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Abstract
Recent research has shown howilerplatecode, or repetitive code

for traversing datatypes, can be eliminated using generic program-

ming techniques already available within some implementations of
Haskell. One particularly intractable kind of boilerplatename-
plate, or code having to do with names, name-binding, and fresh

name generation. One reason for the difficulty is that operations on
data structures involving names, as usually implemented, are not

regular instances of standandap, fold, or zip operations. How-
ever, innominal abstract syntayan alternative treatment of names
and binding based on swapping, operations sueh-eguivalence,

capture-avoiding substitution, and free variable set functions are

much better-behaved.

In this paper, we show how nominal abstract syntax techniques

similar to those of FreshML can be provided as a Haskell library
called FreshLib. In addition, we show how existing generic pro-

gramming techniques can be used to reduce the amount of name

plate code that needs to be written for new datatypes involving
names and binding to almost nothing—in short, howdrap your
nameplate

Categories and Subject DescriptorsdD.3.3 [Programming Lan-
guage§ Language Constructs and Features

General Terms Languages
Keywords generic programming, names, binding, substitution

1. Introduction
Many programming tasks in a statically typed programming lan-

type classefl3], or Lammel and Peyton Jonextrap your boiler-
plate (SYB) approach [17, 18, 19]) or even entirely within Haskell
98 (using Hinze'generics for the mass¢$2]). Using these tech-
nigues it is possible to eliminate many forms of boilerplate code.
One form of boilerplate that is especially annoying is what we
shall callnameplatecode that deals with names, fresh name gen-
eration, equality-up-to-safe-renaming, free variables, and capture-
avoiding substitution. The code to accomplish these tasks usu-
ally seems straightforward, even trivial, but nevertheless apparently
must be written on a per-datatype basis. The main reason for this is
that capture-avoiding substitutioRV (—), anda-equivalence are,
as usually written, not uniform instancesmhip, fold, or zip. Al-
though most cases are straightforward, cases involving variables or
name-binding require special treatment. Despite the fact that it in-
volves writing a lot of repetitive nameplate, the classfoat-order
approach to programming abstract syntax with names and binding

is the most popular in practice.

One class of alternatives is name-free techniques suaeas
Bruijn indices[9] in which bound names are encoded using point-
ers or numerical indices. While often a very effective and prac-
tical implementation or compilation technique, these approaches
are tricky to implement, hard for non-experts to understand, and
do not provide any special assistance with open terms, fresh name
generation or “exotic” forms of binding, such as pattern-matching
constructs in functional languages. Also, for some tasks, such as
inlining, name-free approaches seem to require more implementa-
tion effort while not being much more efficient than name-based
approaches [15].

Another alternative ishigher-order abstract syntaj24]: the
technique of encoding object-language variables and binding forms

guage such as Haskell are more complicated than they ought toging the variables and binding forms of the metalanguage. This

be because of the need to write “boilerplate” code for travers-
ing user-defined datatype&eneric programmingthe ability to

write programs that work for any datatype) was once thought to
require significant language extensions or external tools (for ex-
ample, Generic Haskell [20]). However, over the last few years it

has many advantages: efficient implementationa-@quivalence

and capture-avoiding substitution are inherited from the metalan-
guage, and all low-level name-management details (including side-
effects) are hidden, freeing the programmer to focus on high-level
problems instead. While this is a very powerful approach, most in-

has been shown by several authors that a great deal of generic progeresting programming tasks involving higher-order abstract syntax
gramming can be performed safely using well-understood existing requirehigher-order unificationwhich is common in higher-order

extensions to Haskell (using Hinze and Peyton Joxesivable

logic programming languages such@rolog [23] but not in func-
tional languages, Haskell in particular. Therefore, using higher-
order abstract syntax in Haskell would require significant language
extensions. Also, like name-free approaches, higher-order abstract
syntax does not provide any special support for programming with
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names introduced by Gabbay and Pitts [10, 11, 25] and employed in
the FreshML (or FreshOCaml) [26, 30] an€’rolog [7] languages.
This approach retains many of the advantages of first-order abstract



syntax while providing systematic support ferequivalence and In addition, FreshLib provides a type constructar \\ b for

fresh name generation. Moreover, as we shall show, nominal ab-name-abstractions, or data with binding structure:

stract syntax can be implemented directly in Haskell using type dataa\\ b=a\\ b

classes, and the definitions of nameplate functions such as captureSyntactically, this is just pairing. However, whenis Name and
avoiding substitution and free variables can be generated automat-b is an instance olNom, Name \\ b has special meaning: it repre-
ically for user-defined types. Thus, nominal abstract syntax and sents elements df with one boundVame. The provided instance
generic programming techniques can be fruitfully combined to pro- declarations oNom for Name \\ b define(==.) asa-equivalence,

vide much of the convenience of higher-order abstract syntax with- that is, equivalence up to safe renaming of bound names. For exam-
out sacrificing the expressiveness of first-order abstract syntax andple, we have

without any language extensions beyond those needed already for > a\\ a ==o b\ b

generic programming in Haskell. True
The purpose of this paper is to show howstrap your name- > a\(a, b) == b\(a, d)
plate by combining nominal abstract syntax with existing generic False
programming techniques available in Haskell implementations >a\b==4 b\ a
such asghc. As illustration, we develop a small library called False
FreshLib for FreshML-style programming with nominal abstract > ¢\(a, ¢) ==a b\(a, b)

syntax in Haskell. The main technical contribution of this paper
over previous work on FreshML is showing how generic program-
ming techniques already availableghc can be used to eliminate
most of the work in implementing capture-avoiding substitution
and free-variables computations. Although our implementation
uses advanced features currently present onlghity we believe
our technique to be applicable in other situations as well.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a high-level overview and three examples of using
FreshLib from the user’s point of view, emphasizing the fact that

the library “just works” without the user needing to understand cific) monad and forcing all users dfeshLib to use it, FreshLib

nominal abstract syntax or generic programmangriori or being provides a type class dfeshness monadkat can rename existing
obliged to write reams of boilerplate code. Section 3 introduces ames to fresh ones:

the key concepts of nominal abstract syntax and describes an ini-
tial, type class-based implementationFoéshLih Section 4 shows
how FreshLib can be made completely generic using Hinze and
Peyton Jonedierivable type classg43] and Lammel and Peyton
Jones’scrap your boilerplate with clasgl9]; this section is very
technical and relies heavily on familiarity wittelimmel and Peyton
Jones’ paper, so casual readers may prefer to skip it on first read-
ing. Section 5 discusses extensions such as handling user-define
name types and alternative binding forms. Section 6 and Section 7
discuss related work and conclude.

True
Other types besidedame can also be treated as binders, but we
will stick with Name-bindings only for now; we will discuss this
further in Section 5.3.

The Name and— \\ — types are meant to be incorporated into
user-defined datatypes for abstract syntax trees involving names
and binding. We will give examples in Section 2.2 and Section 2.3.

