
�Prolog: A Logic Programming Language with
Names, Binding and �-Equivalence

James Cheney1, Christian Urban2

1 Cornell University (jcheney@cs.cornell.edu)
2 University of Cambridge (cu200@cl.cam.ac.uk)

Abstract. There are two well-known approaches to programming with
names, binding, and equivalence up to consistent renaming: representing
names and bindings as concrete identifiers in a first-order language (such
as Prolog), or encoding names and bindings as variables and abstractions
in a higher-order language (such as �Prolog). However, both approaches
have drawbacks: the former often involves stateful name-generation and
requires manual definitions for �-equivalence and capture-avoiding sub-
stitution, and the latter is semantically very complicated, so reasoning
about programs written using either approach can be very difficult. Gab-
bay and Pitts have developed a new approach to encoding abstract syn-
tax with binding based on primitive operations of name-swapping and
freshness. This paper presents �Prolog, a logic programming language
that uses this approach, along with several illustrative example programs
and an operational semantics.

1 Introduction

Names, binding, �-equivalence, and capture-avoiding substitution are endemic
phenomena in logics and programming languages. The related concepts of name
freshness, fresh name generation and equivalence up to consistent renaming also
appear in many other domains, including state identifiers in finite automata,
nonces in security protocols, and channel names in process calculi. Dealing with
names is therefore an important practical problem in meta-programming, and
there are a variety of approaches to doing so, involving different tradeoffs [2, 3,
7, 12, 15, 19]. The following are important desiderata for such techniques:

� Convenience: Basic operations including substitution, �-equivalence, and
fresh name generation should be built-in.

� Simplicity : The semantics of the meta-language should be as simple as pos-
sible in order to facilitate reasoning about programs.

� Abstraction: Low-level implementation details concerning names should be
taken care of by the meta-language and hidden from the programmer.

� Faithfulness/Adequacy : Object terms should be in bijective correspondence
with the values of some meta-language type.

There are several established techniques for programming with names and bind-
ing, which we categorize as first-order abstract syntax (FOAS) and higher-order
abstract syntax (HOAS).



In first-order abstract syntax, object languages are encoded using first-order
terms (e.g. Prolog terms or ML datatypes). Names are encoded using a concrete
datatype var such as strings, and binders are encoded using first-order func-
tion symbols like lam : var � exp! exp. FOAS has several disadvantages: the
encoding does not respect �-equivalence, damaging adequacy; fresh names are
often generated using side-effects, complicating the semantics; and operations
like �-equivalence and substitution must be implemented manually. Nameless
encodings like de Bruijn indices [2] ameliorate some, but not all, of these prob-
lems.

In higher-order abstract syntax [15], object languages are encoded using
higher-order terms (e.g. �-terms in �Prolog [13]). HOAS comes in “deep” and
“shallow” flavors. In deep HOAS, names are encoded as meta-language variables
and binders are encoded with meta-language �-abstraction using higher-order
function symbols like lam : (exp ! exp) ! exp. Capture-avoiding substitution
and �-equivalence need only be implemented once, in the meta-language, and
can be inherited by all object languages. However, because of the presence of
types like exp that are defined via negative recursion, the semantics of deep
HOAS is complex [8] and inductive proof and recursive definition principles are
very difficult to develop. In shallow HOAS [3], names are encoded using a con-
crete type var, but binders are encoded as �-abstractions using constructors like
lam : (var ! exp) ! exp. In this approach, �-equivalence is still built-in, but
substitution must be defined. Also, shallow HOAS encodings may not be ade-
quate because of the presence of exotic terms, or closed terms of type exp which
do not correspond to any object term; additional well-formedness predicates are
needed to recover adequacy.

Recently, Gabbay and Pitts developed a novel approach to encoding names
and binding [5], based on taking name-swapping and freshness as fundamen-
tal operations on names. This approach has been codified by Pitts as a theory
of first-order logic called nominal logic [16], in which names are a first-order
abstract data type admitting only swapping, binding, and equality and fresh-
ness testing operations. Object language variables and binding can be encoded
using names x; y and name-abstractions xnt, which are considered equal up to
�-equivalence. For example, object variables x and binders �x:t can be encoded
as nominal terms var(x) and abstractions lam(xnt) where var : id ! exp and
lam : idnexp! exp. Unlike FOAS encodings, the use of name abstractions en-
sures faithfulness and adequacy; for example, lam(xnvar(x)) = lam(ynvar(y)).

We refer to this approach to programming with names and binding as nom-
inal abstract syntax (NAS). NAS provides convenient operations such as �-
equivalence and fresh name generation for free, while remaining semantically
simple, requiring neither recursive types nor state. Furthermore, names are suf-
ficiently abstract that the low-level details of name generation can be hidden
from the programmer, and exotic terms are not possible in NAS encodings.

