
Toward a General Theory of Names, Binding and Scope

James Cheney
University of Edinburgh

Edinburgh, United Kingdom
jcheney@inf.ed.ac.uk

Abstract
High-level formalisms for reasoning about names and binding such
as de Bruijn indices, various flavors of higher-order abstract syntax,
the Theory of Contexts, and nominal abstract syntax address only
one relatively restrictive form of scoping: namely, unary lexical
scoping, in which the scope of a (single) bound name is a subtree
of the abstract syntax tree (possibly with other subtrees removed
due to shadowing). Many languages exhibit binding or renaming
structure that does not fit this mold. Examples include binding
transitions in theπ-calculus; unique identifiers in contexts, mem-
ory heaps, and XML documents; declaration scoping in modules
and namespaces; anonymous identifiers in automata, type schemes,
and Horn clauses; and pattern matching and mutual recursion con-
structs in functional languages. In these cases, it appears necessary
to either rearrange the abstract syntax so that lexical scoping can be
used, or revert to first-order techniques.

The purpose of this paper is to catalogue these “exotic” binding,
renaming, and structural congruence situations; to argue that lexical
scoping-based syntax techniques are sometimes either inappropri-
ate or incapable of assisting in such situations; and to outline tech-
niques for formalizing and proving properties of languages with
more general forms of renaming and other structural congruences.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Syntax; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Specification techniques

General Terms Languages

Keywords names, abstract syntax, scope, nominal logic

1. Introduction
It is a significant challenge to mechanize reasoning about syntac-
tic structures involving bound names (e.g., abstract syntax trees
representing the terms or formulas of a programming language or
logic). It is widely agreed that to perform such reasoning using a
“primitive”, or first-order, syntax encoding is too painful to con-
template for anything as complex as a full-scale programming lan-
guage. A wide variety of techniques for automatically managing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MERLIN’05 September 30, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-072-8/05/0009. . . $5.00.

the tedious details attendant upon formalizations of abstract syntax
with bound names have been proposed. These include name-free
approaches such as combinators and de Bruijn representations [7]
as well as higher-order approaches such as higher-order abstract
syntax [20], weak higher-order abstract syntax [8], and lambda-
term abstract syntax [14]. Another recently proposed technique is
the approach of Gabbay and Pitts [10], which focuses on alpha-
equivalence axiomatized in terms of name-swapping and freshness.
Additional techniques such as Hybrid [18], the Theory of Con-
texts [11], andFOλ∆∇ [16] have also recently been proposed. In
this paper we employnominal abstract syntax, a simplified form of
nominal logic[21].

Scopeis a fundamental concept when discussing binding. If we
view a syntax representation as an abstract data structure, then the
scope of a binding occurrence (located at positionp) of an identifier
x is the set of positions in the tree at which a reference tox refers
to thex bound atp.

All of the above techniques have a common limitation. They
provide advanced support for only one kind of binding/scoping
behavior:unary lexical scoping, in which the abstract syntax is tree-
structured, one name is bound at a time, and its scope is a subtree
of the abstract syntax tree (possibly with subtrees removed due
to shadowing). Unary lexically scoped (ULS) binding is exhibited
by, for example, theλ-calculus’sλx.t term constructor, logical
quantifiers, and a wide variety of other forms of binding. While
this is quite an important and flexible form of binding, it is not the
only one encountered frequently in real programming languages,
operational semantics rules, or logics. For example,

1. In let x = e in e′, the scope ofx is e′, but note.

2. In π-calculus “binding” transitions such asp
x(y)−→ q andp

x̄(y)−→
q, y is bound inq.

3. In a C program, a global (extern) definition of an identifier
is considered bound within the whole program; such identifiers
can be defined at most once. Similarly, in C, a local (static)
defining occurrence has file scope, so must be unique within its
file, but may be reused in other files.

4. In module or namespace systems (e.g. Wells and Vestergaard’s
module calculus [29]), an identifier can usually be defined at
most once within a given scope; also, toplevel declarations may
have sequential scope (e.g. in ML) or global scope (e.g. in
Haskell or C/C++). In addition, modules often exhibit “open”
scoping, where identifiers defined in one module may be refer-
enced in another module, with the binding resolved at link-time
rather than compile-time.

5. In XML [1], ID attribute values are required to be globally
unique “definitions” of an identifier, andIDREF attributes must
refer toIDs. IDREFs may refer toIDs in physically different
files storing different parts of an XML document.

6. Finite automata are often considered equal up to one-to-one
renaming of state names [12]. Similarly, Standard ML type
schemes [17] and Horn clauses in logic programs [6] are of-
ten considered to be equal up to one-to-one renaming of free
variables. Thus, it is always safe to assume that the identifiers
in an automaton, Horn clause, or type scheme are completely
fresh.

7. In pattern-matching expressions in functional languages (e.g.
Haskell or SML), the free variables of the pattern are considered
bound simultaneously in the body.

8. In a mutually recursive definition (e.g. LISP or Scheme’s
letrec), the identifiers being defined are considered in scope
in all the definition bodies.

In this paper we argue that unary lexical scoping is often ei-
ther inconvenient or inadequate for encoding interesting forms of
scoping encountered in real programming or formalization situa-
tions. In the former case, the techniques can still be used, but the
language encoding must be contorted to accommodate ULS. Mak-
ing these forms of binding fit the mold of unary lexical scoping
complicates the syntax significantly, so that the form and structure
of paper proofs and their formalizations diverge. In the latter case,
standard binding techniques can be used, but do not provide anad-
equateencoding of the syntax: that is, there may be “confusion”
concerning which object term corresponds to a representation, or
“junk” terms in the representation type not corresponding to any
object term. When adequacy fails, it is necessary to fall back on
low-level reasoning techniques. We believe that this lack of expres-
siveness is a significant obstacle to adoption of formal methods for
reasoning about programming languages by non-experts.

