
Scrap your Nameplate
(Functional Pearl)

James Cheney
University of Edinburgh

Edinburgh, United Kingdom
jcheney@inf.ed.ac.uk

Abstract
Recent research has shown howboilerplatecode, or repetitive code
for traversing datatypes, can be eliminated using generic program-
ming techniques already available within some implementations of
Haskell. One particularly intractable kind of boilerplate isname-
plate, or code having to do with names, name-binding, and fresh
name generation. One reason for the difficulty is that operations on
data structures involving names, as usually implemented, are not
regular instances of standardmap, fold , or zip operations. How-
ever, innominal abstract syntax, an alternative treatment of names
and binding based on swapping, operations such asα-equivalence,
capture-avoiding substitution, and free variable set functions are
much better-behaved.

In this paper, we show how nominal abstract syntax techniques
similar to those of FreshML can be provided as a Haskell library
calledFreshLib. In addition, we show how existing generic pro-
gramming techniques can be used to reduce the amount of name-
plate code that needs to be written for new datatypes involving
names and binding to almost nothing—in short, how toscrap your
nameplate.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords generic programming, names, binding, substitution

1. Introduction
Many programming tasks in a statically typed programming lan-
guage such as Haskell are more complicated than they ought to
be because of the need to write “boilerplate” code for travers-
ing user-defined datatypes.Generic programming(the ability to
write programs that work for any datatype) was once thought to
require significant language extensions or external tools (for ex-
ample, Generic Haskell [20]). However, over the last few years it
has been shown by several authors that a great deal of generic pro-
gramming can be performed safely using well-understood existing
extensions to Haskell (using Hinze and Peyton Jones’derivable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

type classes[13], or Lämmel and Peyton Jones’scrap your boiler-
plate(SYB) approach [17, 18, 19]) or even entirely within Haskell
98 (using Hinze’sgenerics for the masses[12]). Using these tech-
niques it is possible to eliminate many forms of boilerplate code.

One form of boilerplate that is especially annoying is what we
shall callnameplate: code that deals with names, fresh name gen-
eration, equality-up-to-safe-renaming, free variables, and capture-
avoiding substitution. The code to accomplish these tasks usu-
ally seems straightforward, even trivial, but nevertheless apparently
must be written on a per-datatype basis. The main reason for this is
that capture-avoiding substitution,FV (−), andα-equivalence are,
as usually written, not uniform instances ofmap, fold , or zip. Al-
though most cases are straightforward, cases involving variables or
name-binding require special treatment. Despite the fact that it in-
volves writing a lot of repetitive nameplate, the classicalfirst-order
approach to programming abstract syntax with names and binding
is the most popular in practice.

One class of alternatives is name-free techniques such asde
Bruijn indices[9] in which bound names are encoded using point-
ers or numerical indices. While often a very effective and prac-
tical implementation or compilation technique, these approaches
are tricky to implement, hard for non-experts to understand, and
do not provide any special assistance with open terms, fresh name
generation or “exotic” forms of binding, such as pattern-matching
constructs in functional languages. Also, for some tasks, such as
inlining, name-free approaches seem to require more implementa-
tion effort while not being much more efficient than name-based
approaches [15].

Another alternative ishigher-order abstract syntax[24]: the
technique of encoding object-language variables and binding forms
using the variables and binding forms of the metalanguage. This
has many advantages: efficient implementations ofα-equivalence
and capture-avoiding substitution are inherited from the metalan-
guage, and all low-level name-management details (including side-
effects) are hidden, freeing the programmer to focus on high-level
problems instead. While this is a very powerful approach, most in-
teresting programming tasks involving higher-order abstract syntax
requirehigher-order unification, which is common in higher-order
logic programming languages such asλProlog [23] but not in func-
tional languages, Haskell in particular. Therefore, using higher-
order abstract syntax in Haskell would require significant language
extensions. Also, like name-free approaches, higher-order abstract
syntax does not provide any special support for programming with
open terms, fresh name generation, or exotic forms of binding.

A third alternative, which we advocate, isnominal abstract syn-
tax, the swapping-based approach to abstract syntax with bound
names introduced by Gabbay and Pitts [10, 11, 25] and employed in
the FreshML (or FreshOCaml) [26, 30] andαProlog [7] languages.
This approach retains many of the advantages of first-order abstract

syntax while providing systematic support forα-equivalence and
fresh name generation. Moreover, as we shall show, nominal ab-
stract syntax can be implemented directly in Haskell using type
classes, and the definitions of nameplate functions such as capture-
avoiding substitution and free variables can be generated automat-
ically for user-defined types. Thus, nominal abstract syntax and
generic programming techniques can be fruitfully combined to pro-
vide much of the convenience of higher-order abstract syntax with-
out sacrificing the expressiveness of first-order abstract syntax and
without any language extensions beyond those needed already for
generic programming in Haskell.

The purpose of this paper is to show how toscrap your name-
plate by combining nominal abstract syntax with existing generic
programming techniques available in Haskell implementations
such asghc. As illustration, we develop a small library called
FreshLib for FreshML-style programming with nominal abstract
syntax in Haskell. The main technical contribution of this paper
over previous work on FreshML is showing how generic program-
ming techniques already available inghc can be used to eliminate
most of the work in implementing capture-avoiding substitution
and free-variables computations. Although our implementation
uses advanced features currently present only inghc, we believe
our technique to be applicable in other situations as well.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a high-level overview and three examples of using
FreshLib from the user’s point of view, emphasizing the fact that
the library “just works” without the user needing to understand
nominal abstract syntax or generic programminga priori or being
obliged to write reams of boilerplate code. Section 3 introduces
the key concepts of nominal abstract syntax and describes an ini-
tial, type class-based implementation ofFreshLib. Section 4 shows
how FreshLib can be made completely generic using Hinze and
Peyton Jones’derivable type classes[13] and L̈ammel and Peyton
Jones’scrap your boilerplate with class[19]; this section is very
technical and relies heavily on familiarity with Lämmel and Peyton
Jones’ paper, so casual readers may prefer to skip it on first read-
ing. Section 5 discusses extensions such as handling user-defined
name types and alternative binding forms. Section 6 and Section 7
discuss related work and conclude.

2. FreshLib overview and examples
2.1 FreshLib basics

In nominal abstract syntax, it is assumed that one or more special
data types ofnamesis given.FreshLib provides a data typeName
of string-valued names with optional integer tags:

data Name = Name String (Maybe Int)
with instances forEq , Show , and other standard classes. By con-
vention, user-provided names (writtena, b, c) have no tag, whereas
names generated byFreshLib (writtena0, b1, etc.) are tagged.

The next ingredient of nominal abstract syntax is the assump-
tion that all types involved in abstract syntax trees possess anα-
equivalence(==α) relation (in addition to some other functions
which the casual user doesn’t need to know about):

class Nom a where
− ==α − :: a → a → Bool

-- other members discussed in Section 3
Any datatype involvingNames and name-binding needs to be
an instance ofNom; however,FreshLib provides instances for
Name, the abstraction constructor (see below), and all of Haskell’s
built-in types and constructors. Moreover, generic instances for
user-defined datatypes can be derived automatically. As a result,
the library user only needs to provide instances forNom when the
default behavior is not desired, e.g. when implementing a datatype
with exotic binding structure (Section 5.3).

In addition, FreshLib provides a type constructora \\\ b for
name-abstractions, or data with binding structure:

data a \\\ b = a \\\ b
Syntactically, this is just pairing. However, whena is Name and
b is an instance ofNom, Name \\\ b has special meaning: it repre-
sents elements ofb with one boundName. The provided instance
declarations ofNom for Name \\\ b define(==α) asα-equivalence,
that is, equivalence up to safe renaming of bound names. For exam-
ple, we have

> a \\\ a ==α b \\\ b
True
> a \\\(a, b) ==α b \\\(a, b)
False
> a \\\ b ==α b \\\ a
False
> c \\\(a, c) ==α b \\\(a, b)
True

Other types besidesName can also be treated as binders, but we
will stick with Name-bindings only for now; we will discuss this
further in Section 5.3.

TheName and−\\\− types are meant to be incorporated into
user-defined datatypes for abstract syntax trees involving names
and binding. We will give examples in Section 2.2 and Section 2.3.

