Toward a General Theory of Names, Binding and Scope

James Cheney

University of Edinburgh
Edinburgh, United Kingdom

jcheney@inf.ed.ac.uk

Abstract the tedious details attendant upon formalizations of abstract syntax
p with bound names have been proposed. These include name-free
approaches such as combinators and de Bruijn representations [7]
as well as higher-order approaches such as higher-order abstract
syntax [20], weak higher-order abstract syntax [8], and lambda-
term abstract syntax [14]. Another recently proposed technique is
the approach of Gabbay and Pitts [10], which focuses on alpha-
equivalence axiomatized in terms of name-swapping and freshness.
Additional techniques such as Hybrid [18], the Theory of Con-
texts [11], andFOX2Y [16] have also recently been proposed. In
this paper we emplogominal abstract syntava simplified form of
ominal logic[21].

Scopsds a fundamental concept when discussing binding. If we
jew a syntax representation as an abstract data structure, then the
cope of a binding occurrence (located at positipof an identifier
x is the set of positions in the tree at which a reference tefers
to thex bound atp.

All of the above techniques have a common limitation. They
provide advanced support for only one kind of binding/scoping
behaviorunary lexical scopingn which the abstract syntax is tree-
structured, one name is bound at a time, and its scope is a subtree
of the abstract syntax tree (possibly with subtrees removed due
to shadowing). Unary lexically scoped (ULS) binding is exhibited

High-level formalisms for reasoning about names and binding suc
as de Bruijn indices, various flavors of higher-order abstract syntax,
the Theory of Contexts, and nominal abstract syntax address only
one relatively restrictive form of scoping: namely, unary lexical
scoping, in which the scope of a (single) bound name is a subtree
of the abstract syntax tree (possibly with other subtrees removed
due to shadowing). Many languages exhibit binding or renaming
structure that does not fit this mold. Examples include binding
transitions in ther-calculus; unique identifiers in contexts, mem-
ory heaps, and XML documents; declaration scoping in modules
and namespaces; anonymous identifiers in automata, type scheme$!
and Horn clauses; and pattern matching and mutual recursion con-
structs in functional languages. In these cases, it appears necessar
to either rearrange the abstract syntax so that lexical scoping can b
used, or revert to first-order techniques.

The purpose of this paper is to catalogue these “exotic” binding,
renaming, and structural congruence situations; to argue that lexical
scoping-based syntax techniques are sometimes either inappropri
ate or incapable of assisting in such situations; and to outline tech-
niques for formalizing and proving properties of languages with
more general forms of renaming and other structural congruences.

Categories and Subject DescriptordD.3.1 [Programming Lan- by, for example, the\-calculus’s Az.t term constructor, logical
guage§ Formal Definitions and Theory—Syntax; F.3.logics quantifiers, and a wide variety of other forms of binding. While
and Meanings of ProgranfisSpecifying and Verifying and Rea- this is quite an important and flexible form of binding, it is not the
soning about Programs—Specification techniques only one encountered frequently in real programming languages,

operational semantics rules, or logics. For example,
General Terms Languages

Keywords names, abstract syntax, scope, nominal logic , -,
1. Inlet x = ein €', the scope of is €', but note.

1. Introduction 2. Inz-calculus “binding” transitions such @sw g andp 2y

It is a significant challenge to mechanize reasoning about syntac- % ¥ IS bound ing. o o

tic structures involving bound names (e.g., abstract syntax trees 3- In @ C program, a globakgtern) definition of an identifier

representing the terms or formulas of a programming language or i considered bound within the whole program; such identifiers

logic). It is widely agreed that to perform such reasoning using a ~ can be defined at most once. Similarly, in C, a logalatic)

“primitive”, or first-order, syntax encoding is too painful to con- defining occurrence has file scope, so must be unique within its

template for anything as complex as a full-scale programming lan- file, but may be reused in other files.

guage. A wide variety of techniques for automatically managing 4. In module or namespace systems (e.g. Wells and Vestergaard’s
module calculus [29]), an identifier can usually be defined at
most once within a given scope; also, toplevel declarations may
have sequential scope (e.g. in ML) or global scope (e.g. in
Haskell or C/C++). In addition, modules often exhibit “open”

Permission to make digital or hard copies of all or part of this work for personal or SCOP'”Q' where identifiers d_eflned II’_I or_1e module may _be rc_efer-

classroom use is granted without fee provided that copies are not made or distributed ~ €Nced in another module, with the binding resolved at link-time

for profit or commercial advantage and that copies bear this notice and the full citation rather than compile-time.

on the first page. To copy otherwise, to republish, to post on servers or to redistribute - .

to lists, requires prior specific permission and/or a fee. 5. In _XML“ [1]2 ID at,t,nbUte _Values_ aré requ'red t_O be gIOba"y
MERLIN'05 September 30, 2005, Tallinn, Estonia. unique “definitions” of an identifier, anﬂ)REF e_lttrlbute_s must
Copyright(® 2005 ACM 1-59593-072-8/05/0009. . . $5.00. refer to IDs. IDREFs may refer toIDs in physically different

files storing different parts of an XML document.

