
Provenance for configuration language security

James Cheney Paul Anderson
University of Edinburgh

jcheney@inf.ed.ac.uk, dcspaul@ed.ac.uk

Dimitrios Vytiniotis
Microsoft Research

dimitris@microsoft.com

1. Abstract
Declarative, high-level configuration languages (e.g. LCFG,
Puppet, Chef) are widely used in industry to config-
ure large system installations. Configurations are of-
ten composed from distributed source files managed by
many different users within different system and organ-
isational boundaries. Users may make changes whose
consequences are not easy to understand, and such sys-
tems also currently lack mature security access controls;
the few currently available techniques have idiosyncratic
behaviour and offer no formal guarantees. In the worst
case, misconfiguration can lead to costly system failures;
because of the complexity of the configuration build, it
is difficult to recover from failures, trace the source of
the error or identify the responsible party. In this project,
we will explore the application of provenance techniques
(originally developed in the context of databases) to estab-
lishing well-founded and effective techniques for security
and audit for configuration languages.

2. Background
2.1 Motivation
In a computing infrastructure, system configuration [3] is
the task of assigning configuration parameters to all of the
individual components so that the overall system behaves
according to requirements. The infrastructure may be a
datacentre, or a distributed cloud application, or any other
composition of connected systems. Typically, there will
be many thousands of parameters which control the be-
haviour of the individual systems, and the relationships
between them. Managing these configurations manually
is difficult because of the complexity of interactions be-
tween different systems, and errors can easily occur. Op-
penheimer et al. [27] identify configuration errors as a ma-
jor cause of large-scale system failures; a recent example
is the serious, multi-day failure of Amazon EC2 in April
2011, resulting from a network misconfiguration.

To manage this complexity, special-purpose system-
configuration languages have evolved, such as LCFG [2,
4] and Puppet [28]. These allow the configuration require-
ments to be specified in a relatively high level way, and the
specifications are compiled down to generate the individ-
ual configuration parameters (see Figure 1). The system
configuration task can then be thought of as “Program-
ming the Infrastructure” [5], with the configuration pa-
rameters analogous to the machine code, and the configu-
ration specifications analogous to a high-level program.

Configuration languages differ significantly from con-
ventional programming languages such as Java, C++ or

C#. Most modern configuration languages adopt a (more
or less) declarative approach to specifying the desired
configuration. The configuration tool is then responsible
for generating and sequencing the actions necessary to
transform the current configuration into the desired one.
This decouples the description of the configuration from
the process of deploying it, and the configuration language
becomes purely a data description language.

Because of the complexity, manual configuration of
large infrastructures has become largely impractical, and
configuration tools are now ubiquitous. However, these
tools and languages are in their infancy. Unlike the pro-
gramming languages used in mission-critical applications,
there has been very little attempt to formalise their seman-
tics, or verify their implementation. This can lead to a sub-
stantial discrepancy between the rigour of an application,
and that of the infrastructure on which it depends. For ex-
ample, air-traffic control systems are now being config-
ured using Puppet1; thus, bugs in Puppet (or configuration
errors arising from complex features of Puppet) could lead
to failure of the system as a whole even though the indi-
vidual components have been subjected to extensive (and
expensive) testing and formal verification.

We currently lack the ability to control and predict the
impact of changes to the configuration, and particularly
to audit changes to the configuration retroactively after a
failure to understand how (and by whom) such changes
were made. Large configurations are collaborative en-
deavours, involving many authors, and are often spread
across different organisations. To encourage modularity
and separation of concerns, configuration languages per-
mit a hierarchy of classes with value-inheritance (rather
than type inheritance). This allows a chain of users to suc-
cessively specialise descriptions provided by others, but it
can also lead to counterintuitive consequences or system
failures when different users (possibly from different sites
or organisations) make changes that affect the same part
of the final configuration.

Our hypothesis is that work from provenance research,
primarily techniques developed for understanding how
query results depend on inputs or how databases evolve
over time due to updates, can be used to improve secu-
rity and audit capabilities for configuration languages. Ac-
cordingly, we now discuss prior work on configuration
language security and on provenance, focusing on prove-
nance in databases. We also identify a promising connec-
tion with work on software contracts and blame.

1 FOSDEM 2011 (http://lwn.net/Articles/428207/)

http://lwn.net/Articles/428207/

Smarter way

100
lines

1000's
of lines

200
lines

200
lines

1000's
of

lines

mac
hin

e-
sp

ec
ific

sit
e-

sp
ec

ific

ge
ne

ric

100
lines

100
lines

100
lines

5000
lines

5000
lines

5000
lines

5000
lines

deploycompile

widget.comconfig.com
x number of machines

...

gr
ou

p-
sp

ec
ific

Figure 1. A typical configuration build process.