Although the name-abstraction operation provided by nominal
logic shares the limitations of the other techniques, we argue that
nominal logic is flexible enough to provide better support for forms
of binding beyond unary lexical scoping, and including all of the
examples listed above. This paper represents work in progress,
and despite our emphasis on nominal techniques, is not meant
to say anything definitive about the advantages or disadvantages
of the technique we propose over other approaches, but only to
encourage discussion of new ideas and directions for all techniques
for reasoning about binding.

The structure of the rest of the paper is as follows. In the next
section, we provide a brief overview of nominal abstract syntax.
The next four sections present four forms of binding and scop-
ing for which unary lexical scoping is either inconvenient or in-
adequate, and show how the desired behavior can be formalized
in nominal logic. In Section 3 we considerpseudo-unary lexical
scopingforms such aslet, typed quantifiers, and binding transitions
in theπ-calculus. These forms of binding are “almost” lexical, so
can be handled using ULS, but doing so requires reorganizing the
language, sometimes to the detriment of clarity or modularity. In
Section 4, we considerglobal scoping as exhibited in C, assem-
bly language, XMLIDs/IDREFs, and module systems, in which an
identifier may be bound (“defined”) at most once, but may be re-
ferred to anywhere in a collection of modules. In Section 5, we con-
sideranonymous scopingas exhibited by state names in automata
and free variables in logic programming Horn clauses or ML type
schemes. In Section 6, we consider situations in which the names
in a general data structure (such as a pattern matching expression)
are considered bound in another subterm. Section 7 shows how the
ideas introduced in the previous sections can be combined to handle
the binding structure of mutual recursion (i.e.,letrec). Section 8
discusses future work and Section 9 concludes.

2. Background
In this section we provide a brief overview of nominal abstract
syntax. Much more detail can be found in the papers [21, 28, 9, 4].

Let A be a countably infinite set of names{a, b, x, y, . . .}. The
(ground) nominal terms are as follows:

t ::= c | f(~t) | a | 〈a〉t
Intuitively, the term〈a〉t is considered to be an “abstraction”, or
a term with a distinguished bound namea; we will equip nomi-
nal terms with an equational theory that identifies abstractions up
to alphabetic renaming (α-equivalence). Note that names are not
variables; instead they are to be thought of as “special constants”.

Nominal terms are classified using types. Types include base
name typesν anddata typesδ, as well as a binary type constructor
〈ν〉τ calledabstraction, that combines a name type and ordinary
type. Additional type constructors, in particular Cartesian products
τ × τ ′ and listslist τ , may also be present and are standard. Terms
are considered well-formed (relative to some signatureΣ assigning
types to constants, names, and function symbols) as follows:

a : ν ∈ Σ
a : ν

c : τ ∈ Σ
c : τ

a : ν t : τ
〈a〉t : 〈ν〉τ

ti : τi f : (τ1, . . . , τn) → τ ∈ Σ

f(~t) : τ

We define several relations and operations on ground nominal
terms as follows. First, letπ be a finite, type-preserving permuta-
tion on names; that is, an invertible function that moves at most
finitely many names and such that ifa : ν thenπ(a) : ν. Some
examples include the identity functionid, transpositions(a b) that
exchange two names (of the same type), and compositionsπ ◦ π′;
obviously, name-permutations form a group, and this group is gen-
erated by the pairwise transpositions of names of compatible types.
We writeπ · t for the result of renaming all the names occurring in
t according toπ; this is calculated as follows.

π · a = π(a)

π · c = c

π · f(~t) = f(π · ~t)
π · 〈a〉t = 〈π · a〉π · t

Note that permutations essentially ignore the tree and binding struc-
ture of terms and simply rename all occurrences of names (both
“free”, “bound”, and “binding”). Note also that ordinary constants
are fixed by permutations, whereas names can be renamed; this is
what makes names different from ordinary constants.

Next, we define what it means for a name to be independent
of (or fresh for) a term. Intuitively, a namea is fresh for a termt
(that is,a # t) if t possesses no occurrences ofa unenclosed by an
abstraction ofa. We define this using the following inference rules:

(a 6= b)

a # b a # c

a # ti (i = 1, . . . , n)

a # f(t1, . . . , tn)

a # b a # t

a # 〈b〉t a # 〈a〉t
Finally, we define an appropriate equality relation on nominal

terms that identifies abstractions up to “safe” renaming.

a ≈ a c ≈ c

ti ≈ ui (i = 1, . . . , n)

f(t1, . . . , tn) ≈ f(u1, . . . , un)

a ≈ b t ≈ u
〈a〉t ≈ 〈b〉u

a # (b, u) t ≈ (a b) · u

〈a〉t ≈ 〈b〉u
The above system is essentially the equational theory of nomi-

nal logic (an extension of first-order logic with a theory of names,

binding, freshness,α-equivalence, and quantification over fresh
names). In the rest of this paper, we will consider extensions to
the above inference rules, typically in the form of rules for well-
formedness freshness and equality specialized to a particular type
constructor or term structure. These inference rules can be formal-
ized within nominal logic as well. For presentation purposes, how-
ever, we will work in terms of inference rules.

