
Relating Nominal and Higher-Order Pattern
Unification

James Cheney

University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract. Higher-order pattern unification and nominal unification are
two approaches to unifying modulo some form of α-equivalence (con-
sistent renaming of bound names). The higher-order and nominal ap-
proaches seem superficially dissimilar. However, we show that a natural
concretion (or name-application) operation for nominal terms can be
used to simulate the behavior of higher-order patterns. We describe a
form of nominal terms called nominal patterns that includes concretion
and for which unification is equivalent to a special case of higher-order
pattern unification, and then show that full higher-order pattern unifi-
cation can be reduced to nominal unification via nominal patterns.

1 Introduction

Higher-order unification is the unification of simply-typed λ-terms up to α-, β-,
and (sometimes) η-equivalence. It has been studied for over thirty years.. Al-
though it is undecidable and of infinitary unification type, Huet’s algorithm [6]
performs well in practice, and Miller identified a well-behaved special case called
higher-order pattern unification [7, 13, 11, 1] that is decidable in linear time and
possesses unique most general unifiers. In higher-order patterns, uses of metavari-
ables (variables for which terms may be substituted) are limited so that the
nondeterministic search needed in full higher-order unification can be avoided.
A key aspect of higher-order unification is that substitution is capture-avoiding.
For example, the unification problem λx.M ≈? λy.f y has no solution, since
although both sides could be made equal by making a capturing substitution
f x for M , there is no way to make both sides equal using capture-avoiding
substitution to instantiate M .

Nominal unification [15] is the unification of nominal terms, which include
special name or atom symbols, a name-swapping operation, an abstraction oper-
ation for name-binding, and freshness relation. Equality and freshness for nom-
inal terms coincide with classical definitions of α-equivalence and the “not-free-
in” relation − 6∈ FV (−), respectively. Nominal unification is decidable in at
worst quadratic time (exact complexity bounds are not yet known). Nominal
unification is based on nominal logic, a logic formalizing a novel approach to
abstract syntax with bound names due to Gabbay and Pitts [3]. There are two
aspects of nominal unification that contrast sharply with higher-order unifica-
tion. First, abstraction is not considered to bind names, and metavariables may

mention arbitrary names, so that the problem 〈a〉M ≈? 〈b〉f(b) does have so-
lution M = f(a). Second, abstractions are not considered to be functions, and
there is no built-in notion of “abstraction application”. Instead, nominal unifiers
can be expressed in terms of the swapping operation (a b) · t, which describes the
result of exchanging all occurrences of a and b within t, and freshness constraints
a # t, which assert that a name a is fresh for a term t. For example, the unifica-
tion problem 〈a〉M ≈? 〈b〉f(N, b) has most general solution M = f((a b) · N, a)
subject to the constraint that a # N . This unifier shows how to compute M as
a function of N while excluding false solutions such as M = f(b, a), N = a, since
〈a〉f(a, b) 6≈ 〈b〉f(b, a).

Despite these differences, nominal and higher-order pattern unification ap-
pear closely related. In fact, at first glance, one might wonder if they are not
merely different presentations of the same algorithm. Both are techniques for
equational reasoning about languages involving bound identifiers. Both algo-
rithms rely on computing with permutations of bound names: the higher-order
pattern restriction can be seen as a sufficient condition to ensure that such per-
mutations always exist. In fact, as noted by Urban, Pitts, and Gabbay [15], there
is a translation from nominal unification problems to higher-order pattern uni-
fication problems that preserves satisfiability. In this translation, metavariables
are “lifted” so as to be functions of all the names in context. A freshness con-
straint such as a # M can be translated to an equation like λa, b, c.M a b c ≈
λa, b, c.N b c, which asserts that M cannot be dependent on its first argument
(namely, a). However, as argued by Urban et al., it is not straightforward to con-
vert the resulting solutions back to solutions to the original nominal unification
problem. As a result, it appears much easier to solve such problems directly using
Urban et al.’s algorithm (which seems much simpler than that for higher-order
pattern unification in any case).