This paper presents �Prolog, a logic programming language which supports
nominal abstract syntax. In the rest of this paper, we describe �Prolog, show
how several interesting, nontrivial languages (including the �-calculus) can be



encoded using NAS in �Prolog, and discuss briefly its unification algorithm (due
to Urban, Pitts, and Gabbay [20]) and operational semantics. We conclude with
a discussion of related languages and future work.

2 Language Overview

2.1 Syntax

The term language of �Prolog consists of (nominal) terms, constructed according
to the grammar

t ::= X j n j nnt j (n m)t j f(t)

where X is a (logic) variable, f is a function symbol (we write t to denote
a (possibly empty) sequence (t1; : : : ; tn)), and n;m are names. By convention,
function symbols are lower case, logic variables are capitalized, and names are
printed using the sans-serif typeface. We shall refer to a term of the form f(t)
as an atomic term. Terms of the form nnt are called abstractions, and terms of
the form (n m)t are called (suspended) transpositions. Transpositions have higher
precedence than abstractions. Variables cannot be used to form abstractions and
transpositions, i.e., Xnt and (X Y )t are not legal terms.

�Prolog has a ML-like polymorphic type system. Types are classified into two
kinds: type, the kind of all types, and name type, the kind of types inhabited
only by names. Types classify terms, and include atomic type constructor appli-
cations c(�1; : : : ; �n) as well as type variables � and abstraction types �n�. In an
abstraction, the kind of � must be name type. Type constructor and uninter-
preted function symbol declarations are of the form as c : (�)! �0 and f : (�)!
�0, where � and � indicate kinds and types respectively. Atomic formulas are
declared as pred p(�) and interpreted function symbols as func f(�) = �0. Type
abbreviations can be made with the declaration type c(�) = �. The latter three
declaration forms are loosely based on Mercury syntax [18]. We assume built-in
type and function symbols � � � : (type; type) ! type, (�; �) : (�; �) ! � � �
for pairs and [�] : type ! type, [] : [�], and [�j�] : (�; [�]) ! [�] for lists. The
result type of an uninterpreted function symbol may not be a built-in type or a
name type.

Atomic formulas A are terms of the form q(t1; : : : ; tn), where p; q are relation
symbols. Goals (or queries) are given by the grammar

G ::= true j G1 ^G2 j A j t # u j t = u

where t # u is a freshness formula, and t = u is an equality formula. In t # u,
the term t must be of some name type � : name type, whereas u may be of
any type; in t = u, both t and u must be of the same type. Program clauses
include Horn clauses of the form A :� G and function-definition clauses of the
form a = t :� G, which introduce a (conditional) rewrite rule for an atomic
term f(t1; : : : ; tn) with an interpreted head symbol f . We abbreviate clauses
A :� true and a = t :� true as simply A and a = t. We write conjunctions as
‘G1; G2’ instead of ‘G1 ^G2’ within program text.



By convention, constant symbols are function symbols applied the empty
argument list; we write c instead of c(), and c : � instead of c : () ! � . This
also applies to propositional and type constants. We write V (�) and N(�) for
the variables or names of a term or formula. Observe that N(�) includes all
occurrences of names in t, even abstracted ones, hence N(xnx) = fxg. We say a
nominal term e is ground when V (e) = ;; names may appear in ground terms,
so f(X;Y ) is not ground but f(x; y) is.

2.2 Equality and freshness

Figure 1 shows the axioms of equality and freshness for ground nominal terms
(based on [16, 20]). The swapping axioms (S1)–(S5) describe the behavior of
swapping. From now on, we assume that all terms are normalized with respect
to these axioms (read right-to-left as rewrite rules), so that swaps are not present
in ground terms and are present only surrounding variables in non-ground terms.

The next two axioms (A1), (A2) define equality for abstractions. The first
axiom is a simple congruence property. The second guarantees that abstractions
are equal “up to renaming”. Two abstractions of different names xnt; ynu are
equal just in case their bodies are equal up to swapping the names (t = (x y)u)
and x # u (or symmetrically, y # t; the two conditions are equivalent if t =
(x y)u). For example, xng(x) = yng(y) and xnf(x; y) = znf(z; y), but xnf(x; y) 6=
ynf(y; x) because x # f(y; x) fails.

The freshness axioms (F1)–(F5) describe the freshness relation. Intuitively,
x # t means “name x does not appear unbound in t”. For example, it is never
the case that x # x, whereas any two distinct names are fresh (x # y). Moreover,
freshness passes through function symbols (in particular, any name is fresh for
any constant). The abstraction freshness rules are more interesting: x # xnt
is unconditionally valid because any name is fresh for a term in which it is
immediately abstracted, whereas if x and y are different names, then x # ynt
just in case x # t.

