
αProlog User’s Guide & Language Reference
Version 0.3
DRAFT

James Cheney

October 24, 2003

Contents

1 Introduction 3
1.1 What αProlog Is For . 3
1.2 Background . 3
1.3 An Example Program . 4

I User’s Guide 7

2 Tutorial 8
2.1 Running the Interpreter . 8
2.2 Built-in Data and Types . 8
2.3 Unification and Freshness . 9
2.4 Lists and Namespaces . 11
2.5 Defining New Types . 12
2.6 Predicates . 13
2.7 Definitions . 14
2.8 Functions . 14

3 Running αProlog 17
3.1 Debugging Options . 17
3.2 Command Line Options . 17
3.3 Directives . 17

II Language Reference 19

4 Syntax 20
4.1 Lexical Structure . 20

4.1.1 Whitespace . 20
4.1.2 Comments . 20
4.1.3 Directives . 21
4.1.4 Symbols . 21
4.1.5 Literals . 22

4.2 Abstract Syntax . 22
4.2.1 Terms . 22

1

4.2.2 Types . 23
4.2.3 Formulas . 23
4.2.4 Declarations . 24

5 Type System 25
5.1 Basic Types . 25
5.2 Compound Types . 25
5.3 Polymorphism . 25

6 Language Extensions 26

7 Libraries 27
7.1 Base . 27
7.2 List . 27
7.3 Option . 28

2

Chapter 1

Introduction

1.1 What αProlog Is For

Names, binding, and scope are perennial problems in many programming tasks, in-
cluding implementing compilers and interpreters as well as symbolic mathematical
tools and theorem proving systems. Few languages provide any assistance for pro-
gramming with names, so programmers must reinvent the wheel every time a new
system which makes use of names is built. This is often a tedious and error-prone
process; also, the resulting programs tend to be more difficult to read and analyze.
Programming language support for key data structures is crucial to writing clear,
optimizable code in traditional domains such as matrix computations (via arrays),
databases (via records), large-scale interactive systems (via objects), and algebraic
symbolic computation (via ML-style algebraic datatypes or Prolog-style terms): these
features have been standard in high-level programming languages for decades. The
purpose of αProlog is to provide the same kind of built-in support for names in a
practical logic programming language.

1.2 Background

αProlog is a logic programming language with a built-in notion of names, name
binding, and equivalence up to renaming. αProlog is based on a logical theory of
names and binding called nominal logic, that has its own semantics independent of
logic programming. In this logic, it is possible to define relations that express precisely
what we intuitively mean when we write programs that manipulate names, without
giving up on determinism and ease of reasoning about programs. The clauses and
goals allowed in αProlog are a simple subset of this logic, corresponding to Horn
clauses and goals extended with a few additional operators. These operators include
a freshness predicate a # t, which checks that a name a does not occur in a term t,
and a new-quantifier Na.φ, which expresses that a is a new name in φ (that is, a only
appears in φ where it is explicitly mentioned; it cannot be “hidden” in any of φ’s free
variables).

αProlog also has a non-standard view of equality and unification. Terms in

3

αProlog include a variable-binding operator a\t, which expresses that the name a
is bound (or abstracted) in term t. This is not λ-abstraction; that is, the resulting
term is not a function. Instead, however, terms are considered equal if corresponding
abstractions can be renamed to be syntactically equal (without capturing any other
variables). Thus, a\(a, b) = c\(c, b) is true in αProlog; in fact, there is no way to dis-
tinguish the terms; on the other hand, a\(a, b) = b\(b, b) does not hold, because the
terms have different binding structure. This form of “equality up to (safe) renaming”
is usually referred to as “α-equivalence”, and that is where the α in αProlog comes
from.

1.3 An Example Program

In this section we develop an example αProlog program which demonstrates how to
encode a simple language with names, binding, and capture-avoiding substitution.

For our first example, consider the typed λ-calculus (a notation for anonymous
function definitions). Its syntax is summarized by the following grammar

e ::= x | e1 e2 | λx.e

τ ::= α | τ → τ

where expression variables x and type variables α are drawn from disjoint, countably
infinite sets. We can encode the syntax of λ-terms using declarations

id : name_type.

exp : type.

var : id -> exp.

app : (exp,exp) -> exp.

lam : id\exp -> exp.

tid : name_type.

ty : type.

tvar : tid -> type.

arrow : (ty,ty) -> ty.