6. Finite automata are often considered equal up to one-to-one2. Background
renaming of state names [12]. Similarly, Standard ML type
schemes [17] and Horn clauses in logic programs [6] are of-
ten considered to be equal up to one-to-one renaming of free
variables. Thus, it is always safe to assume that the identifiers
in an automaton, Horn clause, or type scheme are completely
fresh. tu=cl| f)]a] (at

7. In pattern-matching expressions in functional languages (€.g. |ntuitively, the term(a)t is considered to be an “abstraction”, or
Haskell or SML), the free variables of the pattern are considered 5 term with a distinguished bound nampwe will equip nomi-
bound simultaneously in the body. nal terms with an equational theory that identifies abstractions up

8. In a mutually recursive definition (e.g. LISP or Scheme’s to alphabetic renamingaéequivalence). Note that names are not
letrec), the identifiers being defined are considered in scope variables; instead they are to be thought of as “special constants”.
in all the definition bodies. Nominal terms are classified using types. Types include base

name types anddata types), as well as a binary type constructor
(v)T calledabstraction that combines a name type and ordinary
type. Additional type constructors, in particular Cartesian products
7 x 7’ and listslist T, may also be present and are standard. Terms
In this paper we argue that unary lexical scoping is often ei- are considered well-formed (relative to some signakuessigning
ther inconvenient or inadequate for encoding interesting forms of types to constants, names, and function symbols) as follows:
scoping encountered in real programming or formalization situa- aiveEY cirey aiv tiT

tions. In the former case, the techniques can still be used, but the N, r (a)t : (V)T

language encoding must be contorted to accommodate ULS. Mak-

ing these forms of binding fit the mold of unary lexical scoping tim fi(m,..., ™) oTEX

complicates the syntax significantly, so that the form and structure f@):r

of paper proofs and their formalizations diverge. In the latter case,

standard binding techniques can be used, but do not providd-an

equateencoding of the syntax: that is, there may be “confusion
concerning which object term corresponds to a representation, or

“junk” terms in the representation type not corresponding to any

object term. When adequacy fails, it is necessary to fall back on

low-level reasoning techniques. We believe that this lack of expres-
siveness is a significant obstacle to adoption of formal methods for
reasoning about programming languages by non-experts.
Although the name-abstraction operation provided by nominal
logic shares the limitations of the other techniques, we argue that

nominal logic is flexible enough to provide better support for forms m-a = m(a)

of binding beyond unary lexical scoping, and including all of the

In this section we provide a brief overview of nominal abstract
syntax. Much more detail can be found in the papers [21, 28, 9, 4].

Let A be a countably infinite set of namés, b, x,y,...}. The
(ground) nominal terms are as follows:

We define several relations and operations on ground nominal
. terms as follows. First, let be a finite, type-preserving permuta-
tion on names; that is, an invertible function that moves at most
finitely many names and such thataif: v thenn(a) : v. Some
examples include the identity functideh, transpositionga b) that
exchange two names (of the same type), and compositiens’;
obviously, name-permutations form a group, and this group is gen-
erated by the pairwise transpositions of names of compatible types.
We write - ¢ for the result of renaming all the names occurring in

t according tor; this is calculated as follows.

meC = C
examples listed above. This paper represents work in progress, _
and despite our emphasis on nominal techniques, is not meant mf&) = fr-9)
to say anything definitive about the advantages or disadvantages me{a)yt = (meaym-t

of the technique we propose over other approaches, but only to
encourage discussion of new ideas and directions for all technique
for reasoning about binding.

The structure of the rest of the paper is as follows. In the next
section, we provide a brief overview of nominal abstract syntax.

The next four sections present four forms of binding and scop- Next, we define what it means for a name to be independent

ing for which unary lexical scoping is either inconvenient or in- of (or freshfor) a term. Intuitively, a nama is fresh for a ternt

adequate, and show how the desired behavior can be formalized(that is,a # 1) if ¢ possesses no occurrences ainenclosed by an
in nominal logic. In Section 3 we considpseudo-unary lexical !

scopingforms such agt, typed quantifiers, and binding transitions abstraction of. We define this using the following inference rules:

Note that permutations essentially ignore the tree and binding struc-
Sture of terms and simply rename all occurrences of names (both
“free”, “bound”, and “binding”). Note also that ordinary constants
are fixed by permutations, whereas names can be renamed; this is
what makes names different from ordinary constants.

in the w-calculus. These forms of binding are “almost” lexical, so (a#b) a#t: (i=1,...,n)
can be handled using ULS, but doing so requires reorganizing the a#b a#c a# ft, ... tn)
language, sometimes to the detriment of clarity or modularity. In a#b a#t

Section 4, we considaglobal scoping as exhibited in C, assem-

bly language, XMLIDS/IDREFS, and module systems, in which an a# (b)t a# (a)t

identifier may be bound (“defined”) at most once, but may be re- Finally, we define an appropriate equality relation on nominal
ferred to anywhere in a collection of modules. In Section 5, we con- terms that identifies abstractions up to “safe” renaming.
sideranonymous scopings exhibited by state names in automata
and free variables in logic programming Horn clauses or ML type
schemes. In Section 6, we consider situations in which the names ara cx~c f(tiy... tn) = flur,...,un)
in a general data structure (such as a pattern matching expression) a~b tr~u a#(bu) tx(ab)-u
are considered bound in another subterm. Section 7 shows how the — —

ideas introduced in the previous sections can be combined to handle (a)t = (bju (@)t = (bju

the binding structure of mutual recursion (i.eetrec). Section 8 The above system is essentially the equational theory of nomi-
discusses future work and Section 9 concludes. nal logic (an extension of first-order logic with a theory of names,

binding, freshnessq-equivalence, and quantification over fresh Similar rules can be written for and A. For ther-calculus, if we
names). In the rest of this paper, we will consider extensions to use the signature
the above inference rules, typically in the form of rules for well- L