Another important component of nominal abstract syntax is the
ability to generate fresh names. In Haskell, one way of accomplish-
ing this is to use a monad. Rather than fixing a (probably too spe-

class Monad m = FreshM m where
renameF'M :: Name — m Name

One application of the freshness monad is to provide a monadic

destructor forName \\ a that freshens the bound name:

unAbs :: FreshM m = Name\\ a — m (Name, a)

Unlike in FreshML, pattern matching against the abstraction con-
tructor\)\ does not automatically freshen the name bound by the
bstraction; instead, we need to usedhel bs destructor to explic-

itly freshen name$.

In addition to providinga-equivalence,FreshLib also pro-
vides type classeSubst and Free Vars{|—|[} that perform capture-

2. FreshLib overview and examples avoiding substitution and calculate sets of free names:
. . class Subst t w where
2.1 FreshLib basics [ — —]— :: FreshM m = Name -t — u— m u

In nominal abstract syntax, it is assumed that one or more special 1,45 FreeVars{|t}} u where
data types ohamess given. FreshLib provides a data typ&ame FV{t}(~) - u — [Name]

of string-valued names with optional integer tags: Intuitively, Subst ¢ u provides a substitution function that replaces

data Name = Name String (Maybe Int) variables of tvoe in u: Simi ;
o ype in u; similarly, Free Vars{t[} u provides a func-
with instances fotlg, Show, and other standard classes. By con- 5 that calculates a list of the free variables of typie . Note

vention, user-provided names (writtenb, c) have notag, whereas  hat for Subst, we may need to generate fresh names (e.g. when
names generated treshLib (writtenao, by, €1C.) are tagged. substituting into an abstraction), so we need to work in some fresh-
__The next ingredient of nominal abstract syntax is the assump- neqs monadn. For Free Vars{([}, fresh name generation is not
tion that all types involved in abstract syntax trees possesg-an  aaded: however. we do need to specify the typose free vari-
equivalence(==,) relation (in addition to some other functions e seekAppropriate instances dfubst and Free Vars{|— |

which the casual user doesn’t need to know about): for Name, \\, and all built-in datatypes are provided.
class Nom a where

— ==, —ta — a — Bool
-- other members discussed in Section 3

. . L 1We could hide the constructdy, using Haskell's module system and in-
Any datatype involvingNames and name-binding needs to be stead only export a constructabs :: a — b — a \\\ b and the destructor

an instance ofNom; however, FreshLib provides instances for . unAbs; this would legislate that abstractions can only be unpacked using
Name, the abstraction constructor (see below), and all of Haskell's ;, 4. But, this would force freshening (and require computation to take
built-in types and constructors. Moreover, generic instances for place in a monad) even when unnecessary. For the same reason, the current
user-defined datatypes can be derived automatically. As a result,version of FreshML also provides two ways of pattern matching abstrac-
the library user only needs to provide instancesNotn when the tions, one that freshens and one that does not.

default behavior is not desired, e.g. when implementing a datatype 2 Explicit type-passing { |} is not allowed in Haskell, but can be simulated
with exotic binding structure (Section 5.3). by passing @ummy argumendf type ¢ (for example undefined :: t)



module Lam where
import FreshLib
data Lam = Var Name
| App Lam Lam
| Lam (Name \\ Lam)
deriving (Nom, Eq, Show)
instance HasVar Lam where
is_var (Var z) = Just ©
is_var y = Nothing

Figure 1. Nameplate-free implementation 6tm
cbn_eval :: FreshM m = Lam — m Lam
cbn_eval (App t1 t2) = do w — cbn_eval t;

case w
of Lam (a\\ u) —
do v « [a — t2]u
cbn_eval v
_ — return (App w t2)

cbn_eval = return x

Figure 2. Call-by-name evaluation

Note that substitution and free variable sets are not completely
type-directed calculations: we need to know something about the

structure oft in each case. Specificallwe need to know how to
extract a Name from a variable of typet. Therefore,FreshLib
provides a clas${asVar providing a functionis_var that tests
whether the value is a variable, and if so, extracts its name:

class HasVar t where

is_var :: t — Maybe Name

Once HasVar t is instantiated, instances dfubst t w« and
FreeVars{t[} u are derived automatically.

FreshLib provides an instance diasVar Name; a name can

module PolyLam where
import FreshLib
data Type = VarTy Name
| FnTy Type Type
| AllTy (Name\\ Type)
deriving (Nom, Show, Eq)
data Term = Var Name
| App Term Term
| Lam Type (Name \\ Term)
| TyLam (Name\\ Term)
| TyApp Term Type
deriving (Nom, Show, Eq)
instance HasVar Type where
ts_var (VarTy z) = Just ©

is_var _ = Nothing
instance HasVar Term where

is—var (Var z) = Just x

is_var _ = Nothing

Figure 3. Nameplate-free polymorphic lambda-calculus in

FreshLib

Lam bo \(Lam a1 \\(Var a1))
Note that in the first example, capture is avoided by renaming
bo, while in the second, the substitution has no effect (upxto
equivalence) because is not free in the term. Here are some
examples o' V{—[}(—):

> FV{Lam[t(Lam (a\\ App (Var a) (Var b)))

[b]

> FV{Lam[}(App (Var a) (Var b))

[a,b]
Finally, we show how call-by-name evaluation can be implemented

be considered as a variable that could be replaced with anotherusing FreshLib's built-in substitution operation in Figure 2. Here

name. For example,
i]FVﬂName[}(a W(a, b))

> runFM ([b — a](a\(a,b)))

ao \\(ao, a)
whererunFM is a function that evaluates a monadic expression in
a particularFreshM FM . (Recall that names of the forag, a1, ...
are names that have been freshly generated byt M .)

2.2 The lambda-calculus

We first consider a well-worn example: implementing the syn-
tax, a-equivalence, capture-avoiding substitution, and free vari-
ables functions of the untyped lambda-calculus. The idedlized

is a small example:
> runFM (cbn_eval (App (Lam (a\\ Lam (b\\
App (Var a) (Var b))))
(Var b)))
Lam (bo \\ App (Var b) (Var bo))

2.3 The polymorphic lambda-calculus

While the above example illustrates correct handling of the sim-
plest possible example involving one type and one kind of names,
real languages often involve multiple types and different kinds of
names. We now consider a more involved example:piblgmor-
phic lambda-calculugor System [, in which names may be used
for either term variables or type variables. TRHeeshLib code for

Haskell code shown in Figure 1 is all that is needed to do this using this is shown in Figure 3. Here are some examples:

FreshLib. First, we considet:-equivalence orLam-terms:
T> Lam (a\\ Var a) ==o Lam (b\\ Var b)
> Lam (a\\ Lam (a\\ Var a)) ==q
. Lam (b\\ Lam (a\\ Var b))
> Lam (a\\ Lam (a\\ Var a)) ==o
. Lam (b\\ Lam (a\\ Var a))
Hereglrz a few examples of substitution:
> runFM ([a — Var b](Lam (b\\ Var a)))
Lam bo \(Var b)
> runF'M ([a — Var b](Lam (b\\ Lam (a\\ Var a))))

3There are a few white lies, which we will discuss in Section 4.3.

>let t1 = AllTy (a\\ FnTy (VarTy a) (VarTy b))

>let to = AllTy (b\\ FnTy (VarTy a) (VarTy b))

>let ts = AllTy (¢ \\ FnTy (VarTy c) (VarTy b))

>t ==q t2

False

> 11 ==q t3

True
In addition, since we indicated (viHas Var instances) thafype
has a variable constructdrarTy and Term has a variable con-
structor Var, appropriate implementations ¢f — —]— and
FV{—[t(—) are provided also.