Another reason to study the relationship between higher-order pattern unifi-
cation and nominal unification is to provide a logical foundation for higher-order
patterns. While both nominal and higher-order unification are grounded in clear
logical foundations, higher-order patterns appear motivated solely by algorith-
mic concerns. If higher-order patterns can be explained using nominal terms, the
semantic foundations of the latter could also be used for the former.

In this paper we argue that higher-order pattern unification can be reduced
to nominal unification. This relationship helps justify the higher-order pattern
restriction and explain why it works. The key idea is that the pattern restriction
(that metavariable occurrences are of the form X v where v is a list of distinct
names) is essentially the same as a natural freshness restriction on the concretion
operation. This operation is an elimination form for abstraction that has been
considered in some versions of FreshML [12, 14], but so far not incorporated into
nominal logic or nominal unification.

The structure of this paper is as follows. First (Section 2), we review higher-
order pattern unification and nominal unification. In Section 3, we introduce
a type system that enforces the higher-order pattern restriction in a particu-
larly convenient way. In Section 4, we identify a variant of nominal terms called

2

nominal patterns that includes the concretion operation and for which unifica-
tion is equivalent to a special case of higher-order pattern unification. We then
(Section 5) show that full higher-order pattern unification can be reduced to
nominal pattern unification and (Section 6) that nominal pattern unification
can be reduced to nominal unification. Put together, these reductions show that
higher-order pattern unification can be implemented via nominal unification.
Section 7 and Section 8 discuss related work and conclude.

2 Background

2.1 Higher-order terms, patterns, and unification

Consider infinite sets of variable names x, y, z, . . . ∈ Var and metavariables
X, Y, Z . . . ∈ MVar . The terms of the λ-calculus are as follows:

t ::= c | x | λx.t | t t′ | X

We assume that common notions such as the set of free variables of a term
FV (−), α-equivalence, capture-avoiding substitution −[−/−] etc. are defined
as usual. In addition, we assume that there are some given base types δ, that
types include function types τ → τ ′, and that well-formedness is defined as usual
provided that types are assigned to constants via a signature Σ. A term with
no free variables is called closed ; a term with no metavariables is called ground.
We often write f(t1, . . . , tn) as a shorthand for f t1 · · · tn.

Terms are considered equal up to α-equivalence plus two additional equations:
β-reduction and η-expansion

(β) (λx.t) u ≈ t[u/x]
(η) t ≈ λx.(t x) (t : τ → τ ′, x 6∈ FV (t))

We write θ for a substitution mapping metavariables to λ-terms. Such a
substitution may be applied to any λ-term by replacing each metavariable X
with θ(X). If Γ and Γ ′ are contexts consisting only of metavariables, we write
substitution is well-formed (Γ ′ ` θ : Γ) provided that for each X : τ ∈ Γ ,
Γ ′ ` θ(X) : τ . Thus, there is no danger of variable capture during substitution,
and we have:

Lemma 1. If Γ ` θ : Γ ′ and Γ ′ ` t : τ , then Γ ` θ(t) : τ .

We consider higher-order unification to be unification of λ-terms up to the
above equational theory, that is, up to αβη-equivalence. (Higher-order unification
sometimes refers to unification up to only α and β-equivalence, but for this pa-
per, we do not consider this problem.) Huet [6] gave an algorithm for generating
complete sets of higher-order unifiers which performs well in practice. Techni-
cally, we consider only problems of the form ∃X.∀y.t ≈? u, since substitutions
θ cannot mention free variables. This excludes problems such as ∀y.∃X.X ≈? y.
However, such problems can always be transformed to equivalent ∃∀-problems by

3

raising [9] metavariables in order to make their dependence on other variables
explicit: for example, transforming ∀y.∃X.X ≈? y to ∃F.∀y.F y ≈? y, where
X ≈ F y.