. - : bout : (id,id) — act.
formedness freshness and equality specialized to a particular type) o
constructor or term structure. These inference rules can be formal- bin : (id,id) — act.
ized within nominal logic as well. For presentation purposes, how- trans : (proc,act,proc) — trans.

ever, we will work in terms of inference rules. L . . .
then the binding behavior can be axiomatized as

3. Pseudo-Unary Scoping y # (p,x)
One aspect of unary binding that is theoretically unproblematic, but y # trans(p, bout(x,y), q)
unsatisfying in practice, is its treatment of binding constructs of the pxp x=x y#dq q=yy)-¢

following forms: trans(p, bout(x,y), q) = trans(p’, bout(x',y’),q")

letz =e1ine: and similarly forbin. This captures the binding behavior of the

Vr:71.¢ calculus as originally presented.

These axioms do ensure that our user-defined binding constructs
are treated correctly, but seem to require modifying the underlying
In each case, the bound variabiés separated from its scope by a equational and freshness theory on an ad hoc basis. The inference
type or term in which occurrences ofare not considered bound. rules for equality above seem to have a very specific form, namely,
That is, we test that the parts outside the scope are equal, test that the bound

— ; ~ _ ; name is fresh for the scope on the other side, then test that the

letz = f(x) in ex(w) ~a lety = f(x) in ea(y) scoped parts are equal uth)o renaming. We believe that it would be

This “natural” way of writing the expression does not match up possible and worthwhile to find a more compact representation of
with unary lexical scoping. Another example of this is in the form scoping rules for such custom binding forms, from which the rules

A\x:T.e

of binding exhibited byr-calculus labelled transitions: above can be extracted automatically. (One interesting possibility
o(y) o (2) which has recently been proposed by Pottier is theer and
p—q(y) =a p—>4(2) outer scope description keywords ina@l [22], a tool which

Z(y) z(z)
p==4q(y) ~a p—q(2)
In nominal logic (or indeed any formalism providing unary lexical])
scoping), we may represent such syntax correctly by rearranging3.1 Sequential scoping

the arguments so that the bound name is adjacent to its scope: Another common form of scoping that is representable (but incon-

translates a high-level type specification to low-level OCaml code
that deals with name binding automatically).

letexp : (exp,(id)exp) — exp. veniently so) using unary lexical scoping is what we shall teem
. guential scopinglntuitively, an identifier has sequential scope if it
forall_prop (ty, (id)prop) — prop. occurs in a data structure that is part of a sequence of similar data
lambda-exp : (ty,(id)exp) — exp. structures, and it becomes bound in later elements of the sequence.
in_trans (proc, id, (id)proc) — trans. Sequential scoping is “open-ended”: for e_xample, if we concate-
boundouttrans : (proc,id, (idyproc) — trans. nate two sequences, then free references in the latter sequence may

become bound to occurrences in the former.
For the first three cases, this is no great burden, buttbalculus In ML, for example,
transitions no longer factor into a process, action, and process.

Some improvement is possible, for example by employing two ?m fx= e-;
kinds of transitions, relating the input process to either an output "% & * ~ 2-3

process or a process with a bound name (see e.g. various encodinggun fx
by Miller and Tiu [13, 15, 27]). However, this technique departs is allowed, and the first definition gf is shadowed by the second.
from the original description of the-calculus! This means that occurrences ffin e; and e, refer to the first

In nominal logic, however, nothing prevents us from adding definition, but occurrences g¢fin es and later in the program will
axioms that directly describe other forms of binding than plain- refer to the second definition.
vanilla abstraction. For example, if we take We can handle sequential scoping using ordinary unary scoping
by rearranging the abstract syntax. For example, we can express the
above declarations as

frdecl({f)([X], ex, fndecl((g) ([X], e2, fndecl({f)([X], s, nil))))))

let_exp : (id,exp,exp) — exp.

we may axiomatize the binding behavior by adding the following
inference rules:

x # e1 where
x # let_exp(x, e1, e2) fndecl : ((id)(list id x exp X decllist)) — decllist
x# fo er=fi eam(xy)- fo But this has the obvious disadvantages of requiring us to use cus-
let_exp(x, e1, e2) = let_exp(y, f1, f2) tomized declaration lists. Can we do better?

We can axiomatize the desired behavior in nominal logic as
10f course, one may argue, as Miller and Tiu have done, that this change isfollows:

an improvement. f# xs

2Hg—:-re_and elsewhere, we make use of the following theorem of nominal f # (fndecl(f,zs,e)) :: ds

logic: if x # eande = (xy) - ¢, theny # ¢'. To see why this N P N ;o
is the case, note that # e implies (x y) - x # (x y) - e, whence ws~ys f#(e,ds') (e ds)~(fg)- (¢, ds')

y=(xy) x# (xy)-e=(xy)-(xy)-e =¢" fndecl(f,zs,e) :: ds = fndecl(g,ys,€e’) :: ds’