>let tm = Lam (VarTy c) (a\\ App (Var a) (Var b))

> FV{|Term[}(tm)

b

> FV{ Typel}(tm)



class FreshM m = PolyTCM m where
bindTV  :: Name — m a — m a
bindV :: Name — Type — m a — m a
lookupTV :: Name — m Bool
lookupV  :: Name — m (Maybe Type)
errorTC :: String — m a
wfTy :: PolyTCM m = Type — m ()
wfTy (VarTy n) =
do b « lookupTV n
if b then return ()
else errorTC "Unbound variable"
wfTy (FnTy t1 t2) = do wfTy t1
wfTy to
wfTy (AllTy abs) = do (a,ty) < unAbs abs
bindTV a (wfTy ty)
eqTy :: PolyTCM m = Type — Type — m ()
eqTy ty1 tys =
if ty1 ==4 ty2 then return ()
else errorTC "Type expressions differ"
unFnTy :: PolyTCM m = Type — m (Type, Type)
unFnTy (FnTy ty: ty2) = return (tyr, ty2)
unFnTy _ = errorTC "Expected function type"
unAllTy :: PolyTCM m = Type — m (Name \\ Type)
unAllTy (AllTy abs) = return abs
unAllTy _ = errorTC "Expected forall type"

Figure 4. Type well-formedness and utility functions

inferTm :: PolyTCM m = Term — m Type
inferTm (Var x) =
do ty < lookupV x
case ty
of Just ty' — return ty’
Nothing —
errorTC "Unbound variable"
inferTm (App t1 t2) =
do ty1 < inferTm t1
(argty, resty) «— unFnTy ty
tys < inferTm ts
eqTy argty ty
return resty
inferTm (Lam ty abs) =
do (a,t) < unAbs abs
ty’ < bindV a ty (inferTm t)
return (FnTy ty ty')
inferTm (TyApp tm ty) =
do ty' « inferTm tm
wfTy ty
abs «— unAllTy ty’
(a,ty”) « unAbs abs
la — ty]ty”
inferTm (TyLam abs) =
do (a,tm) < unAbs abs
ty < bindTV a (inferTm tm)
return (AllTy (a\\ ty))

Figure 5. Type checking for the polymorphic lambda-calculus

[c]

> FV{Name[}(tm)

[c, b]

> runFM ([e — ATy (¢ \\ VarTy c)]tm)

Lam (AllTy (¢ \\ Var ¢)) (a0 \\ 4App (Var ao) (Var b))

> [b— Var altm

Lam (VarTy c) (a0 \\ App (Var ao) (Var a))

Finally, we give a complete implementation of type checking for
PolyLam. Since PolyLam terms are type-annotated, type check-
ing is wholly syntax directed. Figure 4 shows the monadic interface
to the typecheckerKolyTCM) and the type well-formedness and
utility functions, and Figure 5 shows the type checker proper. The
only thing that is missing is an instance Bbly TCM; the details
of an implementation, sayl"CM, are not particularly enlighten-
ing so are omitted. Here is a quick example: inferring the type of
Aadz:a—a ) y:a.x y:

> runTCM (inferTm
(TyLam (¢t \\ Lam (FnTy (VarTy t) (VarTy t))
(a\\ Lam (VarTy t)
(b \ App (Var a) (Var b)))))))
AllTy (to\\ FnTy (FnTy (VarTy to) (VarTy to))
(FnTy (VarTy to) (VarTy to)))

We stress that the code in Figure 3, Figure 4, and Figure 5
is a completeFreshLib program. No boilerplate code whatsoever
needs to be written to make the above program work (unless you
count instantiatingPoly TCM).

On the other hand, since there is just one t)zene of names,
this implementation allows some nonsensical expressions to be
formed that blur the distinction between type variables and term
variables. This can be fixed by allowing multiple name-types. We
return to this issue in Section 5.2.

2.4 Arecord calculus

As a final example, we sketch how the abstract syntax of a simple
record calculus (an untyped fragment of part 2B of the POPLMark
Challenge [5]) can be implemented#ieshLib. This calculus pro-
vides record constructord; = e1,...,l, = en}, field lookups

e.l, and pattern matchingt p = e in €', where patterng consist

of either pattern variables or record patterngl; : p1,...,l, :

pn}. In both record expressions and record patterns, labels must
be distinct; in patterns, variables must be distinct. The pattern vari-
ables inlet p = e in ¢’ are considered bound .

To represent this abstract syntax, we augmentihe type as
follows:

data Lam = ...

| Rec [(Label, Lam)]

| Deref Lam Label

| Let Lam (Pat\\ Lam)

data Pat = PVar Name

| PRec [(Label, Pat)]
The Let constructor encodes the syntéxt p = e in ¢ as
Let e (p\\ ¢'). So far, we have not given any special meaning
to ¢ \\ u except whert is Name. In fact, FreshLib provides a type
class BType for those types that can be bound on the left-hand
size of an abstraction. So, to provide the desired behavior for pat-
tern binding, we only need to instantiaBslype Pat. The internal
workings of theBType class and implementation of the instance
BType Pat are deferred to Section 5.3.

This technique does not automatically equate expressions (or
patterns) up to reordering of labels in record expressions, but
this behavior can be provided by suitable specialization¥af,
BType, andEq.



3. Implementation using type classes (z,9) ==a (') =2 ==0 2’ ANy==40 v

In this section, we will show how a first approximationfofesh Lib -- etc...
can be implemented using type classes in Haskell. The implementa-
tion in this section requires liberal amounts of boilerplate per user- 3.2 Abstraction types

defined datatype; however, this boilerplate can be eliminated usingsg far none of the types discussed binds any names. We now

advanced generic programming techniques, as shall be shown inongider the type constructty; for name-abstractions.e. values

Section 4. with one bound name. Recall that the abstraction type was defined
as:

3.1 Names and nominal types dataa\\t=a\\¢

As described earliefyame consists of strings with optional integer ~ Structurally, this is just a pair of amand a¢. However, we provide

tags: an instance declaration fofom (Name \ ¢) that gives it a special
data Name = Name String (Maybe Int) meaning:

The aforementioned convention that user-provided names are un-  instance Nom t = Nom (Name \\ t) where

tagged helps avoid collisions with names generatedteghLib. 7o (a\\z) =(rea)\(Tex)