Another important component of nominal abstract syntax is the
ability to generate fresh names. In Haskell, one way of accomplish-
ing this is to use a monad. Rather than fixing a (probably too spe-
cific) monad and forcing all users ofFreshLib to use it,FreshLib
provides a type class offreshness monadsthat can rename existing
names to fresh ones:

class Monad m ⇒ FreshM m where
renameFM :: Name → m Name

One application of the freshness monad is to provide a monadic
destructor forName \\\ a that freshens the bound name:

unAbs :: FreshM m ⇒ Name \\\ a → m (Name, a)
Unlike in FreshML, pattern matching against the abstraction con-
structor\\\ does not automatically freshen the name bound by the
abstraction; instead, we need to use theunAbs destructor to explic-
itly freshen names.1

In addition to providingα-equivalence,FreshLib also pro-
vides type classesSubst andFreeVars{|−|} that perform capture-
avoiding substitution and calculate sets of free names:

class Subst t u where
[− 7→ −]− :: FreshM m ⇒ Name → t → u → m u

class FreeVars{|t |} u where
FV {|t |}(−) :: u → [Name]

Intuitively, Subst t u provides a substitution function that replaces
variables of typet in u; similarly,FreeVars{|t |} u provides a func-
tion that calculates a list of the free variables of typet in u. Note
that for Subst , we may need to generate fresh names (e.g. when
substituting into an abstraction), so we need to work in some fresh-
ness monadm. For FreeVars{|t |}, fresh name generation is not
needed; however, we do need to specify the typet whose free vari-
ables we seek.2 Appropriate instances ofSubst andFreeVars{|−|}
for Name, \\\, and all built-in datatypes are provided.

1 We could hide the constructor\\\ using Haskell’s module system and in-
stead only export a constructorabs :: a → b → a \\\ b and the destructor
unAbs; this would legislate that abstractions can only be unpacked using
unAbs. But, this would force freshening (and require computation to take
place in a monad) even when unnecessary. For the same reason, the current
version of FreshML also provides two ways of pattern matching abstrac-
tions, one that freshens and one that does not.
2 Explicit type-passingf {|t |} is not allowed in Haskell, but can be simulated
by passing adummy argumentof typet (for example,undefined :: t)

module Lam where
import FreshLib
data Lam = Var Name

| App Lam Lam
| Lam (Name \\\Lam)

deriving (Nom,Eq ,Show)
instance HasVar Lam where

is var (Var x) = Just x
is var y = Nothing

Figure 1. Nameplate-free implementation ofLam
cbn eval :: FreshM m ⇒ Lam → m Lam
cbn eval (App t1 t2) = do w ← cbn eval t1

case w
of Lam (a \\\ u)→

do v ← [a 7→ t2]u
cbn eval v

→ return (App w t2)
cbn eval x = return x

Figure 2. Call-by-name evaluation

Note that substitution and free variable sets are not completely
type-directed calculations: we need to know something about the
structure oft in each case. Specifically,we need to know how to
extract aName from a variable of typet . Therefore,FreshLib
provides a classHasVar providing a functionis var that tests
whether thet value is a variable, and if so, extracts its name:

class HasVar t where
is var :: t → Maybe Name

Once HasVar t is instantiated, instances ofSubst t u and
FreeVars{|t |} u are derived automatically.

FreshLib provides an instance ofHasVar Name; a name can
be considered as a variable that could be replaced with another
name. For example,

> FV {|Name|}(a \\\(a, b))
[b]
> runFM ([b 7→ a](a \\\(a, b)))
a0 \\\(a0, a)

whererunFM is a function that evaluates a monadic expression in
a particularFreshM FM . (Recall that names of the forma0, a1, ...
are names that have been freshly generated by theFreshM .)

2.2 The lambda-calculus

We first consider a well-worn example: implementing the syn-
tax, α-equivalence, capture-avoiding substitution, and free vari-
ables functions of the untyped lambda-calculus. The idealized3

Haskell code shown in Figure 1 is all that is needed to do this using
FreshLib. First, we considerα-equivalence onLam-terms:

> Lam (a \\\Var a) ==α Lam (b \\\Var b)
True

> Lam (a \\\Lam (a \\\Var a)) ==α

Lam (b \\\Lam (a \\\Var b))
False

> Lam (a \\\Lam (a \\\Var a)) ==α

Lam (b \\\Lam (a \\\Var a))
True

Here are a few examples of substitution:
> runFM ([a 7→ Var b](Lam (b \\\Var a)))
Lam b0 \\\(Var b)
> runFM ([a 7→ Var b](Lam (b \\\Lam (a \\\Var a))))

3 There are a few white lies, which we will discuss in Section 4.3.

module PolyLam where
import FreshLib
data Type = VarTy Name

| FnTy Type Type
| AllTy (Name \\\Type)

deriving (Nom,Show ,Eq)
data Term = Var Name

| App Term Term
| Lam Type (Name \\\Term)
| TyLam (Name \\\Term)
| TyApp Term Type

deriving (Nom,Show ,Eq)
instance HasVar Type where

is var (VarTy x) = Just x
is var = Nothing

instance HasVar Term where
is var (Var x) = Just x
is var = Nothing

Figure 3. Nameplate-free polymorphic lambda-calculus in
FreshLib

Lam b0 \\\(Lam a1 \\\(Var a1))
Note that in the first example, capture is avoided by renaming
b0, while in the second, the substitution has no effect (up toα-
equivalence) becausea is not free in the term. Here are some
examples ofFV {|−|}(−):

> FV {|Lam|}(Lam (a \\\App (Var a) (Var b)))
[b]
> FV {|Lam|}(App (Var a) (Var b))
[a, b]

Finally, we show how call-by-name evaluation can be implemented
usingFreshLib’s built-in substitution operation in Figure 2. Here
is a small example:

> runFM (cbn eval (App (Lam (a \\\Lam (b \\\
App (Var a) (Var b))))

(Var b)))
Lam (b0 \\\App (Var b) (Var b0))

2.3 The polymorphic lambda-calculus

While the above example illustrates correct handling of the sim-
plest possible example involving one type and one kind of names,
real languages often involve multiple types and different kinds of
names. We now consider a more involved example: thepolymor-
phic lambda-calculus(or System F), in which names may be used
for either term variables or type variables. TheFreshLib code for
this is shown in Figure 3. Here are some examples:

> let t1 = AllTy (a \\\FnTy (VarTy a) (VarTy b))
> let t2 = AllTy (b \\\FnTy (VarTy a) (VarTy b))
> let t3 = AllTy (c \\\FnTy (VarTy c) (VarTy b))
> t1 ==α t2
False
> t1 ==α t3
True

In addition, since we indicated (viaHasVar instances) thatType
has a variable constructorVarTy andTerm has a variable con-
structor Var , appropriate implementations of[− 7→ −]− and
FV {|−|}(−) are provided also.

> let tm = Lam (VarTy c) (a \\\App (Var a) (Var b))
> FV {|Term|}(tm)
[b]
> FV {|Type|}(tm)

class FreshM m ⇒ PolyTCM m where
bindTV :: Name → m a → m a
bindV :: Name → Type → m a → m a
lookupTV :: Name → m Bool
lookupV :: Name → m (Maybe Type)
errorTC :: String → m a

wfTy :: PolyTCM m ⇒ Type → m ()
wfTy (VarTy n) =

do b ← lookupTV n
if b then return ()
else errorTC "Unbound variable"

wfTy (FnTy t1 t2) = do wfTy t1
wfTy t2

wfTy (AllTy abs) = do (a, ty)← unAbs abs
bindTV a (wfTy ty)

eqTy :: PolyTCM m ⇒ Type → Type → m ()
eqTy ty1 ty2 =

if ty1 ==α ty2 then return ()
else errorTC "Type expressions differ"

unFnTy :: PolyTCM m ⇒ Type → m (Type,Type)
unFnTy (FnTy ty1 ty2) = return (ty1, ty2)
unFnTy = errorTC "Expected function type"

unAllTy :: PolyTCM m ⇒ Type → m (Name \\\Type)
unAllTy (AllTy abs) = return abs
unAllTy = errorTC "Expected forall type"

Figure 4. Type well-formedness and utility functions

inferTm :: PolyTCM m ⇒ Term → m Type
inferTm (Var x) =

do ty ← lookupV x
case ty
of Just ty ′ → return ty ′

Nothing →
errorTC "Unbound variable"

inferTm (App t1 t2) =
do ty1 ← inferTm t1

(argty , resty)← unFnTy ty1

ty2 ← inferTm t2
eqTy argty ty2

return resty

inferTm (Lam ty abs) =
do (a, t)← unAbs abs

ty ′ ← bindV a ty (inferTm t)
return (FnTy ty ty ′)

inferTm (TyApp tm ty) =
do ty ′ ← inferTm tm

wfTy ty
abs ← unAllTy ty ′

(a, ty ′′)← unAbs abs
[a 7→ ty]ty ′′

inferTm (TyLam abs) =
do (a, tm)← unAbs abs

ty ← bindTV a (inferTm tm)
return (AllTy (a \\\ ty))