Intuitively, this says that a function name is bound in its function Note that we distinguish between different sorts of attribute val-
body, and in any later declarations. ues at the type level, whereas in true XML, attribute values are just
strings and type information is imposed externally by a DTD or
. XML Schema. In addition, since we are using a name type for iden-
4. Global Scoping tifiers, the string values of identifiers (which could, but frequently
Many situations, from XML documents to module systems to ob- don't, carry interesting information in true XML) will be lost in
ject files, employ a more primitive form ajlobal scoping with our encoding. Also, in true XML, documents are considered equiv-
unique definitionsNot only is the scope of a definition “global” alentup to reordering attributes within an element tag; although this
within its original data structure, but other data structures may con- could be captured with additional structural congruence axioms, or
tain references to the identifier which become resolved later (for using a suitably axiomatizegkt type, we omit them for simplicity.
example, by a linker). In all of these situations, it is commonplace Then the documents
for a component (module, file, object, document fragment) to re-
fer to names that are defined externally. In addition, references can
be cyclic: that is, two modules may each define an identifier that
the other uses. Similarly, in Separation Logic [23], a logic for rea-
soning about imperative programs that manipulate poinkexaps would be encoded as
are considered to be partial functions from identifiers to values that
can be split into parts with disjoint domains (possibly with refer- elt("el1", [id(idi1)], [elt("el2", [idref(id1)], [])])
ence cycles crossing the two parts)
We wish to abstract away some of the above details in order to
identify a core idea that may be incorporated into nominal logic <el1 id="id1">
and used for each of the above situations. In each situation, data <el12 id="id1" idref="id1"/>
structures can contain some names with special meaning: we call</e11>
such namedefined\without being too specific about what it means)
to define a name). Moreover, in any given data structure, nameshas no (well-formed) encoding. S _
may be referenced as many times as desired, but may be defined Similarly, defining occurrences of identifiers/parameters in C
at most once within a given scope; in particular, an operation Programs must be unique within their scopes, and this constraint
combining two data structures that define names is only sensible¢an be enforced using-)!. Finally, we consider heaps and con-
when the sets of externally visible names defined in the structures {€Xts. Such data structures are sometimes viewed as lists of pairs
are disjoint. Multiple data structures defining the same name may list (id x value), or alternatively, as finite, partial functiong —
exist (think of several different versions afibc, each of which value. Of course, these two encodings are not isomorphic, because
definesmalloc), as long as they are not forced to coexist. On the the list representation is order sensitive and mcludgs values_such
other hand, uniquely defined identifiers can be hidden (for example, @s[(a,), (a,)] that correspond to no function. The first encoding
using thestatic keyword in C); that is, their scope can be limited emphasizes the concrete nature of suc_:h da_ta structures, whereas the
so that the same identifier can be used in different components. AsSécond emphasizes the fact that the identifiers being used as keys
another example, parameter names in C function definitions mustShould appear at most once on the left-hand side. Using uniqueness
be distinct from each other but can be re-used in other scopes. tyPes, we can combine the structural convenience of list process-
To model this behavior within nominal logic, we consider a ing with the unique mapping property guaranteed by the use of the

<ell id="idi">
<el2 idref="id1"/>
</ell>

whereas

new type constructor founique identifier definitiongthat is, a function space by encoding heaps and contexts as values of type
“Uniqueness type”). We augment nominal terms and types with the ist (id! x value). Of course, this representation comes with no
following syntax: built-in function application notation for lookups, but list lookup is
not difficult to implement for this representation. Also, this repre-

tu=---|al Tu=---| V! sentation is sensitive to ordering, but there are situations where this

is desirable (e.g. “telescope” contexts as in dependent type theory).

Heaps, unlike contexts, are usually considered to be order-
independent. We can express this order-independence by using the
following language:

The intended meaning of the unique name constructor is that a
term or formula can be well-formed only if there are no duplicate
unigue names in it. We axiomatize this well-formedness property
as a relationS + t, whereS is a superset of the uniquely defined

names of termt. This generalizes the type system for ground empty : heap
nominal terms outlined in Section 2.1. bind (idV, value) — heap

a:veY c:rey Sw{albt:ir 4.pe% aes merge : (heap, heap) — heap

Sta:v Skec:7 SkE(ayt:(v)r Skal:v . . . L o

n n and specifying appropriate unit, commutativity, and associativity
S=H7S: A, SiFti:n f:(m,...,7a) >TED axioms
Ff(t, ... tn):
SEftstn) o r merge(empty,z) = x = merge(z,empty)

Note thatS is a conservative upper bound on the set of names merge(z,y) = merge(y,)

uniquely defined by, so in the rule for abstraction, it is safe to
adda to S to typecheck the body. Thug(al, a!) is ill-formed, merge(z, merge(y, z)) = merge(merge(z,y), z)
while f(al, b!), g(al, a), and f((a)a!, al) are well-formed. Using Thjs is quite similar to some formalisms for heaps employed in sep-
the Un|queness type, the |dent|f|er structure Of XML dOCUmentS can ara’[ion |Ogic_ In fact’ separation |Ogic is an important possible ap_
be modeled as follows: plication for uniqueness types, as well as a rich source of interesting
id - ident! — att ideas. We are very interested in determining whether uniqueness
) o)) types are subsumed by, or can be integrated with, related “resource-
idref i ident — att. conscious” logics such as Bunched Implications [19] ordghand
elt : (string,list att,list elt) — elt. Stark’s dependent type theory for names and binding [24].