Here, id and tid are declared to be name types, tnat is, types containing a countable
number of distinct names. As in Prolog identifiers starting with an upper-case letter
are considered to be variables; undefined lower-case identifiers are considered to be
names. The types exp and ty are plain (data)types. We can describe the inhabitants
of datatypes (but not name types) via further declarations of constants and function
symbols. In this case, there are three function symbols for expressions: variables,
applications, and lambdas, and two for types: type variables and function types. The
type id\exp that is used as the domain of lam is called an abstraction type, and
it denotes the set of expressions with one identifier abstracted. These declarations

4

describe how well-formed terms can be constructed: for example, lam(x\var(x)) is
an encoding of the identity function and arrow(tvar(a), tvar(a)) is an encoding of a
type for the identity function.

Since identifiers, expressions, and types are just terms, αProlog can be used to
define interesting functions and relations among such terms. These definitions tend to
be significantly closer to their “paper” presentations than is usual for either functional
or logic languages. For example, the following rules express the syntax and typability
relation for simply-typed λ-terms:

x :A ∈ Γ
Γ . x :A

Γ . M :A → B Γ . N :A
Γ . MN :B

{x : A} ∪ Γ . M :B

Γ . λx.M :A → B

The equivalent αProlog program encoding these rules is

pred of([(id,ty)],exp,ty)

of(Gamma,var(X),A) :- mem((X,A),Gamma).

of(Gamma,app(M,N),B) :- of(Gamma,M,arrow(A,B)),

of(Gamma,N,A).

of(Gamma,lam(x\M),arrow(A,B)) :- x # Gamma,

of([(x,A)|Gamma],M,B).

The first line declares the argument types for the predicate of : the first argument
is a list of identifier-type pairs representing a context, the second is an expression,
and the third a type. The remaining lines are clauses that define the behavior of
this predicate. As can be seen, each clause is almost a literal translation of the
corresponding inference rule, with x : A ∈ Γ written as mem((X,A),Gamma), Γ . M :A
written as of(Gamma,M,A), and x /∈ FV (Γ) written x # Gamma.

In Prolog, we might instead encode a binding λx.e[x] as a term λ(“x”, e[“x”),
that is, using strings or some other data for variables. In αProlog, we think of λ
as a term constructor mapping abstraction terms x\e to λx.e. This view of the
world is somewhat similar to that adopted in higher-order abstract syntax, where λ
is (somewhat circularly) defined as a constructor with type (exp → exp) → exp. But
although there are similarities (for example, both function variables and abstracted
names admit equality up to α-equivalence), the abstraction type is quite distinct from
the function type: for example, there is no built-in application of abstractions, and
names are ground terms that can escape the scope of abstractions in limited ways (as
does x in the last clause of of).

Another interesting relation (or function) on λ-terms is substitution. For example,
(x (λy.y))[x/z] = z (λy.y). In the λ-calculus, we ask that substitution not essentially
change the “meaning” of a term (as a function). To illustrate this point, consider the
following flawed definiton of substitution:

x[e/x] = e

y[e/x] = y (x 6= y)

(e1 e2)[e/x] = e1[e/x] e2[e/x]

(λy.e1)[e/x] = λy.e1[e/x]

5

Under this definition, substituting z for x in the term λx.z+x could result in λx.x+x,
which is a different function. This can be seen by α-renaming λx.z + x to λy.z + y,
in which substituting x for z results in λy.x + y. The reason is that in the obvious
approach to substitution, variables can be “captured” when substitution passes under
a binding (as x is when we pass under the λx binder).

The classical approach to this problem is to assume that bound variables are
always “renamed away” from the all free variables (this is called Barendregt’s variable
convention). Subject to this convention, the above naive definition becomes correct:
equivalently, we can write the fourth clause as

(λy.e1)[e/x] = λy.e1[e/x] (y /∈ FV (e) ∪ {x})

However, this is not precise enough for a Prolog program to implement, because the
implicit, highly nondeterministic “renaming away” step needs to be made explicit.
Renaming itself also needs to avoid variable capture, so for a mechanical implementa-
tion of substitution it is necessary to write down explicitly how to rename/substitute
without capture. A typical definition of “capture-avoiding” substitution uses a rule

(λy.e1)[e/x] = λz.e1[z/y][e/x] (z /∈ FV (e) ∪ {x})

This definition renames aggressively, picking a fresh variable z whenever a λ binding
is encountered.