This could be enforced by makimgame abstract. a# (b\1) =a==bVa#t
A key ingredient of nominal abstract syntax (which we glossed (aN\z)==a b\y)=(a==bAz==4y)V

over earlier) is the assumption that all types of interest possess a (a# y ANz ==a (a>b)ey)

name-swappingperation(e), which exchanges two names within ~ Swapping is purely structural, but freshness aneéquivalence

a value, and dreshnes®peration(#), which tests that a name  are not. In particular, a name is fresh for an abstraction if it is
does not appear “free” in a value. These two operations can bebound immediately or if it is fresh for the body of the abstraction.
used as building blocks to formalize-equivalence(==,) in a Similarly, two abstractions are-equivalent if they are literally
particularly convenient way: in particular, it is not necessary to equal or ifthe name bound on one side is fresh for the body on the
define a-equivalence in terms of capture-avoiding renaming and other side andthe bodies are equal modulo swapping the bound
fresh name generation. Th¥om type class includes the four  names

functions: This definition of a-equivalence has been studied by Gabbay
class Nom a where and Pitts [10, 11, 25] and shown to be equivalent to the classical
—eo— = Trans — a — a definition; earlier, a swapping-based definition was used by McK-
—@®— = Perm—a—a inna and Pollack [22] in a formal verification of properties of the
7Oz =foldr (—e—)zm A-calculus. A key advantage (from the point of view of Haskell pro-
—# — :: Name — a — Bool gramming) is that unlike the classical definition, our definition does
— ==, — 4 — a — Bool not require performing fresh name generation and capture-avoiding
where the types renaming in tandem with-equivalence testing. As a resu=.)
data Trans = (Name— Name) can be given the same type @s), and can be used as an equality

type Perm = | Trans] function for nominal abstract syntax trees.

indicate pairs or lists of pairs of names considered as transposi-

tions or permutations respectively. The notatian—b) indicates 3.3 Freshness monads

a transposition (swapping) of two namesand b. Note that the The ability to swap names and test for freshnesscaeduivalence
permutation-application functiof®) just applies each of the trans-  is not enough for most applications. For example, to define capture-

positions in a list from right to left; it is convenient in tHgType avoiding substitution, we need to be able to choose fresh names
class in Section 5.3. so that substitutions can be safely pushed inside abstractions. In
Obviously, the instancé&Vom Name needs to spell out how  Haskell, name-generation is usually performed using a monad [4].
name-swapping, freshness amequivalence behave for names: In fact, different applications (e.g., parsing, typechecking, code
instance Nom Name where generation) typically employ different monads. For example, it is
(a—b)ec|la==c =0b not unusual to use a single monad for both maintaining a type-
|b==c¢c =a checking or evaluation environment and generating fresh names.
| otherwise = ¢ For our purposes, we only need to know how to generate fresh
a#b =a/=b names. Therefore, we define a type clasfr@ghness monadsf.
a==4 b = q == Section 2) in which any computation involving a choice of fresh

We also provide a number of instance declarations for built-in names can take place.
datatypes and type constructors. For base types, these functions are class Monad m = FreshM m where

trivial; for built-in type constructors such as lists and pairs, we just renamel'M :: Name — m Name
proceed recursively: Functions such as capture-avoiding substitution can then be param-
instance Nom Int where eterized over all freshness monads, rather than needing to be spe-
Tei =i cialized to a particular one.
a#i = True We also define the monadic destructerAbs for unpacking an
i==qj=i==j abstraction and freshening the bound name:
unAbs it FreshM m = Name \\ a — m (Name, a)

instance Nom a = Nom [a] where unAbs (a\\ ) = do b — renameFM a

Tel —map(re—)l return (b, (a<>b) e z)
a#l , all (a # —) | o Finally, we provide a default freshness mon&d/ that simply
l==a ' = all (map (A\(z,y) — x ==a y) (zip L ') maintains an integer counter:
instance (Nom a, Nom b) = Nom (a, b) where data FM a = FM (Int — (a, Int))
Teo(z,y) =(rez,Toy) instance Monad FM where

a# (z,y) =a#zNa#y -- omitted



instance FreshM FM where
gensymFM s = FM (An — (Name s (Just n),n + 1))

runFM @ FM a— a
runFM m =let FM (a,_) =m0in a

3.4 Capture-avoiding substitution and free variables

We now show how to implement the type classes for capture-
avoiding substitution and calculating sets of free variables. For
Subst, recall that the class definition was:
class Subst t u where
[-+— —]— :: FreshM m = Name — t — u — m u
We first provide instances for built-in types. In all cases, capture-
avoiding substitution commutes with the existing structure. Note
that no renaming needs to be performed in any of these cases.
instance Subst t Int where
[n+— t]i = return i

instance Subst t a = Subst t [a] where
[n+— t]l = mapM ([n+— t]—) 1
instance (Subst t a, Subst t b) = Subst t (a,b) where
[n— t](a,b) =do a’ «— [n+— t]a
b [n+— t]b
return (a’,b’)
-- etc...
Next, we provide an instance &fubst Name Name: that is, a
name can be substituted for another name.
instance Subst Name Name where
[a — blc =if a == c then b else ¢
Finally, we provide an instance for abstractions: if we know how to
substitute fort in a, then we can also substitute foin Name \\ a,
first usingunAbs to freshen the bound name.
instance Subst t a = Subst t (Name \\ a) where
[n — t]labs = do (a,z) — unAbs abs
' — [n—t]z
return (a\\ z')
The classtree Vars{—|} is defined as follows:
class FreeVars{t}} u where
FV{t}(-) :: w — [ Name]
As explained in Section 2, the type parametds realized as a
dummy argumenundefined :: t needed only as a typechecking
hint. We can now implement the basic cases for built-in types:
instance FreeVars{t[} Int where
FV{ii() =]

instance FreeVars{|t[} a = FreeVars{t[} [a] where

FV{tl(l) = foldl union [] (map (FV{t}(=)) 1)
instance

(FreeVars{tl} a, FreeVars{t[} b) = FreeVars{t[} (a,b)
where

FVAth(z,y) = FV{t}(z) U FV{t}(y)
Next, we provide an instance éfee Vars{ Name[} Name:
instance FreeVars{ Name[} Name where
FV{Namel}(z) = [z]

instance Nom Lam where

T e (Var c) = Var (Tec)
Te(App t u) = App (tet) (Teu)
7 o (Lam abs) = Lam (7 ® abs)

a # (Var c) =a#c

a# (App t u) —a#tNa#Hu

a # (Lam abs) = a # abs

(Varn)  ==q (Varm) =n==m

(App t1 t2) ==a (App u1 uz) = t1 ==a u1 A t2 ==o u2
(La’m absl) ==« (Lam absg) = absl ==, ab52

instance Subst Lam Lam where
[n — t](Var m) =if n==m
then return t
else return (Var m)
[n — t](App u1 u2) = do t] « [n — tjux
ty «— [n — tlus
return (App t] t5)
= do abs’ < [n — t]abs
return (Lam abs’)

[n — t](Lam abs)

instance FreeVars{Lam[} Lam where
FV{Lam[}(Var m) [m]
FV{Lam[}(App ui uz2) = FV{Lam[}(u1) U FV{Lam[(uz2)
FV{Lam[}(Lam abs) = FV{Laml}(abs)

Figure 6. The “nameplate” code fokam

3.5 Limitations of this approach

We have now described a working type class-based implementation
of FreshLib, culminating in definitions of capture-avoiding substi-
tution and free variable sets for which many cases are automatically
provided.

However, so far this approach has simmgrganizedhe name-
plate that must be written for a new user-defined datatype involving
names and binding. This reorganization has some code reuse and
convenience benefits: for example, we can override and reuse the
— ==, —, [~ — —]— and FV{—[}(—) notations; we don't have
to write “trivial” cases for pushing substitutions inside lists, pairs,
etc.; and for many datatypes, the remaining cases that need to be
written down are very uniform because the tricky case-fdf — is
provided byFreshLib. Nevertheless, although the nameplate code
is simpler,we still have to write just as much boilerplate for a new
datatype In fact, we may have to writeore code becaus&om
needs to be instantiated for user-defined datatypes.