Figure 5. Type checking for the polymorphic lambda-calculus

[c]
> FV {|Name|}(tm)
[c, b]
> runFM ([c 7→ AllTy (c \\\VarTy c)]tm)
Lam (AllTy (c \\\Var c)) (a0 \\\App (Var a0) (Var b))
> [b 7→ Var a]tm
Lam (VarTy c) (a0 \\\App (Var a0) (Var a))
Finally, we give a complete implementation of type checking for

PolyLam. SincePolyLam terms are type-annotated, type check-
ing is wholly syntax directed. Figure 4 shows the monadic interface
to the typechecker (PolyTCM) and the type well-formedness and
utility functions, and Figure 5 shows the type checker proper. The
only thing that is missing is an instance ofPolyTCM ; the details
of an implementation, say,TCM , are not particularly enlighten-
ing so are omitted. Here is a quick example: inferring the type of
Λα.λx:α→α.λy:α.x y:

> runTCM (inferTm
(TyLam (t \\\Lam (FnTy (VarTy t) (VarTy t))

(a \\\Lam (VarTy t)
(b \\\App (Var a) (Var b)))))))

AllTy (t0 \\\FnTy (FnTy (VarTy t0) (VarTy t0))
(FnTy (VarTy t0) (VarTy t0)))

We stress that the code in Figure 3, Figure 4, and Figure 5
is a completeFreshLib program. No boilerplate code whatsoever
needs to be written to make the above program work (unless you
count instantiatingPolyTCM).

On the other hand, since there is just one typeName of names,
this implementation allows some nonsensical expressions to be
formed that blur the distinction between type variables and term
variables. This can be fixed by allowing multiple name-types. We
return to this issue in Section 5.2.

2.4 A record calculus

As a final example, we sketch how the abstract syntax of a simple
record calculus (an untyped fragment of part 2B of the POPLMark
Challenge [5]) can be implemented inFreshLib. This calculus pro-
vides record constructors{l1 = e1, . . . , ln = en}, field lookups
e.l, and pattern matchinglet p = e in e′, where patternsp consist
of either pattern variablesx or record patterns{l1 : p1, . . . , ln :
pn}. In both record expressions and record patterns, labels must
be distinct; in patterns, variables must be distinct. The pattern vari-
ables inlet p = e in e′ are considered bound ine′.

To represent this abstract syntax, we augment theLam type as
follows:

data Lam = ...
| Rec [(Label ,Lam)]
| Deref Lam Label
| Let Lam (Pat \\\Lam)

data Pat = PVar Name
| PRec [(Label ,Pat)]

The Let constructor encodes the syntaxlet p = e in e′ as
Let e (p \\\ e ′). So far, we have not given any special meaning
to t \\\ u except whent is Name. In fact,FreshLib provides a type
classBType for those types that can be bound on the left-hand
size of an abstraction. So, to provide the desired behavior for pat-
tern binding, we only need to instantiateBType Pat . The internal
workings of theBType class and implementation of the instance
BType Pat are deferred to Section 5.3.

This technique does not automatically equate expressions (or
patterns) up to reordering of labels in record expressions, but
this behavior can be provided by suitable specializations ofNom,
BType, andEq .

3. Implementation using type classes
In this section, we will show how a first approximation ofFreshLib
can be implemented using type classes in Haskell. The implementa-
tion in this section requires liberal amounts of boilerplate per user-
defined datatype; however, this boilerplate can be eliminated using
advanced generic programming techniques, as shall be shown in
Section 4.

3.1 Names and nominal types

As described earlier,Name consists of strings with optional integer
tags:

data Name = Name String (Maybe Int)
The aforementioned convention that user-provided names are un-
tagged helps avoid collisions with names generated byFreshLib.
This could be enforced by makingName abstract.

A key ingredient of nominal abstract syntax (which we glossed
over earlier) is the assumption that all types of interest possess a
name-swappingoperation(•), which exchanges two names within
a value, and afreshnessoperation(#), which tests that a name
does not appear “free” in a value. These two operations can be
used as building blocks to formalizeα-equivalence(==α) in a
particularly convenient way: in particular, it is not necessary to
defineα-equivalence in terms of capture-avoiding renaming and
fresh name generation. TheNom type class includes the four
functions:

class Nom a where
− • − :: Trans → a → a
−�− :: Perm → a → a
π � x = foldr (− • −) x π
− # − :: Name → a → Bool
− ==α − :: a → a → Bool

where the types
data Trans = (Name↔Name)
type Perm = [Trans]

indicate pairs or lists of pairs of names considered as transposi-
tions or permutations respectively. The notation(a↔b) indicates
a transposition (swapping) of two namesa and b. Note that the
permutation-application function(�) just applies each of the trans-
positions in a list from right to left; it is convenient in theBType
class in Section 5.3.

Obviously, the instanceNom Name needs to spell out how
name-swapping, freshness andα-equivalence behave for names:

instance Nom Name where
(a↔b) • c | a == c = b

| b == c = a
| otherwise = c

a # b = a /= b
a ==α b = a == b

We also provide a number of instance declarations for built-in
datatypes and type constructors. For base types, these functions are
trivial; for built-in type constructors such as lists and pairs, we just
proceed recursively:

instance Nom Int where
τ • i = i
a # i = True
i ==α j = i == j

instance Nom a ⇒ Nom [a] where
τ • l = map (τ • −) l
a # l = all (a # −) l
l ==α l ′ = all (map (λ(x , y)→ x ==α y) (zip l l ′)

instance (Nom a,Nom b)⇒ Nom (a, b) where
τ • (x , y) = (τ • x , τ • y)
a # (x , y) = a # x ∧ a # y

(x , y) ==α (x ′, y ′) = x ==α x ′ ∧ y ==α y ′

-- etc...

3.2 Abstraction types

So far none of the types discussed binds any names. We now
consider the type constructor\\\ for name-abstractions, i.e. values
with one bound name. Recall that the abstraction type was defined
as:

data a \\\ t = a \\\ t
Structurally, this is just a pair of ana and at . However, we provide
an instance declaration forNom (Name \\\ t) that gives it a special
meaning:

instance Nom t ⇒ Nom (Name \\\ t) where
τ • (a \\\ x) = (τ • a) \\\(τ • x)
a # (b \\\ t) = a == b ∨ a # t
(a \\\ x) ==α (b \\\ y) = (a == b ∧ x ==α y) ∨

(a # y ∧ x ==α (a↔b) • y)
Swapping is purely structural, but freshness andα-equivalence
are not. In particular, a name is fresh for an abstraction if it is
bound immediately or if it is fresh for the body of the abstraction.
Similarly, two abstractions areα-equivalent if they are literally
equal or ifthe name bound on one side is fresh for the body on the
other side, andthe bodies are equal modulo swapping the bound
names.

This definition ofα-equivalence has been studied by Gabbay
and Pitts [10, 11, 25] and shown to be equivalent to the classical
definition; earlier, a swapping-based definition was used by McK-
inna and Pollack [22] in a formal verification of properties of the
λ-calculus. A key advantage (from the point of view of Haskell pro-
gramming) is that unlike the classical definition, our definition does
not require performing fresh name generation and capture-avoiding
renaming in tandem withα-equivalence testing. As a result,(==α)
can be given the same type as(==), and can be used as an equality
function for nominal abstract syntax trees.

3.3 Freshness monads

The ability to swap names and test for freshness andα-equivalence
is not enough for most applications. For example, to define capture-
avoiding substitution, we need to be able to choose fresh names
so that substitutions can be safely pushed inside abstractions. In
Haskell, name-generation is usually performed using a monad [4].

In fact, different applications (e.g., parsing, typechecking, code
generation) typically employ different monads. For example, it is
not unusual to use a single monad for both maintaining a type-
checking or evaluation environment and generating fresh names.
For our purposes, we only need to know how to generate fresh
names. Therefore, we define a type class offreshness monads(cf.
Section 2) in which any computation involving a choice of fresh
names can take place.

class Monad m ⇒ FreshM m where
renameFM :: Name → m Name

Functions such as capture-avoiding substitution can then be param-
eterized over all freshness monads, rather than needing to be spe-
cialized to a particular one.