Alice Bob Config
class A {
 ts = ts@reliable.com
 ... 742 more parameters ...
}

class A {
 ts = ts@unreliable.com
 ... 742 more parameters ...
}

class B isa A {
 ts = sales.widget.com
 ...
}

change

class B isa A {
 //ts = sales.widget.com
 ...
}

node C isa B {
 ts = sales.widget.com
 ...
}

remove
override

class B isa A {
 ts = sales.widget.com
 ...
}

...

...

class A {
 ts = ts@unreliable.com
 ... 742 more parameters ...
}

node C isa B {
 ts = sales.widget.com
 ...
}

node C isa B {
 ts = ts@unreliable.com
 ...
}

no change

no change
... no change

broken
configuration!

compile

Figure 2. Example of a delayed configuration failure due
to inheritance masking a breaking change. Bob made the
last change at step 3, but the reason for the failure is
Alice’s change at step 2.

2.2 Prior work
Access control for Puppet Vanbrabant et al. [29] pro-
posed an access control mechanism in the context of Pup-
pet [28], a popular, open-source configuration language.
Their approach uses access control policies specified us-
ing XML path expressions. These policies are enforced by
converting Puppet’s abstract syntax to XML, determining
which paths in the document are changed, and checking
whether the policy allows the user who made the most re-
cent changes to the source to make the changes.

This mechanism is clearly useful, but has several po-
tential problems, because it checks only the final, com-
piled configuration, not the source files actually main-
tained by users, and attributes all of the changed values to
the user initiating the change when determining whether
to allow an update. In the presence of value inheritance
or overriding, the results can be counterintuitive. For ex-
ample (illustrated in Figure 2), suppose Alice, an exter-
nal user, provides some default configurations which Bob,
a sysadmin, subsequently uses. If Bob temporarily over-
rides the timeserver to a non-default value, for example
to test a new configuration, any change made by Alice
to the timeserver field will be masked by Bob’s override
and will not affect the final configuration. However, when
Bob later reverts the change, the change originally added
by Alice will be attributed to Bob, and will be allowed by
Vanbrabant et al.’s access control mechanism; if the sys-
tem fails as a result, Bob may be blamed improperly.

Aside from this, there is little work on security in
configuration languages, or on their semantics. Some re-
searchers, particularly Martin et al. [26], recently identi-
fied provenance as a potentially useful security control in
its own right, and our recent workshop paper [6] gives
more detail of the problems of security for configura-
tion languages and identifies some future steps toward
solutions, based upon adapting ideas from provenance in
databases, which we elaborate upon in this proposal.

Provenance in databases Where-provenance [8, 11] is
information linking data in the result of a query back
to the source data from which it was copied. In con-
trast, why-provenance [11] and its generalisation how-
provenance [22] summarise the input records that were
needed to produce a given output record. Although these
forms of provenance have been studied extensively for
databases, they are somewhat tied to relational data mod-
els and query languages; there is not yet a clear gen-
eral definition of why- or where-provenance for other
data models or programming languages. In our work on
dependency-provenance [13], we gave a semantic cor-
rectness criterion for a form of provenance that tracks
dependencies on the input (inspired partly by work on
non-interference in language-based security). Cheney et
al. [14] survey the why, where and how provenance mod-
els and provide some formal comparisons.

Most work on provenance in databases has focused
on explaining the results of queries by relating parts of
the output to parts of the input. However, understand-
ing the provenance of data that changes over time is also
important, and sometimes more important; it is likely to
be important for provenance and security in configura-
tion languages, as well. Buneman et al. [8] made the first
attempt to formalise and implement provenance-tracking
for curated databases (databases that are manually edited
over time), and subsequent work [10] defined a where-
provenance semantics for both queries and updates in a
nested relational data model. Ideas from this work should
be applicable to configuration languages, which are also
often based on nested record or list data structures; how-
ever, additional work will be needed to handle the distinc-
tive features of configuration languages, such as object-
oriented data inheritance and overriding, as well as lan-
guage extensions such as user-defined functions.

Provenance and security Most work on provenance and
security to date has considered applying standard security
mechanisms, such as access control and cryptography, to
keeping provenance information confidential or guaran-
teeing its integrity [18, 24]. There has been relatively lit-
tle work on formal models for provenance security (or for
correctness for provenance more generally), and further
research is needed to understand what policies or correct-
ness criteria are appropriate and how to ensure provenance
security mechanisms really address the right problems. In
the background, security and programming languages re-
search has also begun to incorporate provenance-like tech-
niques, in particular for auditing [25] and monitoring con-
tracts [21].

Cirillo et al. [15] developed Tapido, a distributed object
calculus that uses provenance to constrain delegation of

rights. Provenance policies were considered among other
security policies in SELinks [17], a dependently-typed ex-
tension of the Links programming language developed in
Edinburgh [16]. SELinks was used to implement a secure
wiki with provenance support, called SEWiki; more re-
cently Links has also been used to develop the Database
Wiki system, a flexible wiki-like Web application for col-
laboration on structured data resources. Database Wiki [9]
provides built-in support for provenance, efficient archiv-
ing of past versions, and annotation of arbitrary parts of
the database.