However, there are problems with turning this definition into a Prolog-style declar-
ative program. For example, the choice of z is very open-ended, and to choose fresh
variables z efficiently it is necessary to maintain a “store” of unused variable names.
This store is passed as an extra argument and return value of subst. Also, this defi-
nition causes multiple passes to be made over the term because of the renaming. To
reduce this to a single pass, we would have to add an additional argument mapping
renamed variables to their renamings.

In αProlog, on the other hand, we are able to write a definition that is essentially
the same as the declarative definition, yet correct:

func subst(exp,exp,id) = exp.

subst(var(x),E,x) = E.

subst(var(y),E,x) = var(y) :- y # x.

subst(app(E1,E2),E,x) = app(subst(E1,E,x),subst(E2,E,x)).

subst(lam(y\E1),E,x) = lam(y\subst(E1,E,x)) :- y # E, y # x.

where we read y # x as y 6= z and y # (E, x) as y /∈ FV (E)∪(x). In fact, in αProlog,
syntactically distinct name identifiers like x, y are assumed to denote distinct names,
so the y # x constraints are redundant. On the other hand, we cannot assume that
bound variables always are distinct from other variables in scope, so we must check
y # E in the fourth clause. Because unification in αProlog is up to α-equivalence,
the implicit renaming step from the declarative definition remains implicit.

6

Part I

User’s Guide

7

Chapter 2

Tutorial

2.1 Running the Interpreter

The current implementation of αProlog is an interpreter written in Ocaml and using
no libraries or extensions. Therefore, it runs on any computer system that Ocaml
3.06 runs on. If you haven’t already, get the αProlog source distribution and install
it according to the accompanying instructions.

After starting αProlog, you will see a banner followed by:

AlphaProlog 0.3

?-

The toplevel loop prompt ?- indicates that αProlog is expecting a query. In the
toplevel loop, you can’t define any new types, predicates, or functions, or add any
facts or clauses to the database. Since no external declarations have been loaded, we
can only ask queries involving built-in predicates/functions.

Let’s start with evaluation (is). Type

?- X is 1 + 2.

You should see

Yes.

X = 3

The interpreter now waits for further input from you. If you type ; in response to
this, the interpreter looks for another solution. In this case, there isn’t one:

;

No.

2.2 Built-in Data and Types

Many of the built-in datatypes of αProlog are familiar from Prolog-like and ML-
like languages. They include booleans (written tt and ff), integers (-1,0,1,2,...),

8

character constants (’a’,’b’,’c’), string constants ("abc"), the unit type (with the
sole value ()), pairs ((1,2), (’a’,1)), and lists ([], 1::[2], [1,2,3], [1|[2,3]]).

In addition, αProlog supports name and abstraction types. There are no built-in
name types, but new name types can be declared as follows:

id : name_type.

This says that id is a name type. Name types are inhabited by infinitely many
distinct but “indeterminate” names. We can always come up with a new name of
type id, just by writing down an unused (lower-case) identifier in a place where an
id is expected. In addition to being placed in user-defined data structures, names
can be used in transpositions, abstractions, and freshness tests.

A transposition is a term of the form (a~b) T where a, b are names (of the same
type) and T is an arbitrary term. The result is a term with all occurrences of a

and b swapped. Any variables in T will be annotated with the transposition as well,
indicating that once the variable is instantiated the delayed transposition should be
applied to it. For example,

?- X = (a~b) (a,b,c)

Yes.

X = (b,a,c)

An abstraction is a term of the form a\T where a is a name and T is a term.
Abstractions describe a set of α-equivalent terms (that is, equivalent up to consistent
renaming). Two abstractions are equal if they describe the same such set. For
example,

?- a\a = b\b.

Yes.

?- a\b = b\b.

No.

?- a\b = c\b.

Yes.

It is important to point out that logic variables are not allowed on the left hand
side of an abstraction, or as the names in a transposition. Thus, terms like X\X and
(X Y)X are not well-formed.

2.3 Unification and Freshness

αProlog provides two special built-in predicates, = (unification) and # (freshness).
For example, unification for ground terms is just syntactic equality:

?- 1 = 1.