3. Pseudo-Unary Scoping
One aspect of unary binding that is theoretically unproblematic, but
unsatisfying in practice, is its treatment of binding constructs of the
following forms:

let x = e1 in e2

∀x:τ.φ

λx:τ.e

In each case, the bound variablex is separated from its scope by a
type or term in which occurrences ofx are not considered bound.
That is,

let x = f(x) in e2(x) ≈α let y = f(x) in e2(y)

This “natural” way of writing the expression does not match up
with unary lexical scoping. Another example of this is in the form
of binding exhibited byπ-calculus labelled transitions:

p
x(y)−→ q(y) ≈α p

x(z)−→ q(z)

p
x̄(y)−→ q(y) ≈α p

x̄(z)−→ q(z)

In nominal logic (or indeed any formalism providing unary lexical
scoping), we may represent such syntax correctly by rearranging
the arguments so that the bound name is adjacent to its scope:

let exp : (exp, 〈id〉exp) → exp.

forall prop : (ty, 〈id〉prop) → prop.

lambda exp : (ty, 〈id〉exp) → exp.

in trans : (proc, id, 〈id〉proc) → trans.

bound out trans : (proc, id, 〈id〉proc) → trans.

For the first three cases, this is no great burden, but theπ-calculus
transitions no longer factor into a process, action, and process.
Some improvement is possible, for example by employing two
kinds of transitions, relating the input process to either an output
process or a process with a bound name (see e.g. various encodings
by Miller and Tiu [13, 15, 27]). However, this technique departs
from the original description of theπ-calculus.1

In nominal logic, however, nothing prevents us from adding
axioms that directly describe other forms of binding than plain-
vanilla abstraction. For example, if we take

let exp : (id, exp, exp) → exp.

we may axiomatize the binding behavior by adding the following
inference rules:2

x # e1

x # let exp(x, e1, e2)

x # f2 e1 ≈ f1 e2 ≈ (x y) · f2

let exp(x, e1, e2) ≈ let exp(y, f1, f2)

1 Of course, one may argue, as Miller and Tiu have done, that this change is
an improvement.
2 Here and elsewhere, we make use of the following theorem of nominal
logic: if x # e and e = (x y) · e′, then y # e′. To see why this
is the case, note thatx # e implies (x y) · x # (x y) · e, whence
y = (x y) · x # (x y) · e = (x y) · (x y) · e′ = e′.

Similar rules can be written for∀ andλ. For theπ-calculus, if we
use the signature

bout : (id, id) → act.

bin : (id, id) → act.

trans : (proc, act, proc) → trans.

then the binding behavior can be axiomatized as

y # (p, x)

y # trans(p, bout(x, y), q)

p ≈ p′ x ≈ x′ y # q′ q ≈ (y y′) · q′

trans(p, bout(x, y), q) ≈ trans(p′, bout(x′, y′), q′)

and similarly forbin. This captures the binding behavior of theπ-
calculus as originally presented.

These axioms do ensure that our user-defined binding constructs
are treated correctly, but seem to require modifying the underlying
equational and freshness theory on an ad hoc basis. The inference
rules for equality above seem to have a very specific form, namely,
we test that the parts outside the scope are equal, test that the bound
name is fresh for the scope on the other side, then test that the
scoped parts are equal up to renaming. We believe that it would be
possible and worthwhile to find a more compact representation of
scoping rules for such custom binding forms, from which the rules
above can be extracted automatically. (One interesting possibility
which has recently been proposed by Pottier is theinner and
outer scope description keywords in Cαml [22], a tool which
translates a high-level type specification to low-level OCaml code
that deals with name binding automatically).

3.1 Sequential scoping

Another common form of scoping that is representable (but incon-
veniently so) using unary lexical scoping is what we shall termse-
quential scoping. Intuitively, an identifier has sequential scope if it
occurs in a data structure that is part of a sequence of similar data
structures, and it becomes bound in later elements of the sequence.
Sequential scoping is “open-ended”: for example, if we concate-
nate two sequences, then free references in the latter sequence may
become bound to occurrences in the former.

In ML, for example,

fun f x = e_1
fun g x = e_2
fun f x = e_3

is allowed, and the first definition off is shadowed by the second.
This means that occurrences off in e1 and e2 refer to the first
definition, but occurrences off in e3 and later in the program will
refer to the second definition.

We can handle sequential scoping using ordinary unary scoping
by rearranging the abstract syntax. For example, we can express the
above declarations as

fndecl(〈f〉([x], e1, fndecl(〈g〉([x], e2, fndecl(〈f〉([x], e3, nil))))))

where

fndecl : (〈id〉(list id× exp× decllist)) → decllist

But this has the obvious disadvantages of requiring us to use cus-
tomized declaration lists. Can we do better?

We can axiomatize the desired behavior in nominal logic as
follows:

f # xs

f # (fndecl(f, xs, e)) :: ds

xs ≈ ys f # (e′, ds′) (e, ds) ≈ (f g) · (e′, ds′)

fndecl(f, xs, e) :: ds ≈ fndecl(g, ys, e′) :: ds′

Intuitively, this says that a function name is bound in its function
body, and in any later declarations.