3 Example: the �-calculus

The prototypical example of a language with variable binding is the �-calculus.
In �Prolog, the syntax of �-terms may be described with the following type and
constructor declarations:

(S1) (n m)n = m (S2) (n m)m = n (S3) x # n; x # m ) (n m)x = x
(S4) (n m)f(t) = f((n m)t) (S5) (n m)(xnt) = (n m)xn(n m)t
(A1) t = u) nnt = nnu (A2) t = (n m)u ^ n # u) nnt = mnu
(F1) n 6= m ) n # m (F2) :(n # n) (F3)

∧n

i=1 n # ti ) n # f(t)
(F4) n # nnt (F5) n # t) n # mnt

Fig. 1. Ground equational and freshness theory



id : name type: exp : type:
var : id! exp: app : (exp; exp)! exp: lam : idnexp! exp:

We make the simplifying assumption that the variables of object �-terms are
constants of type id. Then we can translate �-terms as follows:

pxq = var(x) pe1 e2q = app(pe1q; pe2q) p�x:eq = lam(xnpeq)

It is not difficult to verify that e is a �-term if and only if peq is a closed nominal
term, i.e. FV (peq) = ;, and we have that e �� e0 if and only if peq � pe0q.

Although capture-avoiding substitution is not a built-in operator in �Prolog,
it is easy to define via the conditional rewriting rules (where we use function-like
notation inspired from the language Mercury):

func subst(exp; exp; id) = exp:
subst(var(X); E;X) = E:
subst(var(Y ); E;X) = var(Y ) :� X # Y:
subst(app(E1; E2); E;X) = app(subst(E1; E;X); subst(E2; E;X)):
subst(lam(ynE0); E;X) = lam(ynsubst(E0; E;X)) :� y # (X;E):

Note the two freshness side-conditions: the constraint X # Y prevents the first
and second clauses from overlapping; the constraint y # (X;E) ensures capture-
avoidance, by restricting the application of the fourth clause to when y is fresh for
X and E. Despite these side-conditions, this definition is total and deterministic.
Determinism is immediate: no two clauses overlap. Totality follows because, by
nominal logic’s freshness principle, the bound name y in lam(ynE0) can always be
renamed to a fresh z chosen so that z # (X;E). It is straightforward to prove that
subst(ptq; pt0q; x) coincides with the traditional capture-avoiding substitution on
�-terms.

We may define �-reduction and �-expansion relations:

pred beta(tm; tm): beta(app(lam(xnE); E0); E00) :� E00 = subst(E;E0; x):
pred eta(tm; tm): eta(E; lam(xnapp(E; var(x)))) :� x # E:

The usual side-condition on �-expansion is encoded in �Prolog as x # E. Next
we consider the problem of typechecking �-terms. The syntax of types can be
encoded as follows:

tid : name type: ty : type: tvar : tid! ty: arr : (ty; ty)! ty:

We define contexts ctx as lists of pairs of identifiers and types, and the 3-ary
relation typ relating a context, term, and type:

type ctx = [id� ty]:
pred typ(ctx; tm; ty):
typ(C; var(X); T ) :� mem((X;T ); C):
typ(C; app(E1; E2); T 0) :� typ(C;E1; arr(T; T 0)); typ(C;E2; T ):
typ(C; lam(xnE); arr(T; T 0)) :� x # C; typ([(x; T )jC]; E; T 0):



The predicate mem(�; [�]) is the usual predicate for testing list membership.
The side-condition x 62 Dom(� ) is translated to the freshness constraint x # C.

Two example queries demonstrating the behavior of this program are as
follows (�Prolog gives unique answers to all queries).

?– X = subst(lam(ynvar(x)); var(y); x):
X = lam(x13nvar(y))
?– typ([]; lam(xnlam(ynvar(x)); T ):
T = arr(arr(T112; T125); T125); x89 # T112
?– typ([]; lam(xnlam(xnapp(var(x); var(x)))); T ):
No:

The constraint x89 # T112 in the second answer indicates that a name x89 gener-
ated during execution must be fresh for T112. Since x89 does not appear elsewhere
in the query or answer, this constraint is trivially satisfiable; however, our im-
plementation of �Prolog does not yet take this into account.

3.1 Extending to the ��-calculus

The ��-calculus, invented by Parigot [14], extends the �-calculus with contin-
uations �; terms may be passed to continuations ([�]e) and continuations may
be bound (��:e). Intuitively, ��-terms are proof terms for classical natural de-
duction, and �-abstractions represent proofs by double negation. In addition to
capture-avoiding substitution of terms for variables, the ��-calculus introduces
a capture-avoiding replacement operator e0fe=�g which replaces each occurrence
of the pattern [�]e0 in e0 with [�](e0 e). We give a variant of the ��-calculus
in Figure 2. In contexts � , the bar over the type of � indicates that it is not a
value of type � , but a continuation accepting the type � .

We may extend the �-calculus encoding with new types and term constructors
for the ��-calculus:

con : name type pass : (con; exp)! exp mu : connexp! exp

Terms, Types, and Contexts

e ::= x j (e e0) j �x:e j [�]e j ��:e
� ::= b j � ! � 0 j ?
� ::= � j �; x : � j �; � : �

Replacement Operation

xfe=�g = x
(e1 e2)ft=�g = (e1fe=�g e2fe=�g)
(�y:e0)fe=�g = �y:e0fe=�g
([�]e0)fe=�g = [�](e0fe=�g e)
([�]e0)fe=�g = [�](e0fe=�g) (� 6= �)
(��:e0)fe=�g = ��:e0fe=�g (� 62 FN(e; �))

Some Typing-Rules

�:� 2 � � ` e : �
� ` [�]e : ?