Yes.

?- 1 = 0.

No.

9

Free variables can be instantiated to terms to solve the equations:

?- 1 = X, X = Y, Y = Z.

Yes.

X = 1

Y = 1

Z = 1

?- X = 1, Y = plus X 0, Y = X.

No.

In the last query, the Y = X subgoal fails because plus 1 0 is syntactically different
from 1.

Freshness tests are a propositions of the form a # T, where a is a name and T is a
term. They test that the name a does not occur free in T (that is, all occurrences are
enclosed by an abstraction of a.) Any two syntactically different names are assumed
to be distinct (in contrast to logic variables, which might eventually be identified
through unification.) For example,

?- a # a.

No.

?- a # b.

Yes.

?- a # b\a.

No.

?= a # b\b.

Yes.

?- a # a\a.

Yes.

?- a # (a~b) a.

Yes.

As the last example illustrates, freshness checking occurs after any transpositions
have been applied.

Testing whether terms involving abstractions are equal is more complex than
ordinary first-order unification such as Prolog uses. For example:

?- x\y\(X1,y) = y\x\(x,X1).

No.

?- x\y\(X2,y) = y\x\(x,X3).

Yes.

X2 = x

X3 = y

The results of unification can contain delayed permutations as well as additional
freshness constraints.

10

?- x\X = y\Y.

Yes.

X = (x~y)Y

?- x\X = y\X.

Yes.

x # X.

y # X.

?- x\y\(y,X6) = x\x\(x,X7).

Yes.

X6 = (x~y)X7

y # X7

In the last example, if X7 were instantiated to y, then we would have x\y\(x,x) = x\x\(x,x),
but the x’s in the first term are bound to the outer x whereas in the second term they
are bound to the inner x.

Similarly, freshness tests of non-ground terms might generate new constraints.

?- x # x\Y.

Yes.

?- x # y\Y.

Yes.

x # Y

?- x # y\Y, x = Y.

No.

2.4 Lists and Namespaces

αProlog has a small list library. To import the list library, do:

?- #use "list.apl".

This indicates that list.apl defines a namespace List which contains several pred-
icates defining common list operations. To refer to list predicates within the names-
pace, we prefix them with List..

For example, to append two lists we can do

?- List.append([1,2],[3,4],X).

Yes.

X = [1,2,3,4]

Of course, as usual in logic programming we can also run predicates “backwards” and
nondeterministically:

11

?- List.append(X,Y,[1,2,3,4]).

Yes.

X = []

Y = [1,2,3,4]

;

Yes.

X = [1]

Y = [2,3,4]

;

...

or solve for unknowns:

?- List.append([1|Y],Y,[1,X,4]).

Yes.

X = 4

Y = [4]

Finally, we can “open” a namespace, which makes all of its identifiers (including
other namespaces) bound locally so that we don’t have to refer to them using explicitly
qualified names. For example:

?- #open List.

?- append([1|Y],Y,[1,4,4]).

Yes.

Y = [4]

Warning: Using open incautiously can result in strange behavior. It shadows any
previous identifier declarations in the current namespace with new ones; however,
existing definitions that referred to the old identifiers will not change. Thus, had we
already defined our own version of append (possibly having a different type signature),
after opening List we can no longer refer to this definition by name. However had
we also defined a predicate foo in terms of the shadowed append, foo would continue
to work.

In the rest of this tutorial we assume that List has been opened.

2.5 Defining New Types

Let’s define a type representing simple λ-expressions. Since you can’t enter declara-
tions at the toplevel, we need to put this into a file. Call it tutorial.apl.

To reflect the expression syntax, we need to define two types: a name type for
variable identifiers, and the datatype of expressions.

id : name_type

exp : type.

12

This says that id is a name type and exp is a datatype.
Now we want to define the constructors for exp.

var : id -> exp.

app : (exp,exp) -> exp.

lam : (id\exp) -> exp.

This declares function symbols var, app, and lam with the corresponding types. Thus,
given an identifier v, we can construct an expression by applying the constructor var
to it; similarly given expressions E1 and E2 we can form expression app(E1, E2) and
given an expression E and a name a we can form an expression lam(a\E).

Now save the file and start αProlog as follows:

$ aprolog tutorial.apl

You should see:

alpha-Prolog 0.3

Reading file tutorial.apl...