For example, Figure 6 shows the additional code one would
have to write to implemeni-equivalence, substitution, and free
variables for theLam type using the type class-based version
of FreshLib. Fortunately, existing techniques for boilerplate-
scrapping now can be applied, becau$em turns out to be a
perfect example of a@erivable type classand[— — —]— and
FV{—[}(—) are examples ofjeneric (monadic) traversalsr

Finally, for abstractions, we compute the free variables of the body generic querieof the SYB approach. In the next section we de-

and then filter out the bound name:
instance
(Nom a, FreeVars{t} a) = FreeVars{|t}} (Name\\ a)
where
FV{t}(a\z) = FV{i[(z) \\ [a]
Note that in this approach, thHas Var class is not used. As
a result, instances ofubst and Free Vars{|—[} for user-defined

scribe how to makédreshLib completely generic, so that suitable
instances oNom, Subst, and Free Vars{ —|[} are derived automat-
ically for datatypes built up using standard types and constructors
or usingName and— \\ —.

4. Implementation using generic programming

datatypes must be provided instead. Such instances have specidlVe will employ two different approaches to scrap the remaining

behavior only for cases involving variables of typall other cases
are straightforward recursion steps (see Figure 6).

nameplate inFreshLib. First, we usederivable type class€d3]
to provide generic default definitions of the methodS\afm that



class Nom a where Nom Lam in Figure 6. For the list type constructor, the default

—o— i Trans — a — a instance declaration foNom a = Nom [a] is essentially the
PR (ol S 5 = Unit same as the one shown in Section 3.1.
7 ol9®h (fnp 2) — Inl (tez) The behavior ofVom for built-in types such agnt, Char, etc.

le@b) o and for specialFreshLib types— \\ — and Name is provided by
Te (Inr z) = Inr (1 e z) the instances given in Section 3; no changes are needed.
7 ole®th (1 y) =(rez)R(Tey) .

4.2 Subst and FreeVars{—[} as modular generic traversals
— # — :: Name — a — Bool . .
Unit ) While derivable type classes work very well féfom, they do

a #“ b Unit = True . . .

Jab) not help scrap the remaining boilerplate involved 9anbst and
a# (Inl z) =af#z FreeVars{—[}. One reason is that these classes take multiple pa-
a #1990 (Inr y) —at#y rameters, and multiple-parameter derivable type classes are not
a #19®% (z @) —a#zNa#y supported byghc. Also, these classes provide behavior that is

constructor-dependent, not just type-dependent. Derivable type

- classes work well when a function’s behavior is dependent only

Unit == Unit = True on the structure of its argument type, but they are not suitable for
(Inl ) =={e@0} (Inlz') =1z ==4 2’ writing functions with different behavior for different constructors

(Inr y) __{la®@b]} (Inr y/) = y==ay' of the same type. One possible solution would be to use a more

nry) ==a nmy) =y=ay powerful generic programming system such as Generic Haskell

:a — a — Bool

e

- ==fo®th = Fulse thatdoesallow generic functions to display constructor-dependent
(z@y)==0"" (@ @y)=z==02 ANy==0y behavior. This would work, but users &Fesh.Lib would then also
need to become familiar with Generic Haskell.
Figure 7. Nom as a derivable type class Another approach that supports constructor-dependent generic

functions is lammel and Peyton Jones’ SYB library [17, 18]. This

approach provides powerful facilities for “almost generic” func-
are suitable for most user-defined datatypes. Unfortunately, this ap-tions which traverse the data structure generioadigept for a few
proach does not work fa$ubst and Free Vars{—[}, so instead we special casesWe assume familiarity with this approach in the rest
employ the latest version ofimmel and Peyton Jones’ “scrap your ~ Of this section.
boilerplate” (SYB) library [19]. In particular, we make essential Capture-avoiding substitution émostan example of generic
use of a recent innovation that suppartedular generic traversals  traversalin the original SYB library. A nave approach would be
(i.e., traversals for which special cases can be provided using typeto implement aLam-specific substitution functiosubstLam as
class instances). This was not possible in previous versions of SYB.a generic (monadic) traversal by lifting the followingbst Var

Warning. This section (especially Section 4.2) depends rather function to one that works for any datatype:

heavily on derivable type classes and the new version of the SYB  substVar v Name — Lam — Lam — Lam
library. The papers [13] and [19] are probably prerequisite to un- substVar a t (Var b) = if a ==
derstanding this section. However, these detailsaichave to be then return ¢
mastered by casual usersi@feshLib. else return (Var b)
substVar a t x = return x
4.1 Nom as aderivable type class substLam . Name — Lam — a — a
In aderivable type clasfl3] (also calledgeneric classn the ghc substLam a t = everywhereT (mkT (substVar a t))

documentation), we may specify the default behavior of a class Of course, this implementsapturing substitutionwhich is not
method by induction on the structure of a type, expressed in termswhat we want. The natural next thing to try is to makést Var

of generic unit typesUnit, sum typesa & b, and product types and substLam monadic, define a functiosubstAbs that gives the
a® b. To instantiate a derivable type class to a particular type (con- behavior of substitution for abstractions (performing freshening
structor), we write a structural description of the type using existing using aFreshM), and then use the extension functiar.1M of

type constructors/nit for units,® for sums,® for products A for the “Scrap More Boilerplate” paper [18] to exterdbstLam SO
type-level abstraction and for recursion. For example, the struc-  that it freshens bound names appropriately.

ture of theLam type isua. Name® (a®a)® Name \\ «, whereas Unfortunately, this approach does not quite work. The reason
the structure of the list type construc{diis AS.pa.Unit ® B® a. is that the functionsubstAbs needs to know that the type of the
A derivable type class declaration is specialized to a type by follow- body is in Nom, not justData; thus,substAbs is not polymorphic

ing the structural type description. The provided cased/fioit, &, enoughto be used in a generic traversal. One way to solve this

and® in the declaration are used for the corresponding cases in thewould be to makeNom a superclass oData, but this is very
type; type-level recursion is translated to term-level recursion; and unsatisfactory becausBata is part of a library. Moreover, even
type-level abstraction is translated to class dependences in instancéf this approachdid work, it would still have disadvantages: for
declarations. Few generic functions are purely structure-driven, so example, we would have to repeat the tricky (though admittedly
specialized behavior can also be provided as usual by providing shorter) definition of substitution for each user-defined type, and
appropriate type class instances. These instances take preceden@ven worse, these definitions would have to be modified if we ever
over the default instance provided by the derivable type class dec-added new binding types.
laration. If an empty instance is provided, the default behavior is In fact, these are examples of more general limitations of the
inherited. SYB library. As observed by &ammel and Peyton Jones [19], the
Nom turns out to be a prime example of a derivable type class. original SYB approach has two related disadvantages relative to
Figure 7 shows how to defin¥om as a derivable type class whose type classes. First, generic functions are “closed” (cannot be ex-
methods can be derived automatically for user-defined datatypestended) once they are defined, whereas type classes are “open” and
simply by providing an empty instance dfom. For example, can be extended with interesting behavior for new datatypes by
for Lam, the declaration specializes to exactly the instance of providing instances. Second, SYB can only generaimapletely



polymorphicfunctions of the formVa.Data o = a — a; al-
though type-specific behavior is made possible uging, class-

specificbehavior is not, and in particular, we cannot generalize
functions that rely on knowing that is an instance of some class

other thanData.