4. Global Scoping
Many situations, from XML documents to module systems to ob-
ject files, employ a more primitive form ofglobal scoping with
unique definitions. Not only is the scope of a definition “global”
within its original data structure, but other data structures may con-
tain references to the identifier which become resolved later (for
example, by a linker). In all of these situations, it is commonplace
for a component (module, file, object, document fragment) to re-
fer to names that are defined externally. In addition, references can
be cyclic: that is, two modules may each define an identifier that
the other uses. Similarly, in Separation Logic [23], a logic for rea-
soning about imperative programs that manipulate pointers,heaps
are considered to be partial functions from identifiers to values that
can be split into parts with disjoint domains (possibly with refer-
ence cycles crossing the two parts)

We wish to abstract away some of the above details in order to
identify a core idea that may be incorporated into nominal logic
and used for each of the above situations. In each situation, data
structures can contain some names with special meaning: we call
such namesdefined(without being too specific about what it means
to define a name). Moreover, in any given data structure, names
may be referenced as many times as desired, but may be defined
at most once within a given scope; in particular, an operation
combining two data structures that define names is only sensible
when the sets of externally visible names defined in the structures
are disjoint. Multiple data structures defining the same name may
exist (think of several different versions oflibc, each of which
definesmalloc), as long as they are not forced to coexist. On the
other hand, uniquely defined identifiers can be hidden (for example,
using thestatic keyword in C); that is, their scope can be limited
so that the same identifier can be used in different components. As
another example, parameter names in C function definitions must
be distinct from each other but can be re-used in other scopes.

To model this behavior within nominal logic, we consider a
new type constructor forunique identifier definitions(that is, a
“uniqueness type”). We augment nominal terms and types with the
following syntax:

t ::= · · · | a!! τ ::= · · · | ν!!

The intended meaning of the unique name constructor is that a
term or formula can be well-formed only if there are no duplicate
unique names in it. We axiomatize this well-formedness property
as a relationS ` t, whereS is a superset of the uniquely defined
names of termt. This generalizes the type system for ground
nominal terms outlined in Section 2.1.

a : ν ∈ Σ
S ` a : ν

c : τ ∈ Σ
S ` c : τ

S] {a} ` t : τ

S ` 〈a〉t : 〈ν〉τ
a : ν ∈ Σ a ∈ S

S ` a!! : ν

S =
Un

1 Si

Vn
i=1 Si ` ti : τi f : (τ1, . . . , τn) → τ ∈ Σ

S ` f(t1, . . . , tn) : τ

Note thatS is a conservative upper bound on the set of names
uniquely defined byt, so in the rule for abstraction, it is safe to
add a to S to typecheck the body. Thus,f(a!!, a!!) is ill-formed,
while f(a!!, b!!), g(a!!, a), andf(〈a〉a!!, a!!) are well-formed. Using
the uniqueness type, the identifier structure of XML documents can
be modeled as follows:

id : ident!! → att.

idref : ident → att.

elt : (string, list att, list elt) → elt.

Note that we distinguish between different sorts of attribute val-
ues at the type level, whereas in true XML, attribute values are just
strings and type information is imposed externally by a DTD or
XML Schema. In addition, since we are using a name type for iden-
tifiers, the string values of identifiers (which could, but frequently
don’t, carry interesting information in true XML) will be lost in
our encoding. Also, in true XML, documents are considered equiv-
alent up to reordering attributes within an element tag; although this
could be captured with additional structural congruence axioms, or
using a suitably axiomatizedset type, we omit them for simplicity.
Then the documents

<el1 id="id1">
<el2 idref="id1"/>

</el1>

would be encoded as

elt("el1", [id(id1!!)], [elt("el2", [idref(id1)], [])])

whereas

<el1 id="id1">
<el2 id="id1" idref="id1"/>

</el1>

has no (well-formed) encoding.
Similarly, defining occurrences of identifiers/parameters in C

programs must be unique within their scopes, and this constraint
can be enforced using(−)!!. Finally, we consider heaps and con-
texts. Such data structures are sometimes viewed as lists of pairs
list (id× value), or alternatively, as finite, partial functionsid →
value. Of course, these two encodings are not isomorphic, because
the list representation is order sensitive and includes values such
as[(a, x), (a, y)] that correspond to no function. The first encoding
emphasizes the concrete nature of such data structures, whereas the
second emphasizes the fact that the identifiers being used as keys
should appear at most once on the left-hand side. Using uniqueness
types, we can combine the structural convenience of list process-
ing with the unique mapping property guaranteed by the use of the
function space by encoding heaps and contexts as values of type
list (id!! × value). Of course, this representation comes with no
built-in function application notation for lookups, but list lookup is
not difficult to implement for this representation. Also, this repre-
sentation is sensitive to ordering, but there are situations where this
is desirable (e.g. “telescope” contexts as in dependent type theory).

Heaps, unlike contexts, are usually considered to be order-
independent. We can express this order-independence by using the
following language:

empty : heap

bind : (id!!, value) → heap

merge : (heap, heap) → heap

and specifying appropriate unit, commutativity, and associativity
axioms

merge(empty, x) = x = merge(x, empty)

merge(x, y) = merge(y, x)

merge(x, merge(y, z)) = merge(merge(x, y), z)

This is quite similar to some formalisms for heaps employed in sep-
aration logic. In fact, separation logic is an important possible ap-
plication for uniqueness types, as well as a rich source of interesting
ideas. We are very interested in determining whether uniqueness
types are subsumed by, or can be integrated with, related “resource-
conscious” logics such as Bunched Implications [19] or Schöpp and
Stark’s dependent type theory for names and binding [24].