On the other hand, this technique for encoding finite partial Another solution is to observe that semantically, V3.7 («, 3)

maps only works for functions whose domain is a set of names. andV3.Va.T'(«, 3) are equivalent; thus, the order of the quanti-

It would be interesting to see if there is a better way of dealing fiers is irrelevant so it is safe to add axioms suclvasvp.T =

with finite partial maps on other types, such as lists of names V35.Va.T anda # P D P = Va.P that collapse the multiple

(for namespaces) or pairs of state and alphabet symbols (for statepossible representations. Then a formula or type is an equivalence
transitions in automata, see the end of Section 5). class relating alk-renamings of representations of the fovid. P
where FV (P) C {d&}. Such equivalence classes are in bijective
correspondence with the inhabitants of anonymous types, since the
Open scoping techniques (such as global and sequential scoping)atter are equivalence classes of objects up to renaming all free
can be very awkward to use because of the need to manually avoidnames. This seems essentially the same as using anonymous types,
name collisions. For example, in a global scoping discipline, two with the added complication of dealing with extraneous lists of
programmers implementing separate modules must be careful notquantifiers.

to duplicate identifiers. As a result, open scoping is often mediated In addition, for automata, there is no obvious form of binding at
by a hierarchical module, namespace, or interface system. We refethand: we really do (or at least, Hopcroft and Uliman really did [12])

to all three situations using the generic tenamespaceshus, an consider automata to be equivalent up to permuting the state names.
identifier only needs to be uniquely defined within its namespace. So, we can (to a first approximation) represent automata as an
In addition, namespaces may be closed (that is, all components inanonymous triple consisting of a start state, list of transitions, and
the namespace are declared in a specific part of the program, as idist of final states.

ML modules) or open (that is, additional components can be added . .

anywhere in)the pFr)ogn(alm, asin C++ namespgces). aut : (@ x list (Q x X x Q) x list Q)7 — nfa.

There are two key problems relating to programming and for- Indeed, Hopcroft and Ullman considered automata to be equivalent
malizing namespace systems: first, how to faithfully encode lan- modulo an even richer equational theory: they represented the tran-
guages with fully-qualified names, and second, how to resolve the sitions using a functio : ¥ x Q — Q orrelationA : Q x ¥ x Q,
partially- or unqualified names to fully-qualified names. Both seem and represented the final states as a set. As a result, two structurally
interesting and difficult. Whether (and if so, how) namespaces can equivalent automata may not be equal as data structures. To repair
be supported using nominal logic (or any other abstract syntax for- this, we could add built-in set and finite map types, or equivalently

4.1 Namespaces

malism) is an important direction for future work. add rules expressing the fact that automata are equal up to reorder-
ing the transition and final state lists. Another possibility would be
5. Anonymous Data Structures to encode transition functions as functidix Q — @ and encode

relations as function® x X x Q — bool. While certainly adequate

It is commonplace in some situations to think of all of the nam . T .
commonpiace In Some Siuatons o oral orthe es (and literally closer to what Hopcroft and Ullman had in mind), in

in a data structure as beirmgnonymousn the sense that they can a computationally rich theory (e.g. HOL or Couq) this encoding is

all be renamed to fresh names without altering the meaning of the more difficult to analvze because functions are black boxes
data structure. Three well-known examples include state names in a y)

finite-state automata, variable names in a logic programming Horn o
clauses, and type variables in a ML polymorphic type scheme. 6. Pattern Blndlng
We propose a type constructor fanonymous values?? for

h - We now consider a more complex situation in which we wish to
each typer, and inhabited by terms of the fort#, such that P

bind all of (an unknown number of) names in a data structure;

Skt:r for example, to represent the syntax of ML-like pattern matching
N TN constructs:
Anonymous values are axiomatized as follows: case e of
((ab)-)7 ~u? f(x,y) -> el
T T~ | gta(lx,y1),2z) -> e2

In the above expression, we view the occurrences and y
in f(xz,y) as binding any occurrences im, while z,y,z in

For finite terms, these axioms together imply that any anonymous
value can be expressed &8 for somet mentioning only fresh

names. : o
For the Horn clause and ML type scheme examples, we could g(h([z,y)), 2) are t_)ound s Let us suppose for S|_mpI|C|ty that
write ' patterns can consist of either a variable or a function symbol ap-
plied to a list of patterns. It is possible to encode the language of
tvar : war — monotp. patterns as follows:
tarr : (monotp, monotp) — monotp. pvar : id! — pat.
polytp : monotp?” — polytp. pfun : (fsym,list pat) — pat.
match : blist — match_body.
clause : (list goal x atomic)?? — clause. case : (exp,list match_body) — exp.
Of course, both examples can also be handled (and arguably bet- bnil : (pat,exp) — blist.

ter handled) by introducing an explicit universal q_uantlfler for beons : ((id)blist) — blist.
types or formulas and quantifying over all free variables. How-

ever, this technique damages adequacy: there is now more than onéWe use the uniqueness type to enforce the pattern variable linearity
choice of representation for a formula/type of the fdfitw, 3) = constraint). Note that the match case constructs a pattern-match
f(a, B) = g(a), namelyva.V3.T(a, 8) andVB.Va. T (o, B). Of from a pattern-expression pair, surrounded by a “binding list” that,
course, one way around this is to choose one “canonical” quan- intuitively, binds all of the names in the pattern (presumably in
tification ordering, such as the order in which each variable first some canonical order, such as the order in which they occur in the
occurs in the term (from left to right). pattern).