As a result, though SYB-style generics are very powerful, they
lack some of thenodularityadvantages of type classes and cannot

be integrated with existing type class libraries very easiéyninel

and Peyton Jones [19] have developed a new version of SYB that

addresses both problems by, in essence, parameterizinQcte
type class by another type cla€s so that elements dbata{ C}
can be assumed to belong € This form of parameterization is
not allowed in Haskell proper, but may be simulategliz using

other extensions, based on a technique due to Hughes [14]. We refer

to the current SYB library as SYB3.
Using SYB3, we can implememt — —]— and FV{—[}(—)

“once and for all”, rather than on a per-datatype basis. Each case

in the definition of[— — —]— and FV{—[}(—) is essentially

the same except for the variable constructor. Ideally, we would

like to be able to parameterize the definitions/ef — —]— and

FV{—[}(—) by this constructor. Haskell does not, of course, allow
this kind of parameterization either, but we can simulate it using

the Has Var type class:
class HasVar a where
is_var :: a — Maybe Name
Now, using SYB3, we can implemeStbst and Free Vars{—|}
as shown in Figure 8 and Figure 9. Followingramel and Peyton

Jones [19], this code contains some more white lies (namely, the

use of class parameters fmta{—[} and explicit type arguments

to gfoldl{—[}) that hide details of the actual encoding in Haskell.

The real version is available onliffidjowever, this code is likely to
change to match modifications in the SYB3 library as it evolves.
The first instance declaration fdfubst specifies the default

instance Data{Subst al} ¢t = Subst a t where
[a — tlz = gmapM{Subst al} ([a — t]—) x
instance
(HasVar a, Data{|Subst af} a) = Subst a a
where
[n — t]lz = if is_var x == Just n
then return t
else gmapM{Subst al} ([n — t]—) z

Figure 8. Substitution using modular generics
instance
Data{|FreeVars{al}} t = FreeVars{al} t
where
FV{al}(z) = gfoldl{ FreeVars{al}}
(Mus-f y — fos-f UFV{a(y))

A-—=[D=
instance
(HasVar a, Data{|FreeVars{a[t[} a) = FreeVars{al} a
where
FV{al(z) =

case 15_var T
of Just n — [n]
Nothing — gfoldl{| Free Vars{ a[t[}
(Mfvs-f y — fos-f UFV{al(y))
A-—=[D=z

Figure 9. Free names using modular generics

data T = ...deriving (Nom,...)
to automatically deriveVom T, but instead we need to write an

behavior. For most types, substitution just proceeds structurally, soempty instance

we use the monadic traversal combinagotapM from SYB.

4.3 White lies
We mentioned earlier that the picture paintedrioéshLib in Sec-

instance Nom T where
-- generic
in order to instantiate the “derivable” type clad®m to T'. An-
other cosmetic difference is that as noted earlier, Haskell does not

tion 2 was a little unrealistic. This is mostly because the underlying support explicit type parameters, which we have been writing as

generic programming techniques usediyshLib are still work

f{t}. However, type parameter passing can be coded in Haskell us-

in progress. We now describe the (mostly cosmetic) differences be-ing dummy arguments and ascription (e.g. writf@undefined ::
tween the idealized code in Section 2 and what one actually has tot))- Finally, because the latest version of the SYB library [19] relies

do in the current implementation to uBeesh Lib for a user-defined
datatypeT'.

on Template Haskell [29] to derive instances of the SYB library's
Data and Typeable classes, we need to write a Template Haskell

First off, FreshLib depends on several extensions to Haskell directive:

present inghc. The following declarations therefore need to be

added to the beginning of arghc source file making use of
FreshLib:

{-# OPTIONS -fglasgow-exts #-1}

{-# OPTIONS -fallow-undecidable-instances #-1}
{-# OPTIONS -fallow-overlapping-instances #-}
{-# OPTIONS -fgenerics #-}

{-# OPTIONS -fth #-}

We also need to import parts of ti§&’Bnew library:®

import SYBnew

import Basics

import Derive
Next, even thougtVom is a “derivable” type class, it is not one of
Haskell 98'sbuilt-in derivable type classethat is, one of the built-
in classes Fq, Ord, etc.) permitted in aleriving clause. So, we
cannot actually write

4http://homepages.inf.ed.ac.uk/jcheney/FreshLib.html
Savailable fromhttp: //www.cwi.nl/ ralf/syb3/

$(derive [’’T])

However, these changes introduce at most a fixed overhead per
file and user-defined datatype. All of the changes are minor and
most can be expected to disappear in future versionghofas
support is added for the modular version of the SYB library.

5. Extensions
5.1 Integrating with other type classes

One subtle problem arises if one wishes to defie) directly as
a-equivalence without having to write additional boilerplate code.
In an early version ofreshLib, Nom only contained — e —) and
(= # —). We defined==) asa-equivalence foR) and let nature
take its course for other instances(ef), by defining:
instance (Eq a, Nom a) = Eq (Name \\ a) where
aN\z==b\y=(a==bAz==y)V
(a# y Az==(a—b)ey)
This was unsatisfactory because (as discussed ea¥lien) cannot
be mentioned in aleriving clause, sakq cannot be mentioned



either (because it is dependent dfwm for any type containing T en = case cast t

—\\ —). Thus an explicit boilerplate instance B§ Lam had to be of Just (a—b) — if a == n then b
provided afterNom Lam was instantiated: else if b == n then a
instance Nom Lam where else n
-- generic Nothing — n
instance Fq Lam where a # n = case cast a
(Var n) == (Var m) =n==m of Justa' — a' /=n
-- more boilerplate cases Nothing — True
To get rid of this boilerplate, we put &om-specific version of a==4 b=aq==
equality (namely(==4)) into Nom, that can be used to provide  The instances fotNom for basic datatypes are unchanged. For
a two-line instantiation of?q¢ whenever desired. However, to in-  _ \\ —, it is necessary to usaust when testing for freshness:
tegrateNom with other existing type classes (for example, to pro- instance ( Typeable n, Eq n, Nom a) =
vide an instance ofrd compatible withn-equivalence), we would Nom ((Name n)\\ a) where
have to put additionaVom-specific versions of their members into a# (b\\t) = (case cast a

Nom. We would prefer to be able to use our original, more modular
approach; this would be possible if “derivable” type classes could
be used ideriving clauses.

of Just ' — a' ==
Nothing — False) V a # t
The FreshM, HasVar, Subst, and FreeVars{—|} classes also
need to be modified slightly but are essentially unchanged.