Miller investigated a decidable special case of higher-order unification called
higher-order patterns. To define higher-order patterns, we first recall that any
λ-term (possibly involving metavariables) can be put into a normal form called
η-long, β-normal form (or ηlβn form), such that (a) no β-redices exist, and
(b) no η-expansions can be performed without introducing a β-redex. Note that
this normal form is dependent on the types of metavariables. For example, the
normal form of λy, z.(λx.xy) (F G) is λy, z, b.F (λa.G a) y b, provided F : (τ →
τ ′) → σ1 → σ2 → σ and G : τ → τ ′. Such normal forms conform to the following
grammar:

t ::= λv.x t | λv.X t

The insight behind higher-order pattern unification is that all the nondetermin-
ism in higher-order unification comes about because of uncertainty concerning
how an unknown X can act on its arguments t. In general, t may include repeated
variables or more complex terms involving other metavariables. In higher-order
patterns, this uncertainty is eliminated by requiring the argument list t in each
subterm of the form λv.X t to be a list of distinct bound variables w. Thus, the
above example ηlβn-normal form λy, z, b.F (λa.G a) y b is not a pattern, while
λx, y.c (F y x) is a pattern.

Higher-order patterns are closed under substitution modulo β-normalization;
in fact, the only redices introduced by substituting a higher-order pattern for a
metavariable in another higher-order pattern are of the form called β0 by Miller:

(β0) (λx.t) y = t[y/x]

Unification for higher-order patterns is decidable (in linear time [13]) and most
general unifiers exist.

2.2 Nominal terms and unification

We now consider a different language called nominal terms1. Let ν, ν′ be basic
name types. Let Nm be a set of names aν , bν′ , . . . tagged with name types and
let MVar be a set of metavariables X, Y, Z, The set of nominal terms is
generated by the grammar

t ::= aν | 〈aν〉t | c | t1 t2 | π · X π ::= id | (aν bν) ◦ π

τ ::= σ | σ → τ σ ::= δ | ν | 〈ν〉δ

Metavariables are annotated with suspended permutations of names, that are to
be applied to any value substituted for the variable. A nominal term with no
metavariables is called ground.
1 Our version of nominal terms is superficially different from that used on Urban, Pitts,

and Gabbay’s paper, in order to minimize the number of unimportant differences
from higher-order patterns.

4

Terms of the form 〈a〉t are called abstractions. An abstraction is an object
with a single bound name. However, the name is not considered syntactically
bound as in a λ-abstraction; instead, an abstraction describes a semantic value
with a bound name. For example, 〈a〉b and 〈b〉b are not considered to be the same
term; however, they have the same meaning. In particular, while term equality
behaves like (and is intended to model) α-equivalence for ground terms, this is
not the case for terms mentioning metavariables (e.g., the equation 〈a〉X ≈ 〈b〉X
is not valid in general).

We assume that there is a signature Σ assigning types τ to constants c, such
that there are no constants or other closed terms inhabiting any name type. A
permutation is considered well-formed if it is composed of swappings of names of
the same type only. Contexts Γ associate metavariables to types. The following
well-formedness rules are considered:

Γ ` aν : ν
c : τ ∈ Σ
Γ ` c : τ

π well-formed
Γ,X : τ ` π · X : τ

Γ ` t : τ → τ ′ Γ ` u : τ ′

Γ ` t u : τ ′
Γ ` t : τ

Γ ` 〈aν〉t : 〈ν〉τ

We define a swapping function on nominal terms as follows:

(a b) · a′ =

 b (a = a′)
a (b = a′)
a′ (a 6= a′ 6= b)

(a b) · c = c
(a b) · (t1 t2) = ((a b) · t1) ((a b) · t2)

(a b) · 〈a〉t = 〈(a b) · a〉(a b) · t
(a b) · (π · X) = (a b) ◦ π · X

Also, we define π · t as follows:

id · t = t (a b) ◦ (π · t) = ((a b) · π) · t

We are now in a position to define the meaning of nominal terms. We do this by
introducing axioms describing equality and an auxiliary freshness relation.

a ≈ a c ≈ c
t ≈ t′ u ≈ u′

t u ≈ t′ u′
t ≈ u

〈a〉t ≈ 〈a〉u
t ≈ (a b) · u a # u (a 6= b)

〈a〉t ≈ 〈b〉u
a 6= b

a # b a # c

a # t a # u

a # t u a # 〈a〉t
a # t (a 6= b)

a # 〈b〉t

Given a substitution function θ mapping metavariables to terms, we write θ(t)
for the result of applying substitution θ to term t. To be precise, the definition
of substitution is as follows.