Then the above expression can be represented as special attention and notation. Both FreshML [26] aneh@ [22]

rovide a similar feature.
case (e, [match(bcons (x> p

bcons (<y> . . .
bnil(pfun("f", [pvar (x) ,pvar(y)1), 7. Mutual Recursion with Pattern Matching
e1)))), Mutual recursion is a convenient programming feature with quite
-~ complex binding structure. In this section we show how the tech-

We observe that this representation requires an intermediate pro-"idues explored in the previous sections can be combined to ax-
cessing step (calculating the sequence of free variables) to get fromi®Matize the binding behavior of mutual recursion.

the original expression to the above. In addition, the representation _ VW& consider a mutual recursion construct similar to those of
type includes multiple distinct values that could correspond to the Standard ML, OCaml, Haskell, LISP, or Scheme. A general mutual

same input, obtained by reordering the variables irbthe. Thus, recursive definition is written as follows:
this encoding fails the “no junk” component of the adequacy prop- letrec flpt.. 'Pil = e

erty. o and f2 pf .. 'piz = ey
A more palatable alternative is to use standard syntax for pat- .
terns, such as

) and Mot ppm = e
pvar : id! — pat.)) o)
) . Mutually recursive declarations exhibit the following structural
pfun : (fsym,list pat) — pat. I
behavior:
match : (pat,exp) — match. o)
case : (exp,list match) — ex 1. The nameg, ..., f™ must be distinct, and are all considered
’ P p- bound within each body;, . .., e, and in subsequent declara-
and then axiomatize the applicable renaming principles directly. tions.
This appears complicated: a namthat may be renamed jpjz] — 2. All of the pattern variables off, . . . ,pﬁk must be distinct, and
e[z] may appear arbitrarily deeply in One possibility is to seek an are considered bound ..
appropriate generalization af-equivalence for pattern-like bind- 3 The order of the function definitions is irrelevant.
ings. Letbnd(p,x) be a predicate testing whether pattgrbinds
namez, defined as The traditional way to handleetrec using unary lexical scop-

. ing is to replace it with a unary fixpoint operator such fas :
bnd_list(ps, x) (idyexp — exp, and “de-sugar’ simultaneous mutual recursive
bnd(pvar(x),x) bnd(pfun(f,ps),x) definitions to a single recursive definition ofistuple. This is com-
bnd(p, x) bnd_list(ps,x) pletely satisfactory from a theoretical point of view, because the
expressive power afetrec and offix (in the presence of prod-
ucts) is exactly the same. From a pragmatic point of view, how-
Then the following rules for freshness and equality appear to suf- ever, this encoding leaves something to be desired, partly because
fice= the de-sugaring translation frobetrec to £ix language itself re-
quires care because of name-binding issues. Another possibility

bnd-list(p :: ps,x) bnd.list(p :: ps,x)

M would be to use binding lists; however, this damages adequacy (as
x # match(p, e) discussed in Section 6). We instead wish to consider whether the
bnd(p,x) x#p',e’ match(p,e) = (xy) - match(p',e’) name-binding behavior dfetrec can be axiomatizeds is

— Y] From a structural point of view, we can encode this syntax using
match(p, e) = match(p’, ') the following definitions:

Thus, in addition to using ordinary properties of equality, we can
show that two matches are equal provided we can find a names

andy bound in the first and second patterns respectively, such that letrec : list fndecl — decl.

x is not free in the scope of and the matches are equal up 10 st e assume that patterns are defined as in the last section, and
renaminge andy. For example, using a more readable syntax for 4 pattern variable uniqueness and binding are axiomatized for
matches, we can derive fndecl(f,ps,e) as described in previous sections. We also enforce
function name uniqueness usifg)!.

We apparently cannot axiomatize the renaming of the function

fndecl . (fnamel,list pat,exp) — fndecl.

() (y) »x+y+1l=(xy) = x+y+1

(%) (xy) = x+y+1l=(x2z) =>x+z+1 names using sequential scoping axioms as outlined in Section 3.
(xy)—=x+y+1r~(y,z) >y+z+1 Were we to do so, the first function name would be considered

bound in all the function bodies, as desired, but the second and

(the omitted side conditions:) and(xx) are easily checked). subsequent names would not be considered bound in the first body.

~ Also, recent work on the-calculus [5] has considered extend- That is, we would have the binding structure of a nonrecursive
ing the lambda-calculus with first-class pattern abstractions. The 1et. In addition, care must be taken to ensure that the scope of the

pattern abstractio®® —> M can be applied to any terdV match- functions defined by theetrec extends to subsequent declarations
ing patternP, and evaluatingP —> M) N produces resuti (M), in a declaration list: this requires looking “one level deeper” than
provideds (P) = N. The variables occurring in a pattern must be was the case for the earlier sequential scoping examples.

distinct, and the free variables of a pattern expresdtors> M We note that things do work fine for the first function declara-

are justF'V (M) — FV (P). Binding all of the distinct names of a tion since all subsequent declarations follow it. If only we could
term in another term seems to be a common enough case to deserveonsidereachfunction declaration in parallel as “the first”, then
things would work out OK. In fact, the meaning ofletrec is