� ` e1 : ? � ` e2 : �
� ` (e1 e2) : ?

�; �:� ` e : ? (� 62 Dom(� ))
� ` ��:e : �

Fig. 2. A slight variant of Parigot’s ��-calculus.



Again, it is very easy to show that ground exp-terms are in one-to-one cor-
respondence with ��-terms. Capture-avoiding substitution can be extended to
��-terms easily. For replacement, we show the interesting cases for continuation
applications and �-abstractions:

func repl(exp; exp; con) = exp:
repl(pass(A;E0); E;A) = pass(A; app(repl(E0; E;A); E)):
repl(pass(B;E0); E;A) = pass(B; repl(E0; E;A)) :� A # B:
repl(mu(bnE0); E;A) = mu(bnrepl(E0; E;A)) :� b # (A;E):

Then the relevant �-contraction and �-expansion laws for � can be stated as:

beta(app(mu(anE0); E);mu(anE00)) :� a # E;E00 = repl(E0; E; a):
eta(E;mu(anpass(a; E))) :� a # E:

The standard approach to typechecking ��-terms is to use two contexts, �
and �, for variable- and continuation-bindings respectively. We instead consider
a single context with variable-bindings x : � and continuation-bindings � : � .
Therefore we modify the encoding of contexts slightly as follows:

bind : type: vb : (id; ty)! bind cb : (con; ty)! bind type ctx = [bind]:

Then the typechecking rules from the previous section may be adapted by re-
placing bindings (x; T ) with vb(x; T ), and adding three new rules:

typ(C; pass(X;E); bot) :� mem(cb(X;T ); C); typ(C;E; T ):
typ(C; app(E;E0); bot) :� typ(C;E; bot); typ(C;E0; T ):
typ(C;mu(anE); T ) :� a # C; typ([cb(a; T )jC]; E; bot):

The following query illustrates the typechecking for the term �x:��:(x (�y:[�]y))
whose principal type corresponds to the classical double negation law.

?– typ([]; lam(xnmu(anapp(var(x); lam(ynpass(a; var(y)))))); T ):
T = arr(arr(arr(T162; bot); bot); T162)

4 Example: the �-calculus

The �-calculus is a calculus of concurrent, mobile processes. Its syntax (following
Milner, Parrow, and Walker [11], but omitting definitions) is described by the
grammar rules shown in Figure 3. The symbols x; y; : : : are channel names. The
inactive process 0 is inert. The �:p process performs a silent action � and then
does p. Parallel composition is denoted pjq and nondeterministic choice by p+q.
The process x(y):p inputs a channel name from x, binds it to y, and then does p.
The process xy:p outputs y to x and then does p. The match operator [x = y]p is
p provided x = y, but is inactive if x 6= y. The restriction operator (y)p restricts
y to p. Parenthesized names (e.g. y in x(y):p and (y)p) are binding, and fn(p),
bn(p) and n(p) denote the sets of free, bound, and all names occurring in p.
Capture-avoiding renaming is written tfx=yg.



Process terms p ::= 0 j �:p j pjq j p+ q j x(y):p j xy:p j [x = y]p j (x)p
Actions a ::= � j x(y) j xy j x(y)

�:p �
�! p

p a
�! p0 bn(a) \ fn(q) = ;

pjq a
�! p0jq

p
xy
�! p0 q

x(z)
�! q0

pjq �
�! p0jq0fy=zg

p a
�! p0

p+ q a
�! p0 xy:p

xy
�! p

w =2 fn((z)p)

x(z):p
x(w)
�! pfw=zg

p a
�! p0

[x = x]p a
�! p0

p
x(w)
�! p0 q

x(w)
�! q0

pjq �
�! (w)(p0jq0)

p a
�! p0 y =2 n(a)

(y)p a
�! (y)p0

p
xy
�! p0 y 6= x w =2 fn((y)p)

(y)p
x(w)
�! p0fw=yg

Fig. 3. The �-calculus

Milner et al.’s original operational semantics (shown in Figure 3, symmetric
cases omitted) is a labeled transition system with relation p

a
�! q indicating “p

steps to q by performing action a”. Actions � , xy, x(y), x(y) are referred to as
silent, free output, input, and bound output actions respectively; the first two are
called free and the second two are called bound actions. For an action a, n(a) is
the set of all names appearing in a, and bn(a) is empty if a is a free action and
is fyg if a is a bound action x(y) or x(y).