θ(a) = a
θ(c) = c

θ(〈a〉t) = 〈a〉θ(t)
θ(π · X) = π · θ(X) θ(t1 t2) = θ(t1) θ(t2)

We require that substitutions are well-formed so that they preserve types, but
(unlike for higher-order unification) substitutions are allowed to mention both
metavariables and names, so “capturing” substitutions are allowed. For example,
if θ(X) = a then θ(〈a〉X) = 〈a〉a.

5

If θ is a valuation (ground substitution), we write θ � t ≈ u to indicate that
θ(t) ≈ θ(u) and write θ � a # t if a # θ(t). As usual, a formula A is valid
(satisfiable) if for all (resp. some) well-formed substitutions, θ � A holds. This
is extended to validity or satisfiability of sets of formulas P in the obvious way.
Similarly, if P is a set of formulas, we write P � A to indicate that whenever
θ � P , we also have θ � A.

Urban et al.’s nominal unification algorithm solves the satisfiability problem
for sets of equations and freshness constraints. Given a problem P , it produces a
unique (up to renaming) most general answer of the form θ,∇, where θ is a sub-
stitution and ∇ is a set of freshness constraints of the form a # X. This answer
has the property that ∇ � θ(P). Moreover, for any other answer∇′, θ′ having this
property, there exists a substitution ρ such that ρ(∇) � ∇′ and ρ(∇) � ρ◦θ ≈ θ′

(where θ ≈ θ′ means dom(θ) = dom(θ′) and ∀X ∈ dom(θ).θ(X) ≈ θ′(X)).
Urban et al. argue that their algorithm can be implemented in quadratic

time; however, the exact complexity has not been established. We omit the
precise details of the algorithm.

3 A Refined Type System for Higher-Order Patterns

We modify the notation of λ-terms to distinguish between rigid applications
involving terms t u where the head of t is rigid (i.e., a constant or bound variable),
and flexible applications tˆa, where the head of t is flexible (a metavariable).
Also, we assume that variables are tagged with their types: for example, xτ

indicates that x is a variable of type τ . The grammar of such terms is as follows:

t ::= c | xτ | λxτ .t | t t′ | X | tˆxτ

We use a type system for ηlβn-normalized terms that enforces the pattern
restriction. Contexts Γ bind metavariables to types. There are three judgment
forms: Γ ` t ↓ τ , indicating that t is a rigid atomic term of type τ ; Γ ` t ⇓ τ ,
indicating that t is a flexible atomic term of type τ ; and Γ ` t ↑ τ , indicating
that t is a normal term of type τ . Examples of rigid atomic, flexible atomic, and
normal terms include x (λy.y)z, X ˆyˆz, and λx, y, z.y (x (λy.y)z) (X ˆyˆz),
respectively. The well-formedness rules for nominal patterns are as follows:

c : τ ∈ Σ
Γ ` c ↓ τ Γ ` xτ ↓ τ

Γ ` t ↑ τ ′

Γ ` λxτ .t ↑ τ → τ ′
Γ ` t ↓ τ → τ ′ Γ ` u ↑ τ

Γ ` t u ↓ τ ′

Γ,X : τ ` X ⇓ τ

Γ ` t ⇓ τ → τ ′ (x 6∈ FV (t))
Γ ` tˆxτ ⇓ τ ′

Γ ` t ↓ δ

Γ ` t ↑ δ

Γ ` t ⇓ δ

Γ ` t ↑ δ

There is no way to bind a metavariable: λ binds ordinary variables only. We
can only convert from an atomic typing to a normal typing at base types δ; this
ensures that all the necessary η-expansions take place.

All well-formed terms in this system are ηlβn-normalized. Moreover, as for
higher-order patterns generally, only β0 reductions (λxτ .t)ˆyτ → t[yτ/xτ] need
to be performed after a substitution of higher-order patterns for metavariables.

6

Lemma 2 (Renaming). Let R be one of ↓,⇓, ↑. If yτ 6∈ FV (t) and Γ ` t R τ ,
then Γ ` t[yτ/xτ] R τ , respectively.