Our recent work [12] introduced a formal model for
provenance security, along with definitions of security
properties called disclosure and obfuscation. Disclosure
states that some trace property of a system should always
be obtainable from its provenance, whereas obfuscation
states that users (or attackers) should never be able to in-
fer some property of a trace from its provenance. Subse-
quently, we developed a provenance core calculus [1], a
functional language equipped with a detailed tracing se-
mantics, showed how to define other forms of provenance
in terms of traces, and gave algorithms for slicing traces
to enforce disclosure or obfuscation properties.

Audit, contracts and blame Another recent line of work
has focused on checking and enforcement of security
properties using increasingly powerful static type sys-
tems, dynamic monitoring, or a combination of static and
dynamic methods. This work is connected to work on
provenance in that it seeks to characterise what actually
happened during execution in order to verify (either stat-
ically or dynamically) that security properties hold, or to
determine who is responsible for a failure after the fact.

Vaughan et al. [30] introduced new formalisms for
evidence-based audit. In Aura, an implementation of this
approach [25], dependently-typed programs execute in the
presence of a policy specified in authorisation logic, and
whenever a restricted resource is requested, a proof is
constructed at run time and stored in an audit log that
can be inspected after the fact to identify reasons for
granting access. In F7 [7], a log of assertions is used in
the operational semantics to prove the soundness of its
refinement type system (the assertions are erased at run
time). F7 is used to prove security invariants statically, and
has been applied in a number of other projects, including
Guts et al.’s Auditability by Typing work [23], in which
a custom logic is used to extend the F7 refinement type
system with a policy that guarantees that any well-typed
program logs enough information to convince a judge that
certain program events happened in a given order.

Contracts (a generalisation of “assert” statements) have
long been used in programming to check important prop-
erties at run-time and so ensure that any failures are de-
tected early. Findler and Felleisen [21] introduced higher-
order contracts, needed in higher-order programming lan-
guages such as Scheme or Haskell. The question of how
to assign blame for run-time contract violations has since
attracted a lot of interest, culminating in the recent devel-
opment of a complete and correct semantics for assigning
blame [19, 20]. This work draws in part on ideas from
provenance-tracking, based on the idea that blame can be
safely inferred from annotations that amount to a form

of where-provenance. Although configuration languages
differ significantly from higher-order programming lan-
guages, some ideas about correctness and completeness
of blame should transfer to the configuration setting.

3. Research hypothesis and aims
Our research hypothesis is that provenance management
and programming language semantics techniques can
provide increased security and auditability for configu-
ration languages. We will develop a formal model of one
or more realistic configuration languages, since this is pre-
requisite to formalising and proving security guarantees.
We will identify requirements (e.g. typical policies, audit
queries, or blame policies) arising in practical configura-
tions, constituting an expressiveness benchmark for the
project. Finally, we will define security policies that cap-
ture the requirements, implement a prototype system that
supports these policies, and verify its correctness.

Project summary This PhD project will develop well-
founded and practical techniques for security and audit for
configuration languages. This is likely to be challenging
because the landscape of formal analyses or security for
configuration languages is relatively unexplored, and re-
search on provenance, audit and blame has so far focused
on other paradigms such as databases, scientific work-
flows, or functional programming languages. The project
will be rewarding because there is large potential for im-
pact in large organisations and industry. There is an oppor-
tunity for a strong PhD student to do novel and significant
work in this area that could have high impact.

While the proposed research focuses on using prove-
nance to improve security for configuration languages,
this work fits into a larger program of research on the role
of provenance in language and system design. Language-
based security has already benefited greatly from tech-
niques such as effect systems, refinement types and de-
pendent types; on the other hand, concepts such as con-
tracts and blame have recently been related explicitly to
provenance [19]. Thus, a broader aim of the project is
to advance the study of language design to support prin-
cipled provenance management alongside other concerns
such as using contracts to improve reliability and identify
parties responsible for problems.

4. Methods
Our primary research methods are formalisation and pro-
gramming language design. By formalisation, we mean
the use of mathematical models to explain and analyse the
object of study. Here, we aim to study what people infor-
mally mean by provenance policies, including such con-
cepts as trustworthiness, repeatability, error diagnosis, and
explanation by defining mathematical models that can be
used to compare proposed definitions and facilitate proofs
of correctness of implementations. We will develop for-
mal models that help explain the availability goals and se-
curity requirements for provenance.