On the other hand, this technique for encoding finite partial
maps only works for functions whose domain is a set of names.
It would be interesting to see if there is a better way of dealing
with finite partial maps on other types, such as lists of names
(for namespaces) or pairs of state and alphabet symbols (for state
transitions in automata, see the end of Section 5).

4.1 Namespaces

Open scoping techniques (such as global and sequential scoping)
can be very awkward to use because of the need to manually avoid
name collisions. For example, in a global scoping discipline, two
programmers implementing separate modules must be careful not
to duplicate identifiers. As a result, open scoping is often mediated
by a hierarchical module, namespace, or interface system. We refer
to all three situations using the generic termnamespaces. Thus, an
identifier only needs to be uniquely defined within its namespace.
In addition, namespaces may be closed (that is, all components in
the namespace are declared in a specific part of the program, as in
ML modules) or open (that is, additional components can be added
anywhere in the program, as in C++ namespaces).

There are two key problems relating to programming and for-
malizing namespace systems: first, how to faithfully encode lan-
guages with fully-qualified names, and second, how to resolve the
partially- or unqualified names to fully-qualified names. Both seem
interesting and difficult. Whether (and if so, how) namespaces can
be supported using nominal logic (or any other abstract syntax for-
malism) is an important direction for future work.

5. Anonymous Data Structures
It is commonplace in some situations to think of all of the names
in a data structure as beinganonymousin the sense that they can
all be renamed to fresh names without altering the meaning of the
data structure. Three well-known examples include state names in a
finite-state automata, variable names in a logic programming Horn
clauses, and type variables in a ML polymorphic type scheme.

We propose a type constructor foranonymous valuesτ?? for
each typeτ , and inhabited by terms of the formt??, such that

S ` t : τ
∅ ` t?? : τ??

Anonymous values are axiomatized as follows:

a # t??

((a b) · t)?? ≈ u??

t?? ≈ u??

For finite terms, these axioms together imply that any anonymous
value can be expressed ast?? for somet mentioning only fresh
names.

For the Horn clause and ML type scheme examples, we could
write

tvar : var → monotp.

tarr : (monotp, monotp) → monotp.

polytp : monotp?? → polytp.

clause : (list goal × atomic)?? → clause.

Of course, both examples can also be handled (and arguably bet-
ter handled) by introducing an explicit universal quantifier for
types or formulas and quantifying over all free variables. How-
ever, this technique damages adequacy: there is now more than one
choice of representation for a formula/type of the formT (α, β) =
f(α, β) → g(α), namely∀α.∀β.T (α, β) and∀β.∀α.T (α, β). Of
course, one way around this is to choose one “canonical” quan-
tification ordering, such as the order in which each variable first
occurs in the term (from left to right).

Another solution is to observe that semantically,∀α.∀β.T (α, β)
and∀β.∀α.T (α, β) are equivalent; thus, the order of the quanti-
fiers is irrelevant so it is safe to add axioms such as∀α.∀β.T ≈
∀β.∀α.T andα # P ⊃ P ≈ ∀α.P that collapse the multiple
possible representations. Then a formula or type is an equivalence
class relating allα-renamings of representations of the form∀~α.P
whereFV (P) ⊂ {~α}. Such equivalence classes are in bijective
correspondence with the inhabitants of anonymous types, since the
latter are equivalence classes of objects up to renaming all free
names. This seems essentially the same as using anonymous types,
with the added complication of dealing with extraneous lists of
quantifiers.

In addition, for automata, there is no obvious form of binding at
hand: we really do (or at least, Hopcroft and Ullman really did [12])
consider automata to be equivalent up to permuting the state names.
So, we can (to a first approximation) represent automata as an
anonymous triple consisting of a start state, list of transitions, and
list of final states.

aut : (Q× list (Q× Σ×Q)× list Q)?? → nfa.

Indeed, Hopcroft and Ullman considered automata to be equivalent
modulo an even richer equational theory: they represented the tran-
sitions using a functionδ : Σ×Q → Q or relation∆ : Q×Σ×Q,
and represented the final states as a set. As a result, two structurally
equivalent automata may not be equal as data structures. To repair
this, we could add built-in set and finite map types, or equivalently
add rules expressing the fact that automata are equal up to reorder-
ing the transition and final state lists. Another possibility would be
to encode transition functions as functionsΣ×Q → Q and encode
relations as functionsQ×Σ×Q → bool. While certainly adequate
(and literally closer to what Hopcroft and Ullman had in mind), in
a computationally rich theory (e.g. HOL or Coq) this encoding is
more difficult to analyze because functions are black boxes.

6. Pattern Binding
We now consider a more complex situation in which we wish to
bind all of (an unknown number of) names in a data structure;
for example, to represent the syntax of ML-like pattern matching
constructs:

case e of
f(x,y) -> e1

| g(h([x,y]),z) -> e2
| ...

In the above expression, we view the occurrences ofx and y
in f(x, y) as binding any occurrences ine1, while x, y, z in
g(h([x, y]), z) are bound ine2. Let us suppose for simplicity that
patterns can consist of either a variable or a function symbol ap-
plied to a list of patterns. It is possible to encode the language of
patterns as follows:

pvar : id!! → pat.

pfun : (fsym, list pat) → pat.

match : blist → match body.

case : (exp, list match body) → exp.

bnil : (pat, exp) → blist.

bcons : (〈id〉blist) → blist.

(We use the uniqueness type to enforce the pattern variable linearity
constraint). Note that the match case constructs a pattern-match
from a pattern-expression pair, surrounded by a “binding list” that,
intuitively, binds all of the names in the pattern (presumably in
some canonical order, such as the order in which they occur in the
pattern).