5.2 User-defined name-types Another possibility would be to abstract out the typme
FreshLib provides a “one size fits all” type of string-valudtmes itself, and parameteriz¥om, FreshM, and the other classes over
that is used for all name types. Often we wish to have names that”- There are two problems with this. Firghc does not support
carry more (or less) information tharSaring; for example, a sym- multi-parameter generic type classes; and second, to avoid variable
bol table reference, location information, namespace information, C@pture it is important that &reshM knows how to freshell

or a pointer to a variable’s value. kinds of names, not just a particular kind. In the approach suggested

In addition, the use of a singl&ame type for all names can above, this is not a problem becauseameF'M :: FreshM m =

lead to subtle bugs due féames of one kind “shadowing” or “cap- ~ Name n — m (Name n) is parametric im.
turing” Names of another kind. For example, in Haskell, ordinary

variables and type variables are separate, so there is no confusion

resulting from using: as both a type and as a term variable. How- 5.3 User-defined binding forms

ever, doing this infreshLib leads to disaster: The name-abstraction typ&ame \\ a can be used for a wide
> Lam (a\\ TyApp (Var b) (VarTy a)) ==a variety of binding situations, but for some situations it is awkward.
. Lam (a\\ TyApp (Var a) (VarTy a)) For example/et-bindingslet z = e; in es, typedV-quantifiers
alse (y)

Vz : 7.¢, and binding transitionp %’ ¢ in the r-calculus can
be represented usinyame \\ a, but the representation requires
earranging the “natural” syntax, for examplelag e: (z \\ e2),
orall T (z\\ ¢), or BndOutTrans p = (y \\ q).
To provide better support for the first two forms of binding, we
can provide instances ef \\ — that allow binding types other than
Name. The following code permits binding a name-value pair:

that is, the term-level binding of in Lam capturesthe type
variablea. This is not desired behavior, and to avoid this, we have
to take care to ensure that term and type variable names are alway
distinct. Using different name types for type and term variables
would rule out this kind of bug.

One way to support names of arbitrary types to parameter-
ize Name and other types by the type of datacarried byNames:

data Name n = Name n (Maybe Int) fiatta arb=avb
type Trans n = (Name n, Name n) Instance
type Perm n = [ Trans n] (Nom a, Nom b) = Nom ((Name> a) \\ b)
class Nom a where where
—e— = Transn — a — a a#((b'>$2\\\l/) ) =
. ANla==bVa#y
— # — :: Name n — a — Bool afz
- efc... ((‘Wf)\/\\y) == (b2 )\ y') =
An immediate difficulty in doing this is that the old instance of ==z A ,
Nom Name does not work as an instance dame String, or (a==10 //\ y=y Vv .
for any other typet. The reason is that we would need to provide a#y A ==_(a<_—>b) °y')
functions Then we can encodet-binding asLet ((z > e1) \\\ e2) and typed
— o — :: Trans n — Name t — Name t quantifiers asgrorall ((z > 1)\ ¢). In addition, custom instances
— # —:: Name n — Name t — Bool of Subst and Free Vars{—[} are needed, but not difficult to derive.

However, in each case the behavior we want is non-parametric: if More exotic binding forms such as thecalculus binding transi-
andt are the same type, we swap names or test for inequality, Other.jﬂons can be handled in a similar fashion by defining customized
wise swapping has no effect and freshness holds. One adequate (bufistances oNom, Subst, and Free Vars{—[}.

probably inefficient) solution is to require andt to be Typeable, There are other common forms of binding that cannot be han-
so that we can test whetherand¢ are the same type dynamically ~ dled atall usingVame \\ a. Some examples include
usingcast:
class Nom a where ¢ hinding a list of names, e.g. the list of parameters in a C func-
— e — :: Typeable n = Trans n — a — a tion;
— # — = Typeable n = Name n — a — Bool e binding the names in the domain of a typing context, €.¢.
— ==, —::a — a — Bool e : T is considered equal up to renaming variables bourid in

instance (Typeable n, Eq n) = Nom (Name n) where within e and;



¢ binding the names in a pattern-matching case, g.g= ¢ is
considered equal up to renaming of bound variableswithin
e; and

¢ binding several mutually recursive names in a recurkite

In each case we wish teimultaneously bind all of an unknown
number of names appearing in a value
We sketch a general mechanism for making a type bindable
(that is, allowing it on the left side of \\ —). For a typea to be
bindable, we need to be able to taelhich names are bound by a
a-valueandwhether twaz-values are equal up to a permutation of
namesThus, we introduce a type class fnindable types
class Nom a = BType a where
BV (—) ::a — [Name]
— @ — :a— a— Maybe Perm
The first memberBV (—), computes the set of names bound by a
BType, whereas the second, @ —, tests whether two values are

| 1==1
=domr+—p0gq
7« (PRec r1) @ (PRec (7m ® 12))
return (7 H )
_O_ = Nothing
Note that this implementation assumes, but does not enforce, that
labels and pattern variables are distinct; thus, expressiongllike
e1,l : ex} and patterns likgl; : z,l; : z} need to be excluded
manually.
Unfortunately, combining user-defined name types with user-
defined binding forms appears to be nontrivial. We are currently
working on combining these extensions.

5.4 Other nominal generic functions

Capture-avoiding substitution and free variables sets are just two
among many possible interesting generic operations on abstract
syntax with names. A few other examples inclugequivalence-

equal up to a permutation, and returns such a permutation, if it ex- respecting linear and subterm orderings; conversion to and from

ists. Now we can provide a very general instance¥orn (a \\ b):
instance (BType a, Nom b) = Nom (a\\ b) where
a# (z\\ v) =a€BV(z)Va#y
(z\y) ==a (=" \¥') =
(z==aa’ Ay==ay)V
(case z @y
of Just m —
(all (Aa — a # ') (BV () \\ BV (1)) A
(¢ =0 7O y)
Nothing — Fualse

name-free encodings like de Bruijn indices or binary formats; syn-
tactic unification [21, 33]; and randomized test generation as in
QuickCheck [8].

Using the SYB3 library, it appears possible to define “nominal”
versions of theyfoldl, gmap, gzip, and other combinators data,
such that names are freshened by default when passing through a
name-abstraction. In this approach, many interesting generic func-
tions besides the ones we have considered would be expressible as
nominal generic traversals or queries. We leave exploration of this
possibility for future work.

The a-equivalence test checks whether the bound data structures5.5 Optimizations

are equal up to a permutation, then checks that all names bound
on the left-hand side but not on the right-hand side are fresh for the
body on the right-hand side, and finally checks that the permutation
that synchronizes the bound names also synchronizes the bodies

This is a natural, if complicated, generalizationc®quivalence
for a single bound name.