Much of the complexity of the rules is due to the need to handle scope ex-
trusion, which occurs when restricted names “escape” their scope because of
communication. In ((x)ax:p)j(a(z):z(x):0)

�
�! (x0)(pjx0(x):0)), for example, it is

necessary to “freshen” x to x0 in order to avoid capturing the free x in a(z):z(x):0.
Bound output actions are used to lift the scope of an escaping name out to the
point where it is received.

These rules can be translated directly into �Prolog (see Figure 4). Processes
and actions can be encoded using the following syntax:

chan : name type: proc : type: ina : proc: tau : proc! proc:
par; sum : (proc; proc)! proc: in : (chan; channproc)! proc:
out;match : (chan; chan; proc)! proc: res : (channproc)! proc:
act : type: tau a : act: in a; fout a; bout a : (chan; chan)! act:

The function ren p(P; Y;X) performing capture-avoiding renaming is not shown,
but easy to define.

We can check that this implementation of the operational semantics produces
correct answers for the following queries:

?– step(res(xnpar(res(ynout(x; y; ina)); in(x; znout(z; x; ina)))); A; P ):
A = tau a; P = res(y58nres(z643npar(ina; out(z643; y58; ina))))
?– step(res(xnout(x; y; ina)); A; P ):
No:



func ren p(proc; chan; chan) = proc: (* definition omitted *)
pred safe(act; pr): (* tests bn(A) \ fn(P ) = ; *)
safe(tau a; P ):
safe(fout a(X;Y ); P ):
safe(bout a(X;Y ); P ) :� Y # P:
safe(in a(X;Y ); P ) :� Y # P:
pred step(pr; act; pr): (* encodes p a

�! p0 *)
step(tau(P ); tau a; P ):
step(par(P;Q); A; par(P 0; Q)) :� step(P;A; P 0); safe(A;Q):
step(par(P;Q); tau a; par(P 0; Q00)) :� step(P; fout a(X;Y ); P 0);

step(Q; in a(X;Z); Q0);
Q00 = ren p(Q0; Y; Z):

step(sum(P;Q); A; P 0) :� step(P;A; P 0):
step(out(X;Y; P ); fout a(X;Y ); P ):
step(in(X; znP ); in a(X;W ); P 0) :� W # znP; P 0 = ren p(P;W; z):
step(match(X;X;P ); A; P 0) :� step(P;A; P 0):
step(par(P;Q); tau a; res(znpar(P 0; Q0))) :� step(P; bout a(X; z); P 0);

step(Q; in a(X; z); Q0):
step(res(ynP ); A; res(ynP 0)) :� y # A; step(P;A; P 0):
step(res(ynP ); bout a(X;W ); P 00) :� step(P; fout a(X; y); P 0); y # X;

W # ynP; P 00 = ren p(P 0;W; y):

Fig. 4. �-calculus transitions in �Prolog

This �Prolog session shows that (x)((y)xy:0 j x(y):yx:0)
�
�! (x)(y)(0 j yx:0),

but (x)(x(y):0) cannot make any transition. Moreover, the answer to the first
query is unique (up to renaming).

Given that a wide variety of alternative formulations of the �-calculus have
appeared since Milner et al.’s work, why have we chosen to encode the original
�-calculus rules? We want to show �Prolog is capable of coping with the original
version without help. Many of the �-calculus variants were developed in order to
simplify the treatment of names; some were designed specifically to be encoded
within HOAS. �Prolog is also quite capable of handling these HOAS-friendly
versions, but this is not surprising. However, as we have shown, �Prolog is equally
capable of encoding the HOAS-unfriendly original version.

5 Semantics

In this section we present an operational semantics for �Prolog programs. We
describe briefly nominal unification and �Prolog’s execution algorithm, empha-
sizing the main novelties relative to standard unification and logic programming
execution.



5.1 Nominal Unification

Nominal unification is unification of nominal terms up to �-equivalence (as for-
malized by the axioms of Figure 1). For ground terms, nominal unification coin-
cides with �-equivalence: for example, the term nnn unifies with mnm, but nnm
and nnn do not unify. However, seemingly �-equivalent non-ground terms such as
nnX and mnX unify only subject to the freshness constraints n # X and m # X.
A freshness constraint of the form n # X states that X may not be instantiated
with a term containing a free occurrence of n. The problem nnX �? mnY is
unified by substitution X = (n m)Y subject to the constraint n # X; that is, X
must be identical to Y with n and m swapped, and n must be fresh for X. The
nominal unification algorithm therefore also must solve freshness (or disunifica-
tion) subproblems of the form a #? t. In �Prolog, this is generalized slightly to
allow variables of name type on the left side (A #? t).

Technically, a constraint is a setr of freshness formulas that cannot be solved
any further, such as t # Y , where t is a name or variable. A substitution is a
function � mapping logic variables to terms, which we overload for the application
of a substitution to a variable, term, formula, and constraint. Substitution is not
capture-avoiding with respect to abstraction. For example, �(nnX) = nnn if
�(X) = n. Nominal unification is decidable and produces unique most general
unifiers: pairs of the form h�;ri, such that for every unification problem t �? u
we have that r ` �(t) � �(u). We refer the reader to [20] for the definition of
this judgment and for the details of the nominal unification algorithm. We write
t �? u + h�;ri and t #? u + r to indicate that terms t; u unify with result
h�;ri or disunify with result r.