Then the above expression can be represented as

case(e,[match(bcons(<x>
bcons(<y>
bnil(pfun("f",[pvar(x),pvar(y)]),

e1)))),
...]).

We observe that this representation requires an intermediate pro-
cessing step (calculating the sequence of free variables) to get from
the original expression to the above. In addition, the representation
type includes multiple distinct values that could correspond to the
same input, obtained by reordering the variables in theblist. Thus,
this encoding fails the “no junk” component of the adequacy prop-
erty.

A more palatable alternative is to use standard syntax for pat-
terns, such as

pvar : id!! → pat.

pfun : (fsym, list pat) → pat.

match : (pat, exp) → match.

case : (exp, list match) → exp.

and then axiomatize the applicable renaming principles directly.
This appears complicated: a namex that may be renamed inp[x] →
e[x] may appear arbitrarily deeply inp. One possibility is to seek an
appropriate generalization ofα-equivalence for pattern-like bind-
ings. Letbnd(p, x) be a predicate testing whether patternp binds
namex, defined as

bnd(pvar(x), x)

bnd list(ps, x)

bnd(pfun(f, ps), x)

bnd(p, x)

bnd list(p :: ps, x)

bnd list(ps, x)

bnd list(p :: ps, x)

Then the following rules for freshness and equality appear to suf-
fice:3

bnd(p, x)

x # match(p, e)

bnd(p, x) x # p′, e′ match(p, e) ≈ (x y) · match(p′, e′)

match(p, e) ≈ match(p′, e′)

Thus, in addition to using ordinary properties of equality, we can
show that two matches are equal provided we can find a namesx
andy bound in the first and second patterns respectively, such that
x is not free in the scope ofy and the matches are equal up to
renamingx andy. For example, using a more readable syntax for
matches, we can derive

(∗)
(∗∗) (x, y) → x + y + 1 ≈ (x, y) → x + y + 1

(x, y) → x + y + 1 ≈ (x, z) → x + z + 1

(x, y) → x + y + 1 ≈ (y, z) → y + z + 1

(the omitted side conditions(∗) and(∗∗) are easily checked).
Also, recent work on theρ-calculus [5] has considered extend-

ing the lambda-calculus with first-class pattern abstractions. The
pattern abstractionP −. M can be applied to any termN match-
ing patternP , and evaluating(P −. M) N produces resultσ(M),
providedσ(P) = N . The variables occurring in a pattern must be
distinct, and the free variables of a pattern expressionP −. M
are justFV (M) − FV (P). Binding all of the distinct names of a
term in another term seems to be a common enough case to deserve

3 In the second rule, sincebnd(p, x) andp ≈ (x y) · p′, it follows that
bnd(p′, y) also holds, so we do not need to check the latter.

special attention and notation. Both FreshML [26] and Cαml [22]
provide a similar feature.

7. Mutual Recursion with Pattern Matching
Mutual recursion is a convenient programming feature with quite
complex binding structure. In this section we show how the tech-
niques explored in the previous sections can be combined to ax-
iomatize the binding behavior of mutual recursion.

We consider a mutual recursion construct similar to those of
Standard ML, OCaml, Haskell, LISP, or Scheme. A general mutual
recursive definition is written as follows:

letrec f1 p1
1 · · · p1

n1 = e1

and f2 p2
1 · · · p2

n2 = e2

...
and fm pm

1 ...pm
nm = en

Mutually recursive declarations exhibit the following structural
behavior:

1. The namesf1, . . . , fn must be distinct, and are all considered
bound within each bodye1, . . . , en and in subsequent declara-
tions.

2. All of the pattern variables ofpk
1 , . . . , pk

nk must be distinct, and
are considered bound inek.

3. The order of the function definitions is irrelevant.

The traditional way to handleletrec using unary lexical scop-
ing is to replace it with a unary fixpoint operator such asfix :
〈id〉exp → exp, and “de-sugar” simultaneous mutual recursive
definitions to a single recursive definition of an-tuple. This is com-
pletely satisfactory from a theoretical point of view, because the
expressive power ofletrec and offix (in the presence of prod-
ucts) is exactly the same. From a pragmatic point of view, how-
ever, this encoding leaves something to be desired, partly because
the de-sugaring translation fromletrec to fix language itself re-
quires care because of name-binding issues. Another possibility
would be to use binding lists; however, this damages adequacy (as
discussed in Section 6). We instead wish to consider whether the
name-binding behavior ofletrec can be axiomatizedas is.

From a structural point of view, we can encode this syntax using
the following definitions:

fndecl : (fname!!, list pat, exp) → fndecl.

letrec : list fndecl → decl.

First, we assume that patterns are defined as in the last section, and
that pattern variable uniqueness and binding are axiomatized for
fndecl(f, ps, e) as described in previous sections. We also enforce
function name uniqueness using(−)!!.

We apparently cannot axiomatize the renaming of the function
names using sequential scoping axioms as outlined in Section 3.
Were we to do so, the first function name would be considered
bound in all the function bodies, as desired, but the second and
subsequent names would not be considered bound in the first body.
That is, we would have the binding structure of a nonrecursive
let. In addition, care must be taken to ensure that the scope of the
functions defined by theletrec extends to subsequent declarations
in a declaration list: this requires looking “one level deeper” than
was the case for the earlier sequential scoping examples.