3In the second rule, sincend(p,x) andp = (xy) - p/, it follows that usually independent of the order of function definitions, so we can
bnd(p’,y) also holds, so we do not need to check the latter. safely identifyletrec expressions up to reordering of the defini-

tions. This allows us to consider any of the simultaneous definitions sociativity, and axioms like those of thecalculus restriction oper-

to be “the first". ation, typically make unification at lea®BP-hard. We conjecture
Therefore, we axiomatize function renaming fostrec as that most, if not all, interesting structural equivalences can be de-

follows: cided in polynomial time and unified INP, and believe it will be
perm(ls,ls") interesting to seek out such well-behaved fragments of (and algo-

rithms for)nominal equational unificatianMe also think it will be
worthwhile to find more compact and declarative notations for the
axioms for custom binding forms, since the approach we have used
in this paper is verbose and error-prone.

letrec(ls) = letrec(ls’)

whereperm is a predicate expressing that two lists are permuta-
tions of one another; and

f # letrec(fndecl(f, ps,e) :: Is) :: ds While the uniqueness and anonymity types we have considered
f# (ps', e, 15, ds) are interesting, they often do not quite express what we want. For
letrec(ps, e, ls) = ds = (f ’g) ; (le%rec(ps’,e/,ls’) + ds') example, we may wish to limit the anonymization performed by

the anonymity type (or the binding of the names in a pattern) to a
single name-type rather than all names present in a data structure.
Some of the scope situations we considered (in particular, hier-

that is, a function namg is fresh for a declaration list starting with ~ archical namespaces) appear to have no good solution so far. These
aletrec that first definesf, and it is acceptable to rename the ~Problems require further study. _ -

first 1etrec-function namef within its body, within the rest of the Although we have used nominal logic as a way of describing
letrec, and in subsequent declarations. techniques for encoding the exotic binding forms we have consid-

It should be noted that this axiomatization is only acceptable €red, it is possible that other techniques are equally or more suit-
when all properties we care abouare preserved by reordering able. In particular, since a lot of prior research and w_nplementatlon
letrec cases. There are certainly situations (such as program effort has focused on higher-order abstract syntax, it would be ad-
transformation) in which it is not acceptable to reorder the cases: vantageous if techniques such as those we have discussed could be
programmers do not want to use tools that make unnecessary syn2dapted to that setting. We do not see how to do this (which is one
tactical changes. Consequently, we also propose an axiomatizatiorf€ason for our interest in nominal abstract syntax), but that does not
that does not impose this additional structural congruence. In this Mean it cannot be done.
axiomatization, we do not considestrecs themselves equivalent
up to reordering cases; instead, we define equality-up-to-renaming9. Conclusion
as a two-step process. First, we check to see whether a name i
considered bound within tHeetrec, using and predicate similar
to that used for patterns; if so, we consider it to be fresh for (and
renameable in) the wholestrec and subsequent names.

letrec(fndecl(f,ps,e) :: ls) :: ds
~ letrec(fndecl(g,ps’,€’) :: ls') :: ds’

?n this paper we have identified some of the limitationawédry lex-

ical scoping the only form of scoping supported by most advanced
techniques for representing languages with binding. We have de-
scribed several common situations in which unary lexical scoping
bnd((fndecl(f, ps, €)) :: ls,) is either inconvenient or inadequate, and sketched how these forms
of scoping can be formalized in nominal logic. In particular, we

bnd(ls, f) have shown that many structural equivalences can be axiomatized
bnd((fndecl(g, ps,e)) :: s, f) directly in nominal logic. We have also identified some potentially
bnd(ls, f) useful extensions to nominal abstract syntax, namely uniqueness

types and anonymity types, which can be used to describe more

f# letrec(ls) :: ds exotic forms of binding.

bnd(ls,f) f# (Is',ds") Although we believe that this represents further evidence of

letrec(ls) :: ds = (f g) - (letrec(ls') :: ds') the usefulness of nominal logic, these results are preliminary and
letrec(ls) = ds = letrec(ls') :: ds’ there are several issues that need to be investigated in order for

these techniques to be useful in real programming or reasoning

8. Related and Future Work systems. We wish to call attention to forms of binding, scoping,

. and structural congruence that appear “in the wild” (that is, in

The FreshML [25] andxProlog [2] programming languages pro- paper formalizations) and for which no abstract syntax encoding
vide unary lexical scoping as a language extension. However, theretechnique provides a satisfactory answer. Systematic techniques
is no built-in support for more exotic forms of binding. More re- for encoding these syntactic constructs are important for bridging
cently, Pottier has developea@l [22], a source-to-source transla- the gap between paper and machine-checked proofs of realistic
tion tool that translates high-level binding specifications for OCaml programming language properties.
types to low-level code that deals with names and binding automat-
ically, using OCaml’s object system. Interestingly, this approach is Acknowledgments
not limited to unary lexical scoping, and can even encbglerec.
Another recent approach that provides some support for more gen-
eral forms of binding is théresh Lib library [3], which implements
much of the functionality of nominal abstract syntax as a Haskell
class library. However, implementing custom binding forms such
as pattern matching requires providing customized type class in-
stances, so this approach is at present less declarative thahsC References

We have focused on expressiveness at the logical level without 1} Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler.
worrying about pragmatic issues such as the complexity of unifi- Extensible Markup Language (XML) 1.0 (Second Edition). W3C
cation or typechecking needed for automation. While many of the Recommendation, October 200thttp: //www.w3.org/TR/-
examples are mild variants of alpha-equivalence and so can be han- ~ 2000/REC-xm1-20001006.
dled efficiently using known techniques, other examples, especially [2] J. Cheney and C. Urban. Alpha-Prolog: A logic programming
those involving structural equivalences such as commutativity, as- language with names, binding and alpha-equivalencé@rda. 20th

This paper was motivated partly by discussions with Andrew Pitts,

lan Stark, Peter Sewell, Matthew Fairbairn, and by recent discus-
sions on the POPLMark mailing list. This work was supported by

EPSRC grant R37476.