?-

Try entering a few λ-terms (with or without meta-variables) and comparing them for
equality or testing freshness.

?- lam (a\var a) = lam (b\var b).

Yes.

?- lam (a\var A) = lam (b\var A).

Yes.

a # A

b # A

2.6 Predicates

Now let’s define a simple predicate on λ-terms: enumerating a list containing all free
variables (though possibly with duplicates). Put the following in tutorial.apl:

pred fvs (exp,[var]).

fvs(var(v),[v]).

fvs(app(E1,E2),L) :- fvs(E1,L1),fvs(E2,L2),append(L1,L2,L).

fvs(lam(x\E),L) :- fvs(E,L’), remove(x,L’,L).

Note that we use the list library function to remove (all occurrences of) x from the
list in the third case.

Fire up αProlog again and try a few queries.

13

?- fvs(lam (x\var x),X).

Yes.

X = []

?- fvs(lam (x\var y),X).

Yes.

X = [y]

?- fvs(app (var y) (var y),X).

Yes.

X = [y,y]

Note that duplicate names in the term result in duplicate list entries.

2.7 Definitions

“cnst”

2.8 Functions

Now let’s take on a harder problem: defining capture-avoiding substitution. We’ll
define substitution as a function since we usually want to run it “forward” (i.e., given
a term and a substitution, construct the result) rather than “reverse”.

To declare a function write (in tutorial.apl):

func subst(tm,[(id,tm)]) = tm.

This expresses that subst is a function symbol taking two arguments: a term and a
list of identifier-term pairs (i.e., the subsitution), and producing a term. Now let’s
define cases. Clauses for function definitions are of the form f(t1, . . . , tn) = t : − G,
where f is the function being defined, the ti are the inputs for which the clause defines
a value, t is the value, and G is a subgoal that must be solved for the clause to apply.
For example

subst(var(A),S) = T :- mem((A,T),S).

subst(var(A),S) = var A :- not(mem(A,_),S).

subst(app(T1,T2),S) = app(subst(T1,S),subst(T2,S)).

subst(lam(x\T),S) = lam(x\subst(T,S)) :- x # S.

The first clause asserts that if A is bound to a term T in S then T is the result.
The second, that if A is not so bound, then var(A) is the result. The third clause
just propagates subst past an application. The final clause propagates subst past a
lam, provided the bound variable x is not mentioned in S. Since x appears only in an
abstraction, it is always possible to satisfy this constraint by renaming x (although at
times renaming may not be necessary). In fact, this is what αProlog does by default.

Is this definition really correct? Let’s try some examples.

14

?- X = subst(var(a), [(a,var(b))]).

Yes.

X = var b

?- X = subst(lam(a\var(a)), [(a,var(b))]).

Yes.

X = lam (a\var(a))

?- X = subst(lam(b\var(a)), [(a,var(b))]).

Yes.

X = lam (b1\var(b))

;

No.

Note that in the final case, the bound variable b has been freshened to b1. Remember
that when a name is used in an abstraction, we lose control over its specific value since
the abstraction really represents an equivalence class of α-equivalent terms. The last
example also verifies that a simple form of variable capture is actually impossible.
That is, it’s not the case that subst happens to get the right answer the first time it
succeeds; in fact, no alternative wrong answers are possible.

Now this definition of subst has some disadvantages: for example the first two
clauses overlap and may repeat the membership test mem((A, V), S). We can make
this more efficient using αProlog’s “if-then-else” construct:

subst(var A,S) = T :- mem ((A,V),S) -> T = V | T = var(A).

Similarly, we can collapse the other two clauses into one completely general case using
disjunction:

subst(T,A) = T’ :- (T = var(A),

if mem((A,V),S)

then T = V

else T = var(A)

; T = app(T1,T2),

T’ = app(subst(T1,S),subst(T2,S)))

; T = lam(x\T1),

x # S,

T’ = lam(x\subst(T1,S)))

Another alternative would be to replace the call to mem with a substitution-
specific lookup function:

func lookup(id,[(id,exp)]) = exp.

lookup(A,[]) = var A.

lookup(A,[(A,V)|S]) = V.

lookup(A,[(B,V)|S]) = lookup(A,S).

...

subst(var A,S) = lookup(A,S).