We also define the monadic destructorunAbs for unpacking an
abstraction and freshening the bound name:

unAbs :: FreshM m ⇒ Name \\\ a → m (Name, a)
unAbs (a \\\ x) = do b ← renameFM a

return (b, (a↔b) • x)
Finally, we provide a default freshness monadFM that simply
maintains an integer counter:

data FM a = FM (Int → (a, Int))
instance Monad FM where

-- omitted

instance FreshM FM where
gensymFM s = FM (λn → (Name s (Just n),n + 1))

runFM :: FM a → a
runFM m = let FM (a,) = m 0 in a

3.4 Capture-avoiding substitution and free variables

We now show how to implement the type classes for capture-
avoiding substitution and calculating sets of free variables. For
Subst , recall that the class definition was:

class Subst t u where
[− 7→ −]− :: FreshM m ⇒ Name → t → u → m u

We first provide instances for built-in types. In all cases, capture-
avoiding substitution commutes with the existing structure. Note
that no renaming needs to be performed in any of these cases.

instance Subst t Int where
[n 7→ t]i = return i

instance Subst t a ⇒ Subst t [a] where
[n 7→ t]l = mapM ([n 7→ t]−) l

instance (Subst t a,Subst t b)⇒ Subst t (a, b) where
[n 7→ t](a, b) = do a ′ ← [n 7→ t]a

b′ ← [n 7→ t]b
return (a ′, b′)

-- etc...
Next, we provide an instance ofSubst Name Name: that is, a
name can be substituted for another name.

instance Subst Name Name where
[a 7→ b]c = if a == c then b else c

Finally, we provide an instance for abstractions: if we know how to
substitute fort in a, then we can also substitute fort in Name \\\ a,
first usingunAbs to freshen the bound name.

instance Subst t a ⇒ Subst t (Name \\\ a) where
[n 7→ t]abs = do (a, x)← unAbs abs

x ′ ← [n 7→ t]x
return (a \\\ x ′)

The classFreeVars{|−|} is defined as follows:
class FreeVars{|t |} u where

FV {|t |}(−) :: u → [Name]
As explained in Section 2, the type parametert is realized as a
dummy argumentundefined :: t needed only as a typechecking
hint. We can now implement the basic cases for built-in types:

instance FreeVars{|t |} Int where
FV {|t |}(i) = []

instance FreeVars{|t |} a ⇒ FreeVars{|t |} [a] where
FV {|t |}(l) = foldl union [] (map (FV {|t |}(−)) l)

instance
(FreeVars{|t |} a,FreeVars{|t |} b)⇒ FreeVars{|t |} (a, b)

where
FV {|t |}(x , y) = FV {|t |}(x) ∪ FV {|t |}(y)

Next, we provide an instance ofFreeVars{|Name|} Name:
instance FreeVars{|Name|} Name where

FV {|Name|}(x) = [x]
Finally, for abstractions, we compute the free variables of the body
and then filter out the bound name:

instance
(Nom a,FreeVars{|t |} a)⇒ FreeVars{|t |} (Name \\\ a)

where
FV {|t |}(a \\\ x) = FV {|t |}(x) \\ [a]

Note that in this approach, theHasVar class is not used. As
a result, instances ofSubst and FreeVars{|−|} for user-defined
datatypes must be provided instead. Such instances have special
behavior only for cases involving variables of typet ; all other cases
are straightforward recursion steps (see Figure 6).

instance Nom Lam where
τ • (Var c) = Var (τ • c)
τ • (App t u) = App (τ • t) (τ • u)
τ • (Lam abs) = Lam (τ • abs)

a # (Var c) = a # c
a # (App t u) = a # t ∧ a # u
a # (Lam abs) = a # abs

(Var n) ==α (Var m) = n == m
(App t1 t2) ==α (App u1 u2) = t1 ==α u1 ∧ t2 ==α u2

(Lam abs1) ==α (Lam abs2) = abs1 ==α abs2

instance Subst Lam Lam where
[n 7→ t](Var m) = if n == m

then return t
else return (Var m)

[n 7→ t](App u1 u2) = do t′1 ← [n 7→ t]u1

t′2 ← [n 7→ t]u2

return (App t′1 t′2)
[n 7→ t](Lam abs) = do abs ′ ← [n 7→ t]abs

return (Lam abs ′)

instance FreeVars{|Lam|} Lam where
FV {|Lam|}(Var m) = [m]
FV {|Lam|}(App u1 u2) = FV {|Lam|}(u1) ∪ FV {|Lam|}(u2)
FV {|Lam|}(Lam abs) = FV {|Lam|}(abs)

Figure 6. The “nameplate” code forLam

3.5 Limitations of this approach

We have now described a working type class-based implementation
of FreshLib, culminating in definitions of capture-avoiding substi-
tution and free variable sets for which many cases are automatically
provided.

However, so far this approach has simplyreorganizedthe name-
plate that must be written for a new user-defined datatype involving
names and binding. This reorganization has some code reuse and
convenience benefits: for example, we can override and reuse the
− ==α −, [− 7→ −]− andFV {|−|}(−) notations; we don’t have
to write “trivial” cases for pushing substitutions inside lists, pairs,
etc.; and for many datatypes, the remaining cases that need to be
written down are very uniform because the tricky case for−\\\− is
provided byFreshLib. Nevertheless, although the nameplate code
is simpler,we still have to write just as much boilerplate for a new
datatype. In fact, we may have to writemorecode becauseNom
needs to be instantiated for user-defined datatypes.

For example, Figure 6 shows the additional code one would
have to write to implementα-equivalence, substitution, and free
variables for theLam type using the type class-based version
of FreshLib. Fortunately, existing techniques for boilerplate-
scrapping now can be applied, becauseNom turns out to be a
perfect example of aderivable type class, and [− 7→ −]− and
FV {|−|}(−) are examples ofgeneric (monadic) traversalsor
generic queriesof the SYB approach. In the next section we de-
scribe how to makeFreshLib completely generic, so that suitable
instances ofNom, Subst , andFreeVars{|−|} are derived automat-
ically for datatypes built up using standard types and constructors
or usingName and−\\\−.

4. Implementation using generic programming
We will employ two different approaches to scrap the remaining
nameplate inFreshLib. First, we usederivable type classes[13]
to provide generic default definitions of the methods ofNom that

class Nom a where
− • − :: Trans → a → a

τ •{|Unit|} Unit = Unit

τ •{|a⊕b|} (Inl x) = Inl (τ • x)

τ •{|a⊕b|} (Inr x) = Inr (τ • x)

τ •{|a⊗b|} (x ⊗ y) = (τ • x)⊗ (τ • y)

− # − :: Name → a → Bool

a #{|Unit|} Unit = True

a #{|a⊕b|} (Inl x) = a # x

a #{|a⊕b|} (Inr y) = a # y

a #{|a⊗b|} (x ⊗ y) = a # x ∧ a # y

− ==α − :: a → a → Bool

Unit ==
{|Unit|}
α Unit = True

(Inl x) ==
{|a⊕b|}
α (Inl x ′) = x ==α x ′

(Inr y) ==
{|a⊕b|}
α (Inr y ′) = y ==α y ′

==
{|a⊕b|}
α = False

(x ⊗ y) ==
{|a⊗b|}
α (x ′ ⊗ y ′) = x ==α x ′ ∧ y ==α y ′

Figure 7. Nom as a derivable type class

are suitable for most user-defined datatypes. Unfortunately, this ap-
proach does not work forSubst andFreeVars{|−|}, so instead we
employ the latest version of Lämmel and Peyton Jones’ “scrap your
boilerplate” (SYB) library [19]. In particular, we make essential
use of a recent innovation that supportsmodular generic traversals
(i.e., traversals for which special cases can be provided using type
class instances). This was not possible in previous versions of SYB.

Warning. This section (especially Section 4.2) depends rather
heavily on derivable type classes and the new version of the SYB
library. The papers [13] and [19] are probably prerequisite to un-
derstanding this section. However, these details donot have to be
mastered by casual users ofFreshLib.