5.2 Operational semantics

We now present the operational semantics of �Prolog programs. A program con-
sists of a set of clauses P, a goal G, and a constraint r; we shall write P ?– G j r
for a query. An answer to this query is a pair h�;ri of a substitution and some
freshness constraints. We define the operational semantics of an �Prolog query
using judgments of the form P ?– G j r + h�;r0i, which means “h�;r0i is a
possible answer for the program P ?– G j r”. The rules of this judgment are
listed below:

P ?– true j r + h�;ri holds always (where � stands for the identity substitu-
tion).

P ?– G1 ^G2 j r + h�2 � �1;r2i holds if P ?– G1 j r + h�1;r1i and P ?–
�1(G2) j r1 + h�2;r2i.

P ?– n # t j r + h�;r[r0i holds if n #? t + r0.
This case solves a freshness formula using disunification. Any resulting con-
straints must be added to the constraint set.

P ?– t1 = t2 j r + h�;r0 [r00i holds if t1 �? t2 + h�;r0i and �(r) + r00.
This case solves an equality formula using unification. We must check that
the unifying substitution � is consistent with the pre-existing constraints r
by disunifying the problem �(r) to a new constraint r00.



P ?– A j r + h�;r0i holds if (A0 :� G) 2 P, fresh((r; A); (A0 :� G)) and
P ?– A = A0 ^G j r + h�;r0i
where fresh(X;Y ) means V (X) \ V (Y ) = ; and N(X) \N(Y ) = ;.
This case performs backchaining. We first unify A and A0 and then solve G
subject to the result of unification.

P ?– A[a] j r + h�;r0i: holds if (a0 = t :� G) 2 P, fresh((r; A[a]); (a0 = t :�
G)) and P ?– a = a0 ^G ^ A[t] j r + h�;r0i.
This case applies a rewriting rule. We write A[] to indicate an atomic formula
with a “hole” that can be filled by an atomic term. Assuming the goal is
A[a] for an atomic term a, we unify a with the rule’s left-hand side a0, solve
the rule’s side condition G, and replace a with t in A[].

If we assume that P, G, and r are given, these rules can be viewed as a (nonde-
terministic) program for computing answers. In �Prolog, as usual in logic pro-
gramming, variables in program clauses or rewriting rules are renamed to new
variables prior to unification; in addition, names are freshened to new names.
This is enforced by the side condition fresh(�; �).

Example 1. Consider the goal X = subst(lam(xnvar(y)); var(x); y). The substi-
tution on the right-hand side is in danger of capturing the free variable var(x).
How is capture avoided in �Prolog? The freshened rewrite rule

subst(lam(y1nE
0
1); E1; X1) = lam(y1nsubst(E

0
1; E1; X1)) :� y1 # E1

matches with substitution [E0
1 = var(y); X1 = y; E1 = var(x)]. The fresh-

ness constraint y1 # var(x) guarantees that var(x) cannot be captured. It
is easily verified, so the term reduces to lam(y1nsubst(var(y); var(x); y)). Us-
ing the freshened rule subst(var(X2); E2; X2) = E2 with matching substitution
[X2 = y; E2 = var(x)], we can rewrite to lam(y1nvar(x)), so the final solution is
X = lam(y1nvar(x)).

Example 2. Consider the problem of inferring a type for the �-term �x:�y:x.
We start with the query ?– typ([]; lam(xnlam(ynvar(x))); T ). We can reduce
this goal by backchaining against the suitably freshened rule

typ(C1; lam(x1nE1); arr(T1; U1)) :� x1 # C1; typ([(x1; T1)jC1]; E1; U1)

with matching unifier [C1 = []; E1 = lam(ynvar(x1)); T = arr(T1; U1)]. This
yields subgoal x1 # [] ^ typ([(x1; T1)jC1]; E1; U1). The first conjunct is trivially
valid since C1 is a constant. The second is solved by backchaining against the
third typ-rule again:

typ(C2; lam(x2nE2); arr(T2; U2)) :� x2 # C2; typ([(x2; T2)jC2]; E2; U2)

with unifier [C2 = [(x1; T1)]; E2 = var(x1); U1 = arr(T2; U2)] and subgoal x2 #
[(x1; T1)] ^ typ([(x2; T2); (x1; T1)]; var(x1); U2). The freshness subgoal reduces to
the constraint x2 # T1, and the typ subgoal can be solved by backchaining
against

typ(C3; var(X3); T3) :� mem((X3; T3); C3)



using unifier [C3 = [(x2; T2); (x1; T1)]; X3 = x1; T3 = U2]. Finally, the remaining
subgoal mem((x1; U2); [(x2; T2); (x1; T1)]) clearly has most general solution [U2 =
T1]. Solving for T , we have

T = arr(T1; U1) = arr(T1; arr(T2; U2)) = arr(T1; arr(T2; T1))

This solution corresponds to the principal type of �x:�y:x.