15

Both this and the earlier definition have the potential disadvantage that if dupli-
cate bindings are present in a substitution (e.g., s = [(a, t1), (a, t2)]), then lookup or
mem can succeed with multiple possible answers. We therefore regard substitutions
to be well-formed only if there are no such duplicates.

16

Chapter 3

Running αProlog

3.1 Debugging Options

3.2 Command Line Options

3.3 Directives

αProlog provides several directives that control the interpreter. In this section we list
them and drscribe how they work.

• #quit The #quit directive makes the interpreter stop running.

• #help The #help directive prints a help message explaining basic commands.

• #type exp The #type directive typechecks its input and, if the typechecking is
successful, prints out a typing judgment that shows the most general types of
the expression’s variables and names, as well as the type of the expression itself.

• #trace n The #trace directive sets the trace level of the interpreter, which is a
number between 0 and 3 indicating how much information is printed out during
proof search. The default is trace level 0, no information. Trace level 1 prints
out each atomic goal as it is solved, as well as backtracking information. Trace
level 2 prints out all goals. Trace level 3 prints out all attempted resolutions.

• #break sym The #break directive sets a breakpoint at a given predicate named
by sym. Execution will halt whenever a successful resolution step with sym as
its subject occurs. In concert with #trace, this can be used for debugging. If
no argument is given, then all breakpoints are listed.

• #clear sym The #clear directive clears a breakpoint. If no argument is given,
all breakpoints are cleared.

• #use filename The #use directive instructs the intepreter to open and read an
external αProlog source file, processing all the declarations, clauses and goals

17

therein as if they had been typed at the interpreter prompt. The main difference
is that queries are printed out as they are executed (to make the output more
intelligible) and that the interpreter only looks for at most one solution.

18

Part II

Language Reference

19

Chapter 4

Syntax

4.1 Lexical Structure

The text of an αProlog program is divided into contiguous tokens based on the fol-
lowing classifications. At every step, the longest matching rule applies.

4.1.1 Whitespace

Whitespace is a nonempty sequence of space, tab, or newline characters. Except
where noted otherwise, whitespace is ignored.

4.1.2 Comments

There are three style of comments in αProlog:

• Prolog-style line comments: lines starting with %, as

% comment

% comment

noncomment

%comment

• C/Prolog-style nonnested block comments delimited with /* and */, as

/* comment

comment */

noncomment

/* comment */

• ML-style nested block comments delimited with (* and *), as

(* comment

(* comment *) *)

noncomment

(* comment *)

20

Comments are always ignored in αProlog.

4.1.3 Directives

Directives are commands to the interpreter or compiler. Their behavior is implementation-
dependent; implementations may simply ignore them. A directive is a string begin-
ning with ‘#’ and ending with ‘.’. Directives may occupy multiple lines. The first
non-whitespace character on a line containing a directive must be the leading ‘#’,
and the last non-whitespace character on the line ending the directive must be the
terminating ‘.’.

4.1.4 Symbols

Keywords

The following strings are reserved words (keywords) in αProlog:

cnst exists ff forall func infixl

infixn infixr is namespace name_type new

not pred true tt type

Delimiters

αProlog recognizes the following delimiters:

() [] { }

Operators

αProlog reserves the following operator symbols:

= | , => -> --> :- ? ! : ; # \ ::

Identifiers

A textual identifier is a nonempty sequence of letters, digits, apostrophes, and under-
scores, starting with a letter or underscore, that does not form a reserved keyword.
An identifier starting with an underscore or capital letter is called a variable. Oth-
erwise, an identifier is called a symbol if it has been assigned some special meaning
and a name if it has not.

The variable ‘_’ has a special meaning: distinct instances are taken to refer to
different, “anonymous” variables. Accordingly, ‘_’ is called the anonymous variable.

An infix identifier is a sequence of the following symbols:

| * + < > = - & ^ $ @ ! ~ ?

21

that does not form a reserved operator. Infix identifiers (and their arity and prece-
dence) can be user-defined.

Enclosing an infix identifier in parentheses ((+)) means it is treated as a (prefix)
textual identifier. Conversely, enclosing a textual identifier in backquotes (‘sym‘)
means it is treated as an infix operator.