4.1 Nom as a derivable type class

In a derivable type class[13] (also calledgeneric classin theghc
documentation), we may specify the default behavior of a class
method by induction on the structure of a type, expressed in terms
of generic unit typesUnit , sum typesa ⊕ b, and product types
a⊗b. To instantiate a derivable type class to a particular type (con-
structor), we write a structural description of the type using existing
type constructors,Unit for units,⊕ for sums,⊗ for products,Λ for
type-level abstraction andµ for recursion. For example, the struc-
ture of theLam type isµα.Name⊕(α⊗α)⊕Name \\\α, whereas
the structure of the list type constructor[] is Λβ.µα.Unit⊕β⊗α.
A derivable type class declaration is specialized to a type by follow-
ing the structural type description. The provided cases forUnit ,⊕,
and⊗ in the declaration are used for the corresponding cases in the
type; type-level recursion is translated to term-level recursion; and
type-level abstraction is translated to class dependences in instance
declarations. Few generic functions are purely structure-driven, so
specialized behavior can also be provided as usual by providing
appropriate type class instances. These instances take precedence
over the default instance provided by the derivable type class dec-
laration. If an empty instance is provided, the default behavior is
inherited.

Nom turns out to be a prime example of a derivable type class.
Figure 7 shows how to defineNom as a derivable type class whose
methods can be derived automatically for user-defined datatypes
simply by providing an empty instance ofNom. For example,
for Lam, the declaration specializes to exactly the instance of

Nom Lam in Figure 6. For the list type constructor, the default
instance declaration forNom a ⇒ Nom [a] is essentially the
same as the one shown in Section 3.1.

The behavior ofNom for built-in types such asInt , Char , etc.
and for specialFreshLib types−\\\− andName is provided by
the instances given in Section 3; no changes are needed.

4.2 Subst and FreeVars{|−|} as modular generic traversals

While derivable type classes work very well forNom, they do
not help scrap the remaining boilerplate involved inSubst and
FreeVars{|−|}. One reason is that these classes take multiple pa-
rameters, and multiple-parameter derivable type classes are not
supported byghc. Also, these classes provide behavior that is
constructor-dependent, not just type-dependent. Derivable type
classes work well when a function’s behavior is dependent only
on the structure of its argument type, but they are not suitable for
writing functions with different behavior for different constructors
of the same type. One possible solution would be to use a more
powerful generic programming system such as Generic Haskell
thatdoesallow generic functions to display constructor-dependent
behavior. This would work, but users ofFreshLib would then also
need to become familiar with Generic Haskell.

Another approach that supports constructor-dependent generic
functions is L̈ammel and Peyton Jones’ SYB library [17, 18]. This
approach provides powerful facilities for “almost generic” func-
tions which traverse the data structure genericallyexcept for a few
special cases. We assume familiarity with this approach in the rest
of this section.

Capture-avoiding substitution isalmostan example of ageneric
traversal in the original SYB library. A näıve approach would be
to implement aLam-specific substitution functionsubstLam as
a generic (monadic) traversal by lifting the followingsubstVar
function to one that works for any datatype:

substVar :: Name → Lam → Lam → Lam
substVar a t (Var b) = if a == b

then return t
else return (Var b)

substVar a t x = return x

substLam :: Name → Lam → a → a
substLam a t = everywhereT (mkT (substVar a t))

Of course, this implementscapturing substitution, which is not
what we want. The natural next thing to try is to makesubstVar
andsubstLam monadic, define a functionsubstAbs that gives the
behavior of substitution for abstractions (performing freshening
using aFreshM), and then use the extension functionext1M of
the “Scrap More Boilerplate” paper [18] to extendsubstLam so
that it freshens bound names appropriately.

Unfortunately, this approach does not quite work. The reason
is that the functionsubstAbs needs to know that the type of the
body is inNom, not justData; thus,substAbs is not polymorphic
enoughto be used in a generic traversal. One way to solve this
would be to makeNom a superclass ofData, but this is very
unsatisfactory becauseData is part of a library. Moreover, even
if this approachdid work, it would still have disadvantages: for
example, we would have to repeat the tricky (though admittedly
shorter) definition of substitution for each user-defined type, and
even worse, these definitions would have to be modified if we ever
added new binding types.

In fact, these are examples of more general limitations of the
SYB library. As observed by L̈ammel and Peyton Jones [19], the
original SYB approach has two related disadvantages relative to
type classes. First, generic functions are “closed” (cannot be ex-
tended) once they are defined, whereas type classes are “open” and
can be extended with interesting behavior for new datatypes by
providing instances. Second, SYB can only generalizecompletely

polymorphicfunctions of the form∀a.Data a ⇒ a → a; al-
though type-specific behavior is made possible usingcast , class-
specificbehavior is not, and in particular, we cannot generalize
functions that rely on knowing thata is an instance of some class
other thanData.

As a result, though SYB-style generics are very powerful, they
lack some of themodularityadvantages of type classes and cannot
be integrated with existing type class libraries very easily. Lämmel
and Peyton Jones [19] have developed a new version of SYB that
addresses both problems by, in essence, parameterizing theData
type class by another type classC , so that elements ofData{|C |}
can be assumed to belong toC . This form of parameterization is
not allowed in Haskell proper, but may be simulated inghc using
other extensions, based on a technique due to Hughes [14]. We refer
to the current SYB library as SYB3.

Using SYB3, we can implement[− 7→ −]− andFV {|−|}(−)
“once and for all”, rather than on a per-datatype basis. Each case
in the definition of[− 7→ −]− and FV {|−|}(−) is essentially
the same except for the variable constructor. Ideally, we would
like to be able to parameterize the definitions of[− 7→ −]− and
FV {|−|}(−) by this constructor. Haskell does not, of course, allow
this kind of parameterization either, but we can simulate it using
theHasVar type class:

class HasVar a where
is var :: a → Maybe Name

Now, using SYB3, we can implementSubst andFreeVars{|−|}
as shown in Figure 8 and Figure 9. Following Lämmel and Peyton
Jones [19], this code contains some more white lies (namely, the
use of class parameters toData{|−|} and explicit type arguments
to gfoldl{|−|}) that hide details of the actual encoding in Haskell.
The real version is available online;4 however, this code is likely to
change to match modifications in the SYB3 library as it evolves.

The first instance declaration forSubst specifies the default
behavior. For most types, substitution just proceeds structurally, so
we use the monadic traversal combinatorgmapM from SYB.

4.3 White lies

We mentioned earlier that the picture painted ofFreshLib in Sec-
tion 2 was a little unrealistic. This is mostly because the underlying
generic programming techniques used byFreshLib are still work
in progress. We now describe the (mostly cosmetic) differences be-
tween the idealized code in Section 2 and what one actually has to
do in the current implementation to useFreshLib for a user-defined
datatypeT .

First off, FreshLib depends on several extensions to Haskell
present inghc. The following declarations therefore need to be
added to the beginning of anyghc source file making use of
FreshLib:

{-# OPTIONS -fglasgow-exts #-}
{-# OPTIONS -fallow-undecidable-instances #-}
{-# OPTIONS -fallow-overlapping-instances #-}
{-# OPTIONS -fgenerics #-}
{-# OPTIONS -fth #-}

We also need to import parts of theSYBnew library:5

import SYBnew
import Basics
import Derive

Next, even thoughNom is a “derivable” type class, it is not one of
Haskell 98’sbuilt-in derivable type classes, that is, one of the built-
in classes (Eq , Ord , etc.) permitted in aderiving clause. So, we
cannot actually write

4http://homepages.inf.ed.ac.uk/jcheney/FreshLib.html
5 available fromhttp://www.cwi.nl/~ralf/syb3/

instance Data{|Subst a|} t ⇒ Subst a t where
[a 7→ t]x = gmapM {|Subst a|} ([a 7→ t]−) x

instance
(HasVar a,Data{|Subst a|} a)⇒ Subst a a

where
[n 7→ t]x = if is var x == Just n

then return t
else gmapM {|Subst a|} ([n 7→ t]−) x

Figure 8. Substitution using modular generics
instance

Data{|FreeVars{|a|}|} t ⇒ FreeVars{|a|} t
where

FV {|a|}(x) = gfoldl{|FreeVars{|a|}|}
(λfvs f y → fvs f ∪ FV {|a|}(y))
(λ → []) x

instance
(HasVar a,Data{|FreeVars{|a|}|} a)⇒ FreeVars{|a|} a

where
FV {|a|}(x) =

case is var x
of Just n → [n]

Nothing → gfoldl{|FreeVars{|a|}|}
(λfvs f y → fvs f ∪ FV {|a|}(y))
(λ → []) x

Figure 9. Free names using modular generics

data T = ...deriving (Nom, ...)
to automatically deriveNom T , but instead we need to write an
empty instance

instance Nom T where
-- generic

in order to instantiate the “derivable” type classNom to T . An-
other cosmetic difference is that as noted earlier, Haskell does not
support explicit type parameters, which we have been writing as
f {|t |}. However, type parameter passing can be coded in Haskell us-
ing dummy arguments and ascription (e.g. writingf (undefined ::
t)). Finally, because the latest version of the SYB library [19] relies
on Template Haskell [29] to derive instances of the SYB library’s
Data andTypeable classes, we need to write a Template Haskell
directive:

$(derive [’’T])

However, these changes introduce at most a fixed overhead per
file and user-defined datatype. All of the changes are minor and
most can be expected to disappear in future versions ofghc as
support is added for the modular version of the SYB library.