Int. Conf. on Logic Programming (ICLP 20Q4pumber 3132 in
LNCS, pages 269-283, 2004.

[3] James Cheney. Scrap your nameplate (functional pearl). In Benjamin
Pierce, editorProceedings of the 10th International Conference on
Functional Programming (ICFP 2005)allinn, Estonia, 2005. To
appear.

[4] James Cheney. A simpler proof theory for nominal logic. In
Proceedings of the 2005 Conference on Foundations of Software
Science and Computation Structures (FOSSACS 2008)ber 3441
in LNCS, pages 379-394. Springer-Verlag, 2005.

[5] Horatiu Cirstea, Luigi Liquori, and Benjamin Wack. Rewriting
calculus with fixpoints: Untyped and first-order systems.Ptst-
procededings of TYPES003.

[6] William F. Clocksin and Christopher S. MellislProgramming in
Prolog. Springer-Verlag, fifth edition, 2003.

[7] N. G. de Bruijn. Lambda-calculus notation with nameless dummies,
a tool for automatic formula manipulatioindagationes Mathemati-
cag 34(5):381-392, 1972.

[8] Joelle Despeyroux, Amy Felty, and AnglHirschowitz. Higher-order
abstract syntax in Cog. In M. Dezani-Ciancaglini and G. Plotkin,
editors,Proc. Int. Conf. on Typed Lambda Calculi and Applications
pages 124-138, Edinburgh, Scotland, 1995. Springer-Verlag LNCS
902.

M. J. Gabbay and J. Cheney. A sequent calculus for nominal logic.
In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science (LICS 2004)ages 139-148, Turku, Finland,
2004.

[10] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding.Formal Aspects of Computing3:341-363, 2002.

[11] Furio Honsell, Marino Miculan, and Ivan Scagnetto. The theory of
contexts for first order and higher order abstract syntaXT%CA
2001 - Theory of Concurrency, Higher Order Languages and Types
volume 62 ofElectronic Notes on Theoretical Computer Scignce
2001.

[12] John E. Hopcroft and Jeffrey D. Ullmanimtroduction to Automata
Theory, Languages, and Computatigkddison-Wesley, 1979.

[13] Dale Miller. The pi-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editoRoceedings of the
1992 Workshop on Extensions to Logic Programmimgnber 660 in
LNCS, pages 242—265. Springer-Verlag, 1992.

Dale Miller. Abstract syntax for variable binders: an overview. In
John Lloyd et al., editolComputational Logic - CL 20QGhumber
1861 in LNAI. Springer, 2000.

Dale Miller. Encoding generic judgments: Preliminary results. In
S.J. Ambler, R.L. Crole, and A. Momigliano, editoMERLIN 2001:
Mechanized Reasoning about Languages with Variable Binding
volume 58(1) ofElectronic Notes in Theoretical Computer Science
Elsevier, 2001.

[

(14]

(18]

[16] Dale Miller and Alwen Tiu. A proof theory for generic judgments:
extended abstract. Proc. 18th Symp. on Logic in Computer Science
(LICS 2003) pages 118-127. IEEE Press, 2003.

[17] Robin Milner, Mads Tofte, Robert Harper, and David MacQuéére
Definition of Standard ML - ReviseMIT Press, 1997.

[18] A. Momigliano and Simon Ambler. Multi-level meta-reasoning with
higher order abstract syntax. FOSSACS 2003ages 375-391.
Springer-Verlag, 2003.

[19] P. O'Hearn and D. J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic5(2):215-244, June 1999.

[20] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI '89)pages 199-208. ACM Press, 1989.

[21] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computatiqri83:165-193, 2003.

[22] Francois Pottier. An overview of &nl, June 2005. Avail-
able athttp://cristal.inria.fr/"fpottier/publis/-
fpottier-alphacaml.pdf.

[23] John C. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. IProc. IEEE Symposium on Logic in Computer
Sciencepages 55-74, Los Alamitos, CA, USA, July 22-25 2002.
IEEE Computer Society.

[24] Ulrich Sctbpp and lan Stark. A dependent type theory with names
and binding. InProceedings of the 2004 Computer Science Logic
Conferencenumber 3210 in Lecture notes in Computer Science,
pages 235-249, Karpacz, Poland, 2004.

[25] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programmming with binders made simple. Pnoc. 8th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP 2003ges
263-274, Uppsala, Sweden, 2003. ACM Press.

[26] M.R. Shinwell and A.M. Pitts. Fresh objective caml user manual.
Technical Report 621, Cambridge University Computer Laboratory,
February 2005.

[27] Alwen Tiu and Dale Miller. A proof search specification of the
m-calculus. InProceedings of the 3rd EATCS Workshop in the
Foundations of Global Computing (FGUC 2002p04. To appear in
ENTCS.

[28] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification.
Theoretical Computer Sciencg23(1-3):473-497, 2004.

[29] J. B. Wells and R. Vestergaard. Equational reasoning for linking with
first-class primitive modules. IRroceedings of the 2000 European
Symposium on Programmingumber 1782 in LNCS. Springer-
Verlag, 2000.