5.3 Equivariance

It is straightforward to show that our operational semantics is sound with respect
to first-order logic extended with the axioms of Figure 1. The proof of this fact
relies on the soundness of nominal unification for nominal equational satisfiability
([20, Thm. 2]).

Completeness is more elusive, because we have not taken into account equiv-
ariance, an important property of nominal logic that guarantees that validity is
preserved by name-swapping [16]. Formally, the equivariance axiom asserts that
p(t)) p((n m)t) is valid in nominal logic for any atomic formula p(t) and names
n;m. For example, for any binary relation pred p(�; �) for � : name type, we
have p(x; y) () p(y; z) valid in both directions because (x y)(y z) translates be-
tween them. But many-to-one renamings may not preserve validity: for example,
x # y ) z # z is not valid.

Because of equivariance, resolution based on nominal unification is incom-
plete for nominal logic. For example, given program clause p(n) where n is a
name, the goal p(n) cannot be solved. Even though p(n) ` p(n) is obviously valid,
proof search fails because the program clause p(n) must be freshened to p(n0), and
p(n0) and p(n) do not unify. However, by equivariance these formulas are equiv-
alent in nominal logic, since p(n0)) p((n n0)n0)) p(n)) p((n n0)n)) p(n0).

Therefore, for complete nominal resolution, it is necessary to extend nominal
unification to equivariant unification or “unification up to a permutation”. How-
ever, even deciding whether an equivariant unification problem has a solution
is NP-complete [1]. This does not necessarily mean that equivariant unification
is impractical. Developing a practical approach to equivariant unification is the
subject of current research, however, and the current version of �Prolog opts
for efficiency over completeness. We have experimented with brute-force search
and more advanced techniques for equivariant unification but have yet to find a
satisfactory solution.

Nevertheless, �Prolog is useful even without equivariance. Equivariant unifi-
cation does not seem necessary for many interesting �Prolog programs, including
all purely first-order programs and all the examples in this paper. In fact, such
programs can be shown to be equivariant without using the equivariance axiom.
We speculate that nominal unification-based resolution is complete for such in-
trinsically equivariant programs; we are currently working on proving this and
developing a program analysis for checking that programs are intrinsically equiv-
ariant.



6 Concluding Remarks

6.1 Related work

Several existing languages are closely related to �Prolog.
FreshML [17]: an extension of the ML programming language with Gabbay-

Pitts names, name-binding with pattern matching, and fresh name generation.
�Prolog is reminiscent of FreshML in many ways, and it is fair to say that
�Prolog is to logic programming what FreshML is to functional programming.
We believe however that the differences between FreshML and �Prolog are more
than cosmetic. �Prolog lends itself to a declarative style of nameful programming
which is refreshingly close to informal declarative presentations of operational
semantics, type systems and logics, in contrast to FreshML which remains pro-
cedural (and effectful) at heart.

Qu-Prolog [19]: an extension of Prolog with built-in names, binding, and
explicit capture-avoiding substitutions and unification up to both �-equivalence
and substitution evaluation. Qu-Prolog includes “not free in” constraints corre-
sponding to our freshness constraints. Nevertheless, there are significant differ-
ences; �Prolog is not a reinvention of Qu-Prolog. First, �Prolog is a strongly
typed polymorphic language, in contrast to Qu-Prolog, which is untyped in
the Prolog tradition. Second, �Prolog is based on a simpler unification algo-
rithm that unifies up to �-equivalence but not up to substitution. Finally, Qu-
Prolog lacks a logical semantics, and because of its internalized treatment of
capture-avoiding substitution, developing one would likely be difficult. In con-
trast, �Prolog’s semantic foundations have already been developed in the setting
of nominal logic [16].

Logic programming with binding algebras: Hamana [7] has formal-
ized a logic programming language based on Fiore, Turi, and Plotkin’s binding
algebras [4]. No implementation of this language appears to be available. How-
ever, since binding algebras are a formalization of HOAS, we believe that this
approach will also share the semantic complexity of HOAS.

6.2 Status and Future Work

We have implemented an interpreter for �Prolog based on nominal unification
as outlined in this paper, along with many additional example programs, such
as translation to a small typed assembly language, evaluation for a core object
calculus, and modeling a cryptographic authentication protocol. The implemen-
tation is available online.1 In addition, we are experimenting with support for
equivariance. This makes additional applications possible, such as type infer-
ence for a small ML-like language and translations from regular expressions to
finite automata. Therefore we are very interested in developing techniques for
equivariant unification and resolution.

Following Miller et al. [10], we have formulated a uniform proof theoretic
semantics for nominal hereditary Harrop formulas based on a sequent calculus
1 http://www.cs.cornell.edu/People/jcheney/aprolog/



for nominal logic [6]. A more traditional model-theoretic semantics is in devel-
opment. We also plan to develop equivariance, mode, and determinism analyses.
Another interesting direction is relating �Prolog’s freshness constraint solving
with a standard constraint logic programming framework [9].