5. Extensions
5.1 Integrating with other type classes

One subtle problem arises if one wishes to define(==) directly as
α-equivalence without having to write additional boilerplate code.
In an early version ofFreshLib, Nom only contained(−•−) and
(− # −). We defined(==) asα-equivalence for\\\ and let nature
take its course for other instances of(==), by defining:

instance (Eq a,Nom a)⇒ Eq (Name \\\ a) where
a \\\ x == b \\\ y = (a == b ∧ x == y) ∨

(a # y ∧ x == (a↔b) • y)
This was unsatisfactory because (as discussed earlier)Nom cannot
be mentioned in aderiving clause, soEq cannot be mentioned

either (because it is dependent onNom for any type containing
−\\\−). Thus an explicit boilerplate instance ofEq Lam had to be
provided afterNom Lam was instantiated:

instance Nom Lam where
-- generic

instance Eq Lam where
(Var n) == (Var m) = n == m

-- more boilerplate cases
To get rid of this boilerplate, we put aNom-specific version of
equality (namely,(==α)) into Nom, that can be used to provide
a two-line instantiation ofEq whenever desired. However, to in-
tegrateNom with other existing type classes (for example, to pro-
vide an instance ofOrd compatible withα-equivalence), we would
have to put additionalNom-specific versions of their members into
Nom. We would prefer to be able to use our original, more modular
approach; this would be possible if “derivable” type classes could
be used inderiving clauses.

5.2 User-defined name-types

FreshLib provides a “one size fits all” type of string-valuedNames
that is used for all name types. Often we wish to have names that
carry more (or less) information than aString ; for example, a sym-
bol table reference, location information, namespace information,
or a pointer to a variable’s value.

In addition, the use of a singleName type for all names can
lead to subtle bugs due toNames of one kind “shadowing” or “cap-
turing” Names of another kind. For example, in Haskell, ordinary
variables and type variables are separate, so there is no confusion
resulting from usinga as both a type and as a term variable. How-
ever, doing this inFreshLib leads to disaster:

> Lam (a \\\TyApp (Var b) (VarTy a)) ==α

Lam (a \\\TyApp (Var a) (VarTy a))
False

that is, the term-level binding ofa in Lam captures the type
variablea. This is not desired behavior, and to avoid this, we have
to take care to ensure that term and type variable names are always
distinct. Using different name types for type and term variables
would rule out this kind of bug.

One way to support names of arbitrary typesn is to parameter-
izeName and other types by the type of datan carried byNames:

data Name n = Name n (Maybe Int)
type Trans n = (Name n,Name n)
type Perm n = [Trans n]
class Nom a where
− • − :: Trans n → a → a
− # − :: Name n → a → Bool

-- etc...
An immediate difficulty in doing this is that the old instance of
Nom Name does not work as an instance ofName String , or
for any other typet . The reason is that we would need to provide
functions
− • − :: Trans n → Name t → Name t
− # − :: Name n → Name t → Bool

However, in each case the behavior we want is non-parametric: ifn
andt are the same type, we swap names or test for inequality, other-
wise swapping has no effect and freshness holds. One adequate (but
probably inefficient) solution is to requiren andt to beTypeable,
so that we can test whethern andt are the same type dynamically
usingcast :

class Nom a where
− • − :: Typeable n ⇒ Trans n → a → a
− # − :: Typeable n ⇒ Name n → a → Bool
− ==α − :: a → a → Bool

instance (Typeable n,Eq n)⇒ Nom (Name n) where

τ • n = case cast t
of Just (a↔b)→ if a == n then b

else if b == n then a
else n

Nothing → n
a # n = case cast a

of Just a ′ → a ′ /= n
Nothing → True

a ==α b = a == b
The instances forNom for basic datatypes are unchanged. For
−\\\−, it is necessary to usecast when testing for freshness:

instance (Typeable n,Eq n,Nom a)⇒
Nom ((Name n) \\\ a) where

a # (b \\\ t) = (case cast a
of Just a ′ → a ′ == b

Nothing → False) ∨ a # t
The FreshM , HasVar , Subst , and FreeVars{|−|} classes also
need to be modified slightly but are essentially unchanged.

Another possibility would be to abstract out the typeName
itself, and parameterizeNom, FreshM , and the other classes over
n. There are two problems with this. First,ghc does not support
multi-parameter generic type classes; and second, to avoid variable
capture it is important that aFreshM knows how to freshenall
kinds of names, not just a particular kind. In the approach suggested
above, this is not a problem becauserenameFM :: FreshM m ⇒
Name n → m (Name n) is parametric inn.

5.3 User-defined binding forms

The name-abstraction typeName \\\ a can be used for a wide
variety of binding situations, but for some situations it is awkward.
For example,let-bindingslet x = e1 in e2, typed∀-quantifiers

∀x : τ.φ, and binding transitionsp
x(y)→ q in the π-calculus can

be represented usingName \\\ a, but the representation requires
rearranging the “natural” syntax, for example asLet e1 (x \\\ e2),
Forall τ (x \\\φ), or BndOutTrans p x (y \\\ q).

To provide better support for the first two forms of binding, we
can provide instances of−\\\− that allow binding types other than
Name. The following code permits binding a name-value pair:

data a . b = a . b
instance

(Nom a,Nom b)⇒ Nom ((Name . a) \\\ b)
where

a # ((b . x) \\\ y) =
a # x ∧ (a == b ∨ a # y)

((a . x) \\\ y) ==α ((b . x ′) \\\ y ′) =
x == x ′ ∧
(a == b ∧ y == y ′ ∨

a # y ′ ∧ y == (a↔b) • y ′)
Then we can encodelet-binding asLet ((x . e1) \\\ e2) and typed
quantifiers asForall ((x . τ) \\\φ). In addition, custom instances
of Subst andFreeVars{|−|} are needed, but not difficult to derive.
More exotic binding forms such as theπ-calculus binding transi-
tions can be handled in a similar fashion by defining customized
instances ofNom, Subst , andFreeVars{|−|}.

There are other common forms of binding that cannot be han-
dled at all usingName \\\ a. Some examples include

• binding a list of names, e.g. the list of parameters in a C func-
tion;

• binding the names in the domain of a typing context, e.g.Γ `
e : τ is considered equal up to renaming variables bound inΓ
within e andτ ;

• binding the names in a pattern-matching case, e.g.p → e is
considered equal up to renaming of bound variables inp within
e; and

• binding several mutually recursive names in a recursivelet.

In each case we wish tosimultaneously bind all of an unknown
number of names appearing in a value.

We sketch a general mechanism for making a type bindable
(that is, allowing it on the left side of−\\\−). For a typea to be
bindable, we need to be able to tellwhich names are bound by a
a-valueandwhether twoa-values are equal up to a permutation of
names. Thus, we introduce a type class forbindable types:

class Nom a ⇒ BType a where
BV (−) :: a → [Name]
−�− :: a → a → Maybe Perm

The first member,BV (−), computes the set of names bound by a
BType, whereas the second,− � −, tests whether two values are
equal up to a permutation, and returns such a permutation, if it ex-
ists. Now we can provide a very general instance forNom (a \\\ b):

instance (BType a,Nom b)⇒ Nom (a \\\ b) where
a # (x \\\ y) = a ∈ BV (x) ∨ a # y
(x \\\ y) ==α (x ′ \\\ y ′) =

(x ==α x ′ ∧ y ==α y ′) ∨
(case x � y

of Just π →
(all (λa → a # y ′) (BV (x) \\ BV (y))) ∧
(x ′ ==α π � y ′)

Nothing → False
The α-equivalence test checks whether the bound data structures
are equal up to a permutation, then checks that all names bound
on the left-hand side but not on the right-hand side are fresh for the
body on the right-hand side, and finally checks that the permutation
that synchronizes the bound names also synchronizes the bodies.
This is a natural, if complicated, generalization ofα-equivalence
for a single bound name.