We note that things do work fine for the first function declara-
tion since all subsequent declarations follow it. If only we could
considereach function declaration in parallel as “the first”, then
things would work out OK. In fact, the meaning of aletrec is
usually independent of the order of function definitions, so we can
safely identifyletrec expressions up to reordering of the defini-

tions. This allows us to consider any of the simultaneous definitions
to be “the first”.

Therefore, we axiomatize function renaming forletrec as
follows:

perm(ls, ls′)

letrec(ls) ≈ letrec(ls′)

whereperm is a predicate expressing that two lists are permuta-
tions of one another; and

f # letrec(fndecl(f, ps, e) :: ls) :: ds

f # (ps′, e′, ls′, ds′)
letrec(ps, e, ls) :: ds ≈ (f g) · (letrec(ps′, e′, ls′) :: ds′)

letrec(fndecl(f, ps, e) :: ls) :: ds
≈ letrec(fndecl(g, ps′, e′) :: ls′) :: ds′

that is, a function namef is fresh for a declaration list starting with
a letrec that first definesf , and it is acceptable to rename the
first letrec-function namef within its body, within the rest of the
letrec, and in subsequent declarations.

It should be noted that this axiomatization is only acceptable
when all properties we care aboutare preserved by reordering
letrec cases. There are certainly situations (such as program
transformation) in which it is not acceptable to reorder the cases:
programmers do not want to use tools that make unnecessary syn-
tactical changes. Consequently, we also propose an axiomatization
that does not impose this additional structural congruence. In this
axiomatization, we do not considerletrecs themselves equivalent
up to reordering cases; instead, we define equality-up-to-renaming
as a two-step process. First, we check to see whether a name is
considered bound within theletrec, using abnd predicate similar
to that used for patterns; if so, we consider it to be fresh for (and
renameable in) the wholeletrec and subsequent names.

bnd((fndecl(f, ps, e)) :: ls, f)

bnd(ls, f)

bnd((fndecl(g, ps, e)) :: ls, f)

bnd(ls, f)

f # letrec(ls) :: ds

bnd(ls, f) f # (ls′, ds′)
letrec(ls) :: ds ≈ (f g) · (letrec(ls′) :: ds′)

letrec(ls) :: ds ≈ letrec(ls′) :: ds′

8. Related and Future Work
The FreshML [25] andαProlog [2] programming languages pro-
vide unary lexical scoping as a language extension. However, there
is no built-in support for more exotic forms of binding. More re-
cently, Pottier has developed Cαml [22], a source-to-source transla-
tion tool that translates high-level binding specifications for OCaml
types to low-level code that deals with names and binding automat-
ically, using OCaml’s object system. Interestingly, this approach is
not limited to unary lexical scoping, and can even encodeletrec.
Another recent approach that provides some support for more gen-
eral forms of binding is theFreshLib library [3], which implements
much of the functionality of nominal abstract syntax as a Haskell
class library. However, implementing custom binding forms such
as pattern matching requires providing customized type class in-
stances, so this approach is at present less declarative than Cαml’s.

We have focused on expressiveness at the logical level without
worrying about pragmatic issues such as the complexity of unifi-
cation or typechecking needed for automation. While many of the
examples are mild variants of alpha-equivalence and so can be han-
dled efficiently using known techniques, other examples, especially
those involving structural equivalences such as commutativity, as-

sociativity, and axioms like those of theπ-calculus restriction oper-
ation, typically make unification at leastNP-hard. We conjecture
that most, if not all, interesting structural equivalences can be de-
cided in polynomial time and unified inNP, and believe it will be
interesting to seek out such well-behaved fragments of (and algo-
rithms for)nominal equational unification. We also think it will be
worthwhile to find more compact and declarative notations for the
axioms for custom binding forms, since the approach we have used
in this paper is verbose and error-prone.

While the uniqueness and anonymity types we have considered
are interesting, they often do not quite express what we want. For
example, we may wish to limit the anonymization performed by
the anonymity type (or the binding of the names in a pattern) to a
single name-type rather than all names present in a data structure.

Some of the scope situations we considered (in particular, hier-
archical namespaces) appear to have no good solution so far. These
problems require further study.

Although we have used nominal logic as a way of describing
techniques for encoding the exotic binding forms we have consid-
ered, it is possible that other techniques are equally or more suit-
able. In particular, since a lot of prior research and implementation
effort has focused on higher-order abstract syntax, it would be ad-
vantageous if techniques such as those we have discussed could be
adapted to that setting. We do not see how to do this (which is one
reason for our interest in nominal abstract syntax), but that does not
mean it cannot be done.

9. Conclusion
In this paper we have identified some of the limitations ofunary lex-
ical scoping, the only form of scoping supported by most advanced
techniques for representing languages with binding. We have de-
scribed several common situations in which unary lexical scoping
is either inconvenient or inadequate, and sketched how these forms
of scoping can be formalized in nominal logic. In particular, we
have shown that many structural equivalences can be axiomatized
directly in nominal logic. We have also identified some potentially
useful extensions to nominal abstract syntax, namely uniqueness
types and anonymity types, which can be used to describe more
exotic forms of binding.

Although we believe that this represents further evidence of
the usefulness of nominal logic, these results are preliminary and
there are several issues that need to be investigated in order for
these techniques to be useful in real programming or reasoning
systems. We wish to call attention to forms of binding, scoping,
and structural congruence that appear “in the wild” (that is, in
paper formalizations) and for which no abstract syntax encoding
technique provides a satisfactory answer. Systematic techniques
for encoding these syntactic constructs are important for bridging
the gap between paper and machine-checked proofs of realistic
programming language properties.