In the class instance for substitution, we calculate the names
bound by the left-hand side, generate fresh names, and renam
the bound names to the fresh names. In the class instance for free

variables, instead of subtracting the singleton [list, we subtract
BV (z). The details are omitted.
Then, for example, we can make contexts
newtype Ctz = Ctz [(Name, Type)]
bindable by implementing V' (—) asmap fst and—©— as a func-
tion that constructs the simplest permutatiosuch thatctz, ==
T @O ctxs, if it exists. Similarly, pattern-based binding can be imple-
mented by providing the corresponding functions for patterns. Note
that we can replace the earlier instance®/ofn (Name \\ a) and
Nom ((Name > a) \\ b) by providing the following instance dec-
larations:
instance BType Name where
BV(a) = [a]
a@b = Just[(a—b)]
instance (BType a, Nom b) = BType (a > b) where
BV(avb) = BV(a)
(a>b) @ (a'>b') =if b==, b then a © a else Nothing
As promised, we show how to implement the abstract syntax of
pattern matching sketched in Section 2.4 as follows:
instance BType Pat where

BV (PVar n) = [n]
BV (PRec []) =]
BV (PRec ((—:z):xs)) = BV (z) H# BV (zs)
(PVar n) © (PVar m) = Just [(n—m)]
]

[
(PRec []) @ (PRec []) = Just |

(PRec ((I,p):71)) @ (PRec ((I': q) : 72))

Substitution and free variable computations are basic operations
that need to be efficient. CurrentljreshLib is written for clar-

ity, not efficiency; in particular, it follows a “sledge hammer” ap-
proach [15] in which all bound names are renamed and all subterms
visited during capture-avoiding substitution. While Haskell’s built-

in sharing, laziness, and other optimizations offer some assistance,
faster techniques for dealing with substitution are well-known, and
e plan to investigate whether they can be supportdd-éhLib.

Some minor optimizations are easy to incorporate. For ex-
ample, our implementation of substitution always traverses the
whole term, but we can easily modify the instance declaration for
Subst t (Name\\ a) to stop substitution early if we detect that
the name for which we are substituting becomes bound. Similarly,
we can improve the efficiency of simultaneous substitution and
FV{—[}(-) using efficientFiniteMap or Set data structures.

Another possible optimization would be to use the “rapier” ap-
proach to capture-avoiding substitution used inghe inliner and
described by Peyton Jones and Marlow [15, Section 4.2]. In this
approach, the set of all variables in scope is computed simultane-
ously with capture-avoiding substitution, and fresh names are not
generated using a monad, but by hashing the set of names to guess
a name that is (with high probability) not already in scope. In this
approach, substitution is a pure function, so the use of monads for
name-generation can be avoided. On the other hand, the hashing
step may need to be repeated until a fresh name is found.

5.6 Parallelization

The order in which fresh names are generated usually has no ef-
fect on the results of computation, so theoretically, substitution
operations could be reordered or even be performed in parallel.
(We have in mind a fine-grained approach to parallel programming
such as GPH [1]). However, the classical approach based on side-
effects hides these optimization opportunities because fresh names
are generated sequentially. In our approach, substitution can be per-
formed in parallel as long aseparate threads generate distinct



fresh namesOne way to do this is to replace the “single-threaded” is that in refactoring, renaming and fresh name generation is ex-
freshness monad with one that can always “split” the source of pected to be performed by the user. Thus, refactorings simply fail
fresh names into two disjoint parts. For example, fresh names couldif a name clash is detected, wherdasshLib needs to be able to

be generated using the technique of Augustsson et al. [4], in which generate fresh names automatically in such situations.

the fresh name source is an infinite lazy tree which can be splitinto ~ The FreshLib approach is a lightweight but powerful way to

two disjoint fresh name sources as needed. incorporate the novel features of FreshML inside Haskell. It seems
particularly suitable for prototyping, rapid development, or educa-
6. Related and Future Work tional purposes. But is it suitable for use in real Haskell programs?

We are optimistic that there is some way of reconciling efficiency,

modularity, and transparency, but this is an important direction for
future work. One recent development that may help in this respect
is Chakravarty et al.’s extension of Haskell type classes to support

) f associated typef5]. We speculate that associated types may be
. We are awareé ofatleast two_other implementations of FreshML- useful for providing better support for user-defined name and bind-
like functionality as a Haskell library [35, 28], all based on essen- ing types inFreshLib.

tially the same idea as ours: use type classes to provide swapping,
freshness, and-equivalence. The alternative attempts of which we .
are aware seem to include roughly the same functionality as dis- 7. Conclusion
cussed in the first half of Section 3, but not to use generic program- This paper shows that recent developments in two active research
ming, or to consider substitution or free variable set computations areas,generic programmingnd nominal abstract syntaxcan be

at all. Sheard’s library in particular inspired our treatment of fresh- fruitfully combined to provide advanced capabilities for program-
ness monads and user-defined binding forms. ming abstract syntax with names and binding in Haskell. In nom-

Urban and Tasson [34] have used Isabelle/H@ki®matic type inal abstract syntax, functions for comparing two terms up to re-
classesto develop a formalization of the lambda-calculus. Our naming, calculating the set of free variables of a term, and safely
techniques for generic programming with nominal abstract syntax substituting a term for a variable have very regular definitions—so
may be relevant in this setting. regular, in fact, that they can be expressed using generic program-

Recently, Pottier [27] has developed@l, a source-to-source  ming techniques already supported by extensions to Haskell such
translation tool for OCaml that converts a high-level type specifica- as derivable type classes and the SYB library. Moreover, these def-
tion including a generalization of FreshML-like name and abstrac- initions can be provide@nce and for allby a library; we have
tion types. Interestingly, this approach also provides more advanceddeveloped a “proof of concept” library callddeshLib. All of the
declarative support for exotic binding forms, includibgtrec. In code for chores such asequivalence, substitution, and free vari-
Caml, although capture-avoiding substitution is not built-in, it is ables are provided byreshLib and can be used without having
easy to implement by overridingwsitor operation on syntax trees  to first learn nominal abstract syntax or generic programming, or
that is provided automatically. This is further evidence that nomi- master some external generic programming tool.
nal abstract syntax is compatible with a variety of generic program-  The ability to provide capture-avoiding substitution as a built-in
ming techniques, not just those providedghe. operation is often cited as one of the main advantages of higher-

One advantage of implementing nominal abstract syntax as aorder abstract syntax over other approaches. We have shown that,
language extension (as in FreshML anmBrolog) rather than as a  in the presence of generic programming techniques, this advantage
library is that built-in equalityis a-equivalence, so even though is shared by nominal abstract syntax. In addition, our approach
name-generation is treated using side-effects or nondeterminism inprovides for more exotic forms of user-defined binding, including
these languages, capture-avoiding substitution is a pure functionpattern-matching binding forms. In contrast, name-free or higher-
(i.e., has no observable side-effects upat@quivalence). Such order abstract syntax techniques provide no special assistance for
language extensions also have the advantage that providing userthis kind of binding.
defined name-types is straightforward; the lack of good support  On the other hand, this paper has focused on clarity over effi-
for the latter is probably the biggest gap MreshLib. Although ciency. There are many optimization techniques that we hope can
FreshLib provides fewer static guarantees, it is more flexible in be incorporated intdreshLib. The fact thatFreshLib works at
other important respects: for example, it is possible for users to all is encouraging, however, because it suggests that nominal ab-
define their own binding forms (Section 5.3). Another advantage stract syntax, like higher-order abstract syntax, is a sensible high-
of FreshLib is that the underlying representations of nhames are level programming interface for names and binding. It remains to
accessible; for example, names can be ordered, and so can bée determined whether this interface can, like higher-order abstract
used as keys in efficient data structures, whereas in FreshML andsyntax, be implemented efficiently. We believe tliatshLib is a
aProlog this is not allowed because there is ho swapping-invariant promising first step towards an efficient generic library $orap-
ordering on names. ping your nameplate
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