In the class instance for substitution, we calculate the names
bound by the left-hand side, generate fresh names, and rename
the bound names to the fresh names. In the class instance for free
variables, instead of subtracting the singleton list[a], we subtract
BV (x). The details are omitted.

Then, for example, we can make contexts
newtype Ctx = Ctx [(Name,Type)]

bindable by implementingBV (−) asmap fst and−�− as a func-
tion that constructs the simplest permutationπ such thatctx1 ==
π�ctx2, if it exists. Similarly, pattern-based binding can be imple-
mented by providing the corresponding functions for patterns. Note
that we can replace the earlier instances ofNom (Name \\\ a) and
Nom ((Name . a) \\\ b) by providing the following instance dec-
larations:

instance BType Name where
BV (a) = [a]
a � b = Just [(a↔b)]

instance (BType a,Nom b)⇒ BType (a . b) where
BV (a . b) = BV (a)
(a . b)� (a ′ . b′) = if b ==α b′ then a � a ′ else Nothing

As promised, we show how to implement the abstract syntax of
pattern matching sketched in Section 2.4 as follows:

instance BType Pat where
BV (PVar n) = [n]
BV (PRec []) = []
BV (PRec ((: x) : xs)) = BV (x) ++ BV (xs)
(PVar n)� (PVar m) = Just [(n↔m)]
(PRec [])� (PRec []) = Just []
(PRec ((l , p) : r1))� (PRec ((l ′ : q) : r2))

| l == l ′

= do π ← p � q
τ ← (PRec r1)� (PRec (π � r2))
return (τ ++ π)

� = Nothing
Note that this implementation assumes, but does not enforce, that
labels and pattern variables are distinct; thus, expressions like{l :
e1, l : e2} and patterns like{l1 : x, l2 : x} need to be excluded
manually.

Unfortunately, combining user-defined name types with user-
defined binding forms appears to be nontrivial. We are currently
working on combining these extensions.

5.4 Other nominal generic functions

Capture-avoiding substitution and free variables sets are just two
among many possible interesting generic operations on abstract
syntax with names. A few other examples includeα-equivalence-
respecting linear and subterm orderings; conversion to and from
name-free encodings like de Bruijn indices or binary formats; syn-
tactic unification [21, 33]; and randomized test generation as in
QuickCheck [8].

Using the SYB3 library, it appears possible to define “nominal”
versions of thegfoldl , gmap, gzip, and other combinators ofData,
such that names are freshened by default when passing through a
name-abstraction. In this approach, many interesting generic func-
tions besides the ones we have considered would be expressible as
nominal generic traversals or queries. We leave exploration of this
possibility for future work.

5.5 Optimizations

Substitution and free variable computations are basic operations
that need to be efficient. CurrentlyFreshLib is written for clar-
ity, not efficiency; in particular, it follows a “sledge hammer” ap-
proach [15] in which all bound names are renamed and all subterms
visited during capture-avoiding substitution. While Haskell’s built-
in sharing, laziness, and other optimizations offer some assistance,
faster techniques for dealing with substitution are well-known, and
we plan to investigate whether they can be supported inFreshLib.

Some minor optimizations are easy to incorporate. For ex-
ample, our implementation of substitution always traverses the
whole term, but we can easily modify the instance declaration for
Subst t (Name \\\ a) to stop substitution early if we detect that
the name for which we are substituting becomes bound. Similarly,
we can improve the efficiency of simultaneous substitution and
FV {|−|}(−) using efficientFiniteMap or Set data structures.

Another possible optimization would be to use the “rapier” ap-
proach to capture-avoiding substitution used in theghc inliner and
described by Peyton Jones and Marlow [15, Section 4.2]. In this
approach, the set of all variables in scope is computed simultane-
ously with capture-avoiding substitution, and fresh names are not
generated using a monad, but by hashing the set of names to guess
a name that is (with high probability) not already in scope. In this
approach, substitution is a pure function, so the use of monads for
name-generation can be avoided. On the other hand, the hashing
step may need to be repeated until a fresh name is found.

5.6 Parallelization

The order in which fresh names are generated usually has no ef-
fect on the results of computation, so theoretically, substitution
operations could be reordered or even be performed in parallel.
(We have in mind a fine-grained approach to parallel programming
such as GPH [1]). However, the classical approach based on side-
effects hides these optimization opportunities because fresh names
are generated sequentially. In our approach, substitution can be per-
formed in parallel as long asseparate threads generate distinct

fresh names. One way to do this is to replace the “single-threaded”
freshness monad with one that can always “split” the source of
fresh names into two disjoint parts. For example, fresh names could
be generated using the technique of Augustsson et al. [4], in which
the fresh name source is an infinite lazy tree which can be split into
two disjoint fresh name sources as needed.

6. Related and Future Work
FreshML [26, 30] was an important source of inspiration for this
work. Another source was logic programming languages such as
λProlog [23] and Qu-Prolog [32], which provide capture-avoiding
substitution as a built-in operation defined on the structure of terms.

We are aware of at least two other implementations of FreshML-
like functionality as a Haskell library [35, 28], all based on essen-
tially the same idea as ours: use type classes to provide swapping,
freshness, andα-equivalence. The alternative attempts of which we
are aware seem to include roughly the same functionality as dis-
cussed in the first half of Section 3, but not to use generic program-
ming, or to consider substitution or free variable set computations
at all. Sheard’s library in particular inspired our treatment of fresh-
ness monads and user-defined binding forms.

Urban and Tasson [34] have used Isabelle/HOL’saxiomatic type
classesto develop a formalization of the lambda-calculus. Our
techniques for generic programming with nominal abstract syntax
may be relevant in this setting.

Recently, Pottier [27] has developed Cαml, a source-to-source
translation tool for OCaml that converts a high-level type specifica-
tion including a generalization of FreshML-like name and abstrac-
tion types. Interestingly, this approach also provides more advanced
declarative support for exotic binding forms, includingletrec. In
Cαml, although capture-avoiding substitution is not built-in, it is
easy to implement by overriding avisitor operation on syntax trees
that is provided automatically. This is further evidence that nomi-
nal abstract syntax is compatible with a variety of generic program-
ming techniques, not just those provided byghc.

One advantage of implementing nominal abstract syntax as a
language extension (as in FreshML andαProlog) rather than as a
library is that built-in equalityis α-equivalence, so even though
name-generation is treated using side-effects or nondeterminism in
these languages, capture-avoiding substitution is a pure function
(i.e., has no observable side-effects up toα-equivalence). Such
language extensions also have the advantage that providing user-
defined name-types is straightforward; the lack of good support
for the latter is probably the biggest gap inFreshLib. Although
FreshLib provides fewer static guarantees, it is more flexible in
other important respects: for example, it is possible for users to
define their own binding forms (Section 5.3). Another advantage
of FreshLib is that the underlying representations of names are
accessible; for example, names can be ordered, and so can be
used as keys in efficient data structures, whereas in FreshML and
αProlog this is not allowed because there is no swapping-invariant
ordering on names.

There is a large literature on efficient representations ofλ-
terms and implementations of capture-avoiding substitution in a
variety of settings; for example, explicit substitutions [2], optimal
reduction [3], andλ-DAGs [31]. We plan to attempt to integrate
some such techniques intoFreshLib.

Lämmel [16] proposed using generic programming, and in par-
ticular, generic traversals, as the basis for refactoring tools (that is,
tools for automatic user-controlled program transformation). In this
technique, refactorings can be described at a high level of general-
ity and then instantiated to particular languages by describing the
syntax and binding structure. This approach has much in common
with the use of theHasVar andBType classes, and we are inter-
ested in exploring this connection further. An important difference

is that in refactoring, renaming and fresh name generation is ex-
pected to be performed by the user. Thus, refactorings simply fail
if a name clash is detected, whereasFreshLib needs to be able to
generate fresh names automatically in such situations.

The FreshLib approach is a lightweight but powerful way to
incorporate the novel features of FreshML inside Haskell. It seems
particularly suitable for prototyping, rapid development, or educa-
tional purposes. But is it suitable for use in real Haskell programs?
We are optimistic that there is some way of reconciling efficiency,
modularity, and transparency, but this is an important direction for
future work. One recent development that may help in this respect
is Chakravarty et al.’s extension of Haskell type classes to support
associated types[6]. We speculate that associated types may be
useful for providing better support for user-defined name and bind-
ing types inFreshLib.