Acknowledgments

This paper was motivated partly by discussions with Andrew Pitts,
Ian Stark, Peter Sewell, Matthew Fairbairn, and by recent discus-
sions on the POPLMark mailing list. This work was supported by
EPSRC grant R37476.

References
[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler.

Extensible Markup Language (XML) 1.0 (Second Edition). W3C
Recommendation, October 2000.http://www.w3.org/TR/-
2000/REC-xml-20001006.

[2] J. Cheney and C. Urban. Alpha-Prolog: A logic programming
language with names, binding and alpha-equivalence. InProc. 20th

Int. Conf. on Logic Programming (ICLP 2004), number 3132 in
LNCS, pages 269–283, 2004.

[3] James Cheney. Scrap your nameplate (functional pearl). In Benjamin
Pierce, editor,Proceedings of the 10th International Conference on
Functional Programming (ICFP 2005), Tallinn, Estonia, 2005. To
appear.

[4] James Cheney. A simpler proof theory for nominal logic. In
Proceedings of the 2005 Conference on Foundations of Software
Science and Computation Structures (FOSSACS 2005), number 3441
in LNCS, pages 379–394. Springer-Verlag, 2005.

[5] Horatiu Cirstea, Luigi Liquori, and Benjamin Wack. Rewriting
calculus with fixpoints: Untyped and first-order systems. InPost-
procededings of TYPES, 2003.

[6] William F. Clocksin and Christopher S. Mellish.Programming in
Prolog. Springer-Verlag, fifth edition, 2003.

[7] N. G. de Bruijn. Lambda-calculus notation with nameless dummies,
a tool for automatic formula manipulation.Indagationes Mathemati-
cae, 34(5):381–392, 1972.

[8] Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order
abstract syntax in Coq. In M. Dezani-Ciancaglini and G. Plotkin,
editors,Proc. Int. Conf. on Typed Lambda Calculi and Applications,
pages 124–138, Edinburgh, Scotland, 1995. Springer-Verlag LNCS
902.

[9] M. J. Gabbay and J. Cheney. A sequent calculus for nominal logic.
In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science (LICS 2004), pages 139–148, Turku, Finland,
2004.

[10] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding.Formal Aspects of Computing, 13:341–363, 2002.

[11] Furio Honsell, Marino Miculan, and Ivan Scagnetto. The theory of
contexts for first order and higher order abstract syntax. InTOSCA
2001 - Theory of Concurrency, Higher Order Languages and Types,
volume 62 ofElectronic Notes on Theoretical Computer Science,
2001.

[12] John E. Hopcroft and Jeffrey D. Ullmann.Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979.

[13] Dale Miller. The pi-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editors,Proceedings of the
1992 Workshop on Extensions to Logic Programming, number 660 in
LNCS, pages 242–265. Springer-Verlag, 1992.

[14] Dale Miller. Abstract syntax for variable binders: an overview. In
John Lloyd et al., editor,Computational Logic - CL 2000, number
1861 in LNAI. Springer, 2000.

[15] Dale Miller. Encoding generic judgments: Preliminary results. In
S.J. Ambler, R.L. Crole, and A. Momigliano, editors,MERLIN 2001:
Mechanized Reasoning about Languages with Variable Binding,
volume 58(1) ofElectronic Notes in Theoretical Computer Science.
Elsevier, 2001.

[16] Dale Miller and Alwen Tiu. A proof theory for generic judgments:
extended abstract. InProc. 18th Symp. on Logic in Computer Science
(LICS 2003), pages 118–127. IEEE Press, 2003.

[17] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The
Definition of Standard ML - Revised. MIT Press, 1997.

[18] A. Momigliano and Simon Ambler. Multi-level meta-reasoning with
higher order abstract syntax. InFOSSACS 2003, pages 375–391.
Springer-Verlag, 2003.

[19] P. O’Hearn and D. J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, June 1999.

[20] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI ’89), pages 199–208. ACM Press, 1989.

[21] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 183:165–193, 2003.

[22] François Pottier. An overview of Cαml, June 2005. Avail-
able athttp://cristal.inria.fr/~fpottier/publis/-
fpottier-alphacaml.pdf.

[23] John C. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. InProc. IEEE Symposium on Logic in Computer
Science, pages 55–74, Los Alamitos, CA, USA, July 22–25 2002.
IEEE Computer Society.

[24] Ulrich Scḧopp and Ian Stark. A dependent type theory with names
and binding. InProceedings of the 2004 Computer Science Logic
Conference, number 3210 in Lecture notes in Computer Science,
pages 235–249, Karpacz, Poland, 2004.

[25] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programmming with binders made simple. InProc. 8th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP 2003), pages
263–274, Uppsala, Sweden, 2003. ACM Press.

[26] M.R. Shinwell and A.M. Pitts. Fresh objective caml user manual.
Technical Report 621, Cambridge University Computer Laboratory,
February 2005.

[27] Alwen Tiu and Dale Miller. A proof search specification of the
π-calculus. InProceedings of the 3rd EATCS Workshop in the
Foundations of Global Computing (FGUC 2004), 2004. To appear in
ENTCS.

[28] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification.
Theoretical Computer Science, 323(1–3):473–497, 2004.

[29] J. B. Wells and R. Vestergaard. Equational reasoning for linking with
first-class primitive modules. InProceedings of the 2000 European
Symposium on Programming, number 1782 in LNCS. Springer-
Verlag, 2000.

