var : name → exp. app : (exp, exp) → exp. lam : 〈name〉exp → exp.

tc(G, varX, T ) :− List.mem((X, T ), G).

tc(G, app(M,N), U) :− existsT.tc(G, M, arr(T, U)), tc(G, N, T ).

tc(G, lam(〈x〉M), arr(T, U)) :− x # T, tc([(x, T )|G], M, U).

sub(var(X), X, N) = N.

sub(var(X), Y, N) = var(Y ) :− X # Y.

sub(app(M1, M2), Y, N) = app(sub(M1, Y, N), sub(M2, Y, N)).

sub(lam(〈x〉M), Y, N) = lam(〈x〉sub(M,Y, N)) :− x # (Y, N).

Equality coincides with ≡α, # means “not free in”, 〈x〉M
is an M with x bound.

Mechanized Metatheory Model-Checking – p. 14/25



Problem definition

Define model M using a (pure) logic program P .

Consider specifications of the form

∀ ~X.G1 ∧ · · · ∧ Gn ⊃ A

A counterexample is a ground substitution θ such that

M � θ(G1) ∧ · · · ∧ M � θ(Gn) ∧ M 6� θ(A)

The partial model checking problem: Does a
counterexample exist? If so, construct one.

Obviously r.e.

Mechanized Metatheory Model-Checking – p. 15/25



Implementation

Naive idea: generate substitutions and test; iterative
deepening.

Write “generator” predicates for all base types.

For all combinations, see if hypotheses succeed while
conclusion fails.

?− gen(X1) ∧ · · · ∧ gen(Xn) ∧ G1 ∧ · · · ∧ Gn ∧ not(A)

Problem: High branching factor
even if we abstract away infinite base types

Can only check up to max depth 1-3 before boredom
sets in.

Mechanized Metatheory Model-Checking – p. 16/25



Implementation (II)

Fact: Searching for instantiations of variables first is
wasteful.

Want to delay this expensive step as long as possible.

Less naive idea: generate derivations and test.

Search for complete proof trees of all hypotheses

Instantiate all remaining variables

Then, see if conclusion fails.

?− G1 ∧ · · · ∧ Gn ∧ gen(X1) ∧ · · · ∧ gen(Xn) ∧ not(A)

Raises boredom horizon to depths 5-10 or so.

Mechanized Metatheory Model-Checking – p. 17/25



Demo

Debugging simply-typed lambda calculus spec.

Mechanized Metatheory Model-Checking – p. 18/25



Experience

Implemented within αProlog; more or less a hack...

Checked λ→× example, up to type soundness

Checked syntactic properties (lemmas 3.2-3.5) from
[Harper & Pfenning TOCL 2005]

NB: Found typo in preprint of HP05, but it was
already corrected in journal version

Since then, have implemented and checked Ch. 8, 9,
some of Ch. 11 of TAPL too

NB: Published, high-quality type systems are probably
not the most interesting test cases...

Mechanized Metatheory Model-Checking – p. 19/25



Experience (II)

Writing Π1 specifications is dirt simple
They make great regression tests
I now write them as a matter of course

Order of goals makes a big difference to efficiency;
optimization principles not clear yet.

Not enough to check “main” theorems

Checking intermediate lemmas helps catch bugs earlier

Bounded DFS also useful for exploration, “yes, ¬φ can
happen”

Mechanized Metatheory Model-Checking – p. 20/25



Is this trivial?

Tried a few “realistic” examples recently

λzap: checked lemmas 2–6 up to depth 7–8; two faults
break type pres at depth 10

Naive Mini-ML with references: boredom horizon 9;
smallest counterexample I can think of needs depth 18.

Back of envelope estimate: would need somewhere
between 191 and 4.4 million years to find
I guess I need a faster laptop.
Bright side: blind search massively parallelizable...

At this point, probably trivial; won’t catch any “real” bugs
in finished products.

But perhaps useful during development of type system

Mechanized Metatheory Model-Checking – p. 21/25



Better ideas

There are many smarter things one could try.

Random search?

Random abstract interpretation → finite model
checking?

Better resource bounding?

Modes and other optimizations?

Negation elimination?

Richer constraints (finite maps, substitution)?

Same idea, different framework?

Mechanized Metatheory Model-Checking – p. 22/25



Random interpretation

Fact: Π1 formula φ valid ⇐⇒ true in all models =⇒ φ
true in a finite, random model

Hence, if φ fails in a random model then φ is invalid.

Idea: Generate a finite interpretation A randomly

Compute model PA of P in A via finite lfp iteration

Check φ in PA.

If φ fails, search for a “real” counterexample, hopefully
using counterexample to PA

� φ as guide

Mechanized Metatheory Model-Checking – p. 23/25



Negation elimination

Using negation as finite failure is tricky
need to make sure all variables are instantiated
properly.
can’t delay expensive steps past negated subgoals

Idea: Use negation elimination to avoid NFF?

?− G1 ∧ · · · ∧ Gn ∧ not_A ∧ gen(X1) ∧ · · · ∧ gen(Xn)

Have been talking to Alberto Momigliano about this...

initial manual-negation-elimination experiments seem
promising...

Mechanized Metatheory Model-Checking – p. 24/25



Conclusions

Model checking/counterexample search techniques are
useful for catching shallow bugs

Improvement needed to improve coverage

Many refinements possible

Checker implemented in αProlog; will be in next release

Mechanized Metatheory Model-Checking – p. 25/25


	A thought experiment
	Experimental type theory --- an oxymoron?
	Find the bug
	Find the bug
ed {s}
	Find the bug
ed {s, reloaded}
	Example
	Metatheory model-checking?
	Pros
	Cons
	Idea
	Realization
	The ``code'' slide
	Problem definition
	Implementation
	Implementation (II)
	Demo
	Experience
	Experience (II)
	Is this trivial?
	Better ideas
	Random interpretation
	Negation elimination
	Conclusions