The only deficiency of �Prolog relative to HOAS systems and Qu-Prolog is
that capture-avoiding substitution is not built-in, but must be written by hand
when needed. This is easier in �Prolog than in most languages, but is still te-
dious work we would rather avoid. Because binding is made explicit in �Prolog’s
abstraction terms and types, it should be possible to define capture-avoiding
substitution as a generic built-in function. Doing this safely in a strongly typed
language requires care: for example Qu-Prolog’s approach of blindly replacing
object-variables with terms would be unsound in �Prolog (if x : id; t : exp, then
var(x) is well-formed but var(t) is not). The solution we are pursuing is to allow
the programmer to declare specific primitive function symbols such as v : � ! �
to be “substitutable variables”; then, �Prolog can provide a polymorphic substi-
tution action �[�=�] : (�; �; �) ! � that replaces all free occurrences of v(x) with
t0 in t (where t : �, t0 : � and x : �). However, this does not help with unusual
substitution-like operations such as ��-calculus replacement tft0=�g, which we
would also like to be able to derive generically.

6.3 Summary

Though still a work in progress, �Prolog shows great promise. Although �Prolog
is not the first language to include special constructs for dealing with variable
binding, �Prolog allows programming much closer to informal “paper” defini-
tions than any other extant system. We have given several examples of languages
that can be defined both declaratively and concisely in �Prolog. We have also
described the operational semantics for core �Prolog, and have proved that it
is sound with respect to nominal logic, but complete only for a class of well-
behaved equivariant programs. Additional work is needed to develop practical
techniques for equivariant unification necessary for complete nominal resolution,
and to develop static analyses and other forms of reasoning about �Prolog pro-
grams. More broadly, we view �Prolog as the first step toward a nominal logical
framework for reasoning about programming languages, logics, and type systems
encoded in nominal abstract syntax.

References

1. James Cheney. The complexity of equivariant unification. Submitted.

2. N. G. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for
automatic formula manipulation. Indag. Mat., 34(5):381–392, 1972.

3. Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order abstract syn-
tax in Coq. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proc. Int. Conf.
on Typed Lambda Calculi and Applications, pages 124–138, Edinburgh, Scotland,
1995. Springer-Verlag LNCS 902.



4. M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding.
In Proc. 14th Symp. on Logic in Computer Science (LICS 1999), pages 193–202.
IEEE, 1999.

5. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

6. Murdoch Gabbay and James Cheney. A proof theory for nominal logic. Submitted.
7. Makoto Hamana. A logic programming language based on binding algebras. In

Proc. Theoretical Aspects of Computer Science (TACS 2001), number 2215 in Lec-
ture Notes in Computer Science, pages 243–262. Springer-Verlag, 2001.

8. Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Proc.
14th Symp. on Logic in Computer Science, pages 204–213. IEEE, July 1999.

9. Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. J.
Logic Programming, 19/20:503–581, 1994.

10. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

11. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
I-II. Information and Computation, 100(1):1–77, September 1992.

12. A. Momigliano, S. J. Ambler, and R. L. Crole. A comparison of formalizations of
the meta-theory of a language with variable bindings in Isabelle. In Informatics
Research Report EDI-INF-RR-0046, Supplemental Proceedings of TPHOLs 2001,
pages 267–282. University of Edinburgh, 2001.

13. G. Nadathur and D. Miller. Higher-order logic programming. In D. M. Gab-
bay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 5, chapter 8, pages 499–590. Oxford
University Press, 1998.

14. Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In A. Voronkov, editor, Proceedings of the 1992 International
Conference on Logic Programming and Automated Reasoning (LPAR ’92), number
624 in LNAI, pages 190–201, 1992.

15. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proc. ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI
’89), pages 199–208. ACM Press, 1989.

16. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 183:165–193, 2003.

17. M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programmming with
binders made simple. In Proc. 8th ACM SIGPLAN Int. Conf. on Functional Pro-
gramming (ICFP 2003), pages 263–274, Uppsala, Sweden, 2003. ACM Press.

18. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm
of Mercury: an efficient purely declarative logic programming language. J. Logic
Programming, 29(1–3):17–64, October-December 1996.

19. J. Staples, P. J. Robinson, R. A. Paterson, R. A. Hagen, A. J. Craddock, and P. C.
Wallis. Qu-prolog: An extended prolog for meta level programming. In Harvey
Abramson and M. H. Rogers, editors, Meta-Programming in Logic Programming,
chapter 23. MIT Press, 1996.

20. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. In M. Baaz, editor,
Computer Science Logic and 8th Kurt Gödel Colloquium (CSL’03 & KGC), volume
2803 of Lecture Notes in Computer Science, pages 513–527, Vienna, Austria, 2003.
Springer-Verlag.