7. Conclusion
This paper shows that recent developments in two active research
areas,generic programmingandnominal abstract syntax, can be
fruitfully combined to provide advanced capabilities for program-
ming abstract syntax with names and binding in Haskell. In nom-
inal abstract syntax, functions for comparing two terms up to re-
naming, calculating the set of free variables of a term, and safely
substituting a term for a variable have very regular definitions—so
regular, in fact, that they can be expressed using generic program-
ming techniques already supported by extensions to Haskell such
as derivable type classes and the SYB library. Moreover, these def-
initions can be providedonce and for allby a library; we have
developed a “proof of concept” library calledFreshLib. All of the
code for chores such asα-equivalence, substitution, and free vari-
ables are provided byFreshLib and can be used without having
to first learn nominal abstract syntax or generic programming, or
master some external generic programming tool.

The ability to provide capture-avoiding substitution as a built-in
operation is often cited as one of the main advantages of higher-
order abstract syntax over other approaches. We have shown that,
in the presence of generic programming techniques, this advantage
is shared by nominal abstract syntax. In addition, our approach
provides for more exotic forms of user-defined binding, including
pattern-matching binding forms. In contrast, name-free or higher-
order abstract syntax techniques provide no special assistance for
this kind of binding.

On the other hand, this paper has focused on clarity over effi-
ciency. There are many optimization techniques that we hope can
be incorporated intoFreshLib. The fact thatFreshLib works at
all is encouraging, however, because it suggests that nominal ab-
stract syntax, like higher-order abstract syntax, is a sensible high-
level programming interface for names and binding. It remains to
be determined whether this interface can, like higher-order abstract
syntax, be implemented efficiently. We believe thatFreshLib is a
promising first step towards an efficient generic library forscrap-
ping your nameplate.

Acknowledgments
I wish to thank Ralf L̈ammel and Simon Peyton Jones for answer-
ing questions about the new Scrap your Boilerplate library and
associated paper. I also wish to thank Tim Sheard for sharing his
FreshML-like Haskell library, some of whose ideas have been in-
corporated intoFreshLib. This work was supported by EPSRC
grant R37476.

References
[1] Glasgow Parallel Haskell, June 2005.http://www.macs.hw.ac.uk/-

~dsg/gph/.

[2] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit
substitutions.Journal of Functional Programming, 1(4):375–416,
1991.

[3] Andrea Asperti and Stefano Guerrini.The Optimal Implementation of
Functional Programming Languages. Cambridge University Press,
1999.

[4] Lennart Augustsson, Mikael Rittri, and Dan Synek. On generating
unique names.J. Funct. Program., 4(1):117–123, 1994.

[5] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis,
Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: The POPLmark Challenge. In
Proceedings of the Eighteenth International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2005), 2005. To appear.

[6] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones,
and Simon Marlow. Associated types with class. InPOPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, pages 1–13, New York, NY,
USA, 2005. ACM Press.

[7] J. Cheney and C. Urban. Alpha-Prolog: A logic programming
language with names, binding and alpha-equivalence. InProc. 20th
Int. Conf. on Logic Programming (ICLP 2004), number 3132 in
LNCS, pages 269–283, 2004.

[8] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. InProceedings of the 2000 ACM
SIGPLAN International Conference on Functional Programming
(ICFP 2000), pages 268–279. ACM, 2000.

[9] N. G. de Bruijn. Lambda-calculus notation with nameless dummies,
a tool for automatic formula manipulation.Indagationes Mathemati-
cae, 34(5):381–392, 1972.

[10] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax
involving binders. In Giuseppe Longo, editor,Proceedings of the
14th Annual IEEE Symposium on Logic in Computer Science, pages
193–202, Washington, DC, 1999. IEEE, IEEE Press.

[11] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding.Formal Aspects of Computing, 13:341–363, 2002.

[12] Ralf Hinze. Generics for the masses. InICFP ’04: Proceedings of
the ninth ACM SIGPLAN International Conference on Functional
Programming, pages 236–243, New York, NY, USA, 2004. ACM
Press.

[13] Ralf Hinze and Simon Peyton Jones. Derivable type classes. In
Graham Hutton, editor,Proceedings of the 2000 ACM SIGPLAN
Haskell Workshop, volume 41.1 ofElectronic Notes in Theoretical
Computer Science. Elsevier, 2001.

[14] J. Hughes. Restricted data types in Haskell. In E. Meijer, editor,
Proceedings of the 1999 Haskell Workshop, number UU-CS-1999-28
in Technical report, Utrecht University, Department of Computer
Science, 1999.

[15] Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow
Haskell Compiler inliner. Journal of Functional Programming,
12(4):393–434, July 2002.

[16] Ralf Lämmel. Towards generic refactoring. InProc. of Third
ACM SIGPLAN Workshop on Rule-Based Programming RULE’02,
Pittsburgh, USA, 2002. ACM Press. 14 pages.

[17] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. InTLDI ’03:
Proceedings of the 2003 ACM SIGPLAN international workshop on
Types in Language Design and Implementation, pages 26–37, New
York, NY, USA, 2003. ACM Press.

[18] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate:
reflection, zips, and generalised casts. InICFP ’04: Proceedings of
the ninth ACM SIGPLAN International Conference on Functional
Programming, pages 244–255, New York, NY, USA, 2004. ACM
Press.

[19] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate
with class. In Benjamin Pierce, editor,Proceedings of the 10th
International Conference on Functional Programming (ICFP 2005),
Tallinn, Estonia, 2005.

[20] Andres L̈oh and Johan Jeuring (editors). The Generic Haskell user’s
guide, version 1.42 - coral release. Technical Report UU-CS-2005-
004, Utrecht University, 2005.

[21] Conor McBride. First-Order Unification by Structural Recursion.
Journal of Functional Programming, 13(6):1061–1075, 2003.

[22] James McKinna and Robert Pollack. Some lambda calculus and type
theory formalized.J. Autom. Reason., 23(3):373–409, 1999.

[23] G. Nadathur and D. Miller. Higher-order logic programming. In
D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,Handbook
of Logic in Artificial Intelligence and Logic Programming, volume 5,
chapter 8, pages 499–590. Oxford University Press, 1998.

[24] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI ’89), pages 199–208. ACM Press, 1989.

[25] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 183:165–193, 2003.

[26] A. M. Pitts and M. J. Gabbay. A metalanguage for programming
with bound names modulo renaming. In R. Backhouse and
J. N. Oliveira, editors,Proc. 5th Int. Conf. on Mathematics of
Programme Construction (MPC2000), number 1837 in Lecture Notes
in Computer Science, pages 230–255, Ponte de Lima, Portugal, July
2000. Springer-Verlag.

[27] François Pottier. An overview of Cαml, June 2005. Avail-
able athttp://cristal.inria.fr/~fpottier/publis/-
fpottier-alphacaml.pdf.

[28] Tim Sheard, March 2005. Personal communication.
[29] Tim Sheard and Simon Peyton Jones. Template meta-programming

for Haskell. InHaskell ’02: Proceedings of the ACM SIGPLAN
workshop on Haskell, pages 1–16, New York, NY, USA, 2002. ACM
Press.

[30] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programmming with binders made simple. InProc. 8th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP 2003), pages
263–274, Uppsala, Sweden, 2003. ACM Press.

[31] Olin Shivers and Mitchell Wand. Bottom-upβ-reduction: Uplinks
andλ-DAGs. In M. Sagiv, editor,Proceedings of the 14th European
Symposium on Programming (ESOP 2005), number 3444 in LNCS,
pages 217–232, 2005.

[32] J. Staples, P. J. Robinson, R. A. Paterson, R. A. Hagen, A. J.
Craddock, and P. C. Wallis. Qu-Prolog: An extended Prolog for
meta level programming. In Harvey Abramson and M. H. Rogers,
editors,Meta-Programming in Logic Programming, chapter 23. MIT
Press, 1996.

[33] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification.
Theoretical Computer Science, 323(1–3):473–497, 2004.

[34] C. Urban and C. Tasson. Nominal techniques in Isabelle/HOL. In
Proceedings of the 20th International Conference on Automated
Deduction (CADE 2005), 2005. To appear.

[35] Phil Wadler, Andrew Pitts, and Koen Claessen, September 2003.
Personal communication.