A namespace-qualified identifier is a sequence of textual identifiers separated by
asdf and terminated by either a textual or infix identifier. For example, List.mem
and Int.+ are legal namespace identifiers. A namespace identifier whose subject is
infix is treated as prefix, not infix.

4.1.5 Literals

Booleans

There are two Boolean truth value literals, tt (true) and ff (false).

Integers

A (decimal) integer constant is a sequence of digits 0–9 possibly starting with a minus
sign - insicating a negative number. Other bases are not supported.

Characters

A character constant is a printable ASCII character or an escape sequence enclosed
in single quotes.

Strings

A string is a sequence of printable ASCII character or escape sequences enclosed in
double quotes.

4.2 Abstract Syntax

4.2.1 Terms

The syntax of αProlog terms is summarized by the following grammar:

t ::= () | int | bool | char | string

| c | f t1 · · · tn | (t1, . . . , tn) | [] | t::u | [t1, . . . , tn] | [t1, . . . , tn|t] | X |
| n | n\t | (n˜m)t

22

4.2.2 Types

The syntax of αProlog types is summarized by the following grammar:

ty ::= unit | int | bool | char | string

| tc | tf ty1 · · · tyn | (ty1, . . . , tyn) | [ty] | A |
| nty\ty

4.2.3 Formulas

Atomic formulas

A ::= q | p t1 · · · tn

An atomic formula (or predicate) consists of either a single predicate symbol p or a
symbol applied to a list of arguments p t1 · · · tn.

Clauses

The syntax of αProlog program clauses is summarized by the following grammar:

P ::= A | A :− G | A −→ D

The first two forms are Horn clauses (expressed in implicational form). That is, they
are either a single predicate (a fact) or a predicate qualified by a condition G (a rule).
The third form is a definite clause grammar rule, which says that the nonterminal
synbol A can be rewritten to the DCG body D.

Definite clause grammar bodies

D ::= A | D, D | D; D | char | string | {G}

A definite clause grammar rule body is either an atomic predicate (representing a
nonterminal), sequential composition D, D, disjunciton D; D, a literal character or
string (a terminal symbol), or a goal enclosed in braces.

Goals

Goals (or queries) are formed using the following syntax:

G ::= true | A | t1 is t2 | t1 = t2 | n # t

| G1, G2 | G1; G2 | ! | G1 → G2|G3 | not(G)

They include the trivial goal true, atomic predicates, evaluation operator is, uni-
fication =, freshness #, conjunction G, G, disjunction G; G, “cut” !, if-then-else
G1 → G2 | G3, and negation not(G).

23

4.2.4 Declarations

infixd sym n These declarations make an identifier sym into be a left-, right-, or
non-associative infix operator (where d is l, r, or n respectively). Such symbols can
be either plain infix identifiers or backquoted textual identifiers. The number n is a
precedence between 1 and 9 indicating how strongly the operator binds relative to
other operators.

24

Chapter 5

Type System

5.1 Basic Types

5.2 Compound Types

5.3 Polymorphism

25

Chapter 6

Language Extensions

26

Chapter 7

Libraries

Currently, there are three libraries: Base (containing base types and built-in func-
tions), List (containing list operations) and Option (containing operations on op-
tional values). For each prdicate or function, we summarize its type and expected
modes of use (i.e., which arguments can be thought of as inputs or putputs). These
modes are not currently part of or checked by αProlog.

7.1 Base

7.2 List

The list namespace includes several common list-manipulating predicates.

• pred append ([A],[A],[A])

mode append (in,in,out)

mode append (out,out,in)

Holds if the third argument is the result of appending the first two arguments.

• pred mem(A,[A])

mode mem(out,in)

Holds if the first element is an element of the second.

• pred concat([[A]],[A])

mode concat(in,out)

Holds if the second list is the result of concatenating all the elements of the first
list.

• pred remove(A,[A],[A])

mode remove(in,in,out)

Removes all occurrences of the first argument from the second and returns the
result as the third.

27

• pred reverse([A],[A])

mode reverse(in,out)

Holds if the first list is the reverse of the second (and vice versa).

7.3 Option

• opt : type -> type

The type constructor for optional values.

• none : opt A

An optional value where a value is not present.

• some : A -> opt A

An optional value where a value is present.

• get_opt (opt A,A)

mode get_opt(in,out)

Succeeds if the first argument is some(A) and the second argument is A.

28