The other primary methods we will employ are pro-
gramming language semantics and language design tech-
niques. We will focus on dynamic techniques such as in-
strumenting the system with additional provenance infor-

mation, or allowing users to write contracts or audit poli-
cies that are checked at run-time. These techniques need to
be formally verified to ensure that they guarantee good be-
haviour, and they may need profiling or experimental eval-
uation to ensure that their overhead is acceptable. Static
analysis techniques may help improve performance.

The research will be evaluated by developing formal
correctness criteria and proving correctness of proposed
security mechanisms, and by validating the expressive-
ness of the possible policies on examples obtained from
potential users. It may be possible to build on an exist-
ing system (such as LCFG or Puppet), making it easier to
gather feedback from potential users, but this depends on
the strengths of the student and on how easy it is to modify
the existing systems.

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A core

calculus for provenance. In POST, volume 7215 of LNCS,
pages 410–429. Springer-Verlag, 2012.

[2] P. Anderson. Towards a high-level machine configuration
system. In LISA, pages 19–26, Berkeley, CA, September
1994. Usenix.

[3] P. Anderson. System Configuration, volume 14 of Short
Topics in System Administration. SAGE, 2006.

[4] P. Anderson. LCFG: a Practical Tool for System Config-
uration, volume 17 of Short Topics in System Administra-
tion. Usenix Association, 2008.

[5] P. Anderson. Programming the datacentre - challenges
in system configuration. In Microsoft Technical Report
MSR-TR-2008-61 - The Rise and Rise of the Declarative
Datacentre, May 2008.

[6] P. Anderson and J. Cheney. Toward provenance-
based security for configuration languages. In
TaPP. USENIX, 2012. Online proceedings:
http://www.usenix.org/system/files/-
conference/tapp12/tapp12-final15.pdf.

[7] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis. Refinement types for secure implementations.
ACM Trans. Program. Lang. Syst., 33(2):8, 2011.

[8] P. Buneman, A. P. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGMOD 2006, pages
539–550, 2006.

[9] P. Buneman, J. Cheney, S. Lindley, and H. Müller. DBWiki:
a structured wiki for curated data and collaborative data
management. In SIGMOD, pages 1335–1338, 2011.

[10] P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and up-
date languages. ACM Transactions on Database Systems,
33(4):A28, November 2008.

[11] P. Buneman, S. Khanna, and W. Tan. Why and where: A
characterization of data provenance. In ICDT, number 1973
in LNCS, pages 316–330. Springer, 2001.

[12] J. Cheney. A formal framework for provenance security. In
CSF, pages 281–293. IEEE, 2011.

[13] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as de-
pendency analysis. Mathematical Structures in Computer
Science, 21(6):1301–1337, 2011.

[14] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends
in Databases, 1(4):379–474, 2009.

[15] A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely. Tapido:
Trust and authorization via provenance and integrity in
distributed objects. In ESOP, pages 208–223, 2008.

[16] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web
programming without tiers. In FMCO, volume 4709 of
LNCS, 2007.

[17] B. J. Corcoran, N. Swamy, and M. Hicks. Cross-tier,
label-based security enforcement for web applications. In
SIGMOD, 2009.

[18] S. B. Davidson, S. Khanna, T. Milo, D. Panigrahi, and
S. Roy. Provenance views for module privacy. In PODS,
pages 175–186, 2011.

[19] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen.
Correct blame for contracts: no more scapegoating. In
POPL, pages 215–226, New York, NY, USA, 2011. ACM.

[20] C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Com-
plete monitors for behavioral contracts. In ESOP, pages
214–233, 2012.

[21] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In ICFP, pages 48–59, 2002.

[22] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40. ACM, 2007.

[23] N. Guts, C. Fournet, and F. Z. Nardelli. Reliable evidence:
Auditability by typing. In ESORICS, pages 168–183, 2009.

[24] R. Hasan, R. Sion, and M. Winslett. Preventing history
forgery with secure provenance. Trans. Storage, 5:12:1–
12:43, December 2009.

[25] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko,
J. Schorr, and S. Zdancewic. Aura: a programming lan-
guage for authorization and audit. In ICFP, pages 27–38,
2008.

[26] A. Martin, J. Lyle, and C. Namilkuo. Provenance as a secu-
rity control. In TaPP. USENIX, 2012. Online proceedings:
http://www.usenix.org/system/files/-
conference/tapp12/tapp12-final17.pdf.

[27] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do internet services fail, and what can be done about it. In
USENIX Symposium on Internet Technologies and Systems,
2003.

[28] J. Turnbull. Pulling Strings with Puppet: Configuration
Management Made Easy. Apress, September 2008.

[29] B. Vanbrabant, J. Peeraer, and W. Joosen. Fine-grained
access control for the Puppet configuration language. In
LISA, December 2011.

[30] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic.
Evidence-based audit. In CSF, pages 177–191, 2008.

	Abstract
	Background
	Motivation
	Prior work

	Research hypothesis and aims
	Methods