Lemma 3 (Substitution). If Γ, X : τ ′ ` t ↑ τ and Γ ` u ↑ τ ′ for FV (u) = ∅,
then Γ ` t[u/X] ↑ τ .

4 Nominal Patterns

We now introduce a slight variant of nominal terms that provides a closer match
to higher-order patterns. This language, called nominal patterns, is defined by
the following grammar:

t ::= c | t t′ | X | aν | 〈aν〉t | t @ aν

τ ::= σ | σ → τ σ ::= δ | ν | 〈ν〉σ

where as before, δ denotes a base (data) type and ν denotes a name type. As
before, we assume that there is a signature assigning τ -types to constants c.
Metavariables may not have arbitrary types, but only σ-types (i.e., types built
using only data, name, and abstraction types). In addition, we assume that name
symbols aν are tagged with their name types ν. As for nominal terms, we assume
that the only ground terms inhabiting name-types are literal names.

The main difference between ordinary nominal terms and nominal patterns
is the presence of the concretion operation (−)@(−) that has also been consid-
ered in some versions of FreshML [12, 14]. Our type system requires well-formed
nominal patterns to satisfy an analogue of the higher-order pattern restriction: in
every subterm of the form t@a, we require that a # t holds. In order to simplify
this check (and to make nominal patterns more similar to higher-order patterns),
we only consider substitutions of patterns such that FN(t) = ∅, where

FN(c) = ∅ FN(X) = ∅
FN(a) = {a} FN(t u) = FN(t) ∪ FN(u)

FN(t@a) = FN(t) ∪ {a} FN(〈a〉t) = FN(t)− {a}

As a result, � a # X and � (a b) · X ≈ X are valid for any names a, b and
metavariable X; using these facts we can lift the freshness relation and swapping
function to patterns involving metavariables.

As before, signatures Σ map constants to types and names to name types,
whereas contexts map metavariables to metavariable types σ. We require pat-
terns to be well-typed, subject to the following rules:

Γ ` aν ↓ ν
c : τ ∈ Σ
Γ ` c ↓ τ Γ,X : σ ` X ↓ σ

Γ ` t ↓ τ → τ ′ Γ ` u ↑ τ

Γ ` t u ↓ τ ′

Γ ` t ↑ σ

Γ ` 〈aν〉t ↑ 〈ν〉σ
Γ ` t ↓ 〈ν〉σ a 6∈ FN(t)

Γ ` t@aν ↓ σ

Γ ` t ↓ ε (ε = δ, ν)
Γ ` t ↑ ε

Abstraction and concretion are construction and destruction operations for the
abstraction sort. Thus, nominal patterns are subject to the following βα- and

7

ηα-laws:
(βα) (〈a〉t)@b ≈ (a b) · t
(ηα) t ≈ 〈a〉(t@a) (t : 〈ν〉σ)

Note that the typing rules ensure that b # 〈a〉t must hold in the first case and
a # t must hold in the second case. We first state some basic properties of
nominal patterns.

Lemma 4 (Swapping). Let R be one of ↓, ↑. If Γ ` t R τ then Γ ` (a b)·t R τ .

Lemma 5 (Substitution). If Γ,X : τ ′ ` t ↑ τ and Γ ` u ↑ τ ′ where FN(u) =
∅, then Γ ` t[u/X] ↑ τ .

We now show that this axiomatization satisfies the previously given laws of
nominal abstraction.

Proposition 1. For nominal patterns, we have 〈a〉t ≈ 〈b〉u if and only if a ≈
b, t ≈ u or a # u, t ≈ (a b) · u. Similarly, if t : 〈ν〉τ , then there exists aν and
u : τ such that t ≈ 〈a〉u.

Proof. Suppose 〈a〉t ≈ 〈b〉u. Then a # 〈a〉t ≈ 〈b〉u, so we have

t ≈ (a a) · t ≈ (〈a〉t)@a ≈ (〈b〉u)@a ≈ (a b) · u

There are two cases. If a = b then t ≈ (a b) · u = (a a) · u = u. Otherwise, a # u
and t ≈ (a b) · u.

Now suppose t : 〈ν〉τ . Since FN(t) is finite, we can always find a name a 6∈
FN(t), so we can form the term 〈a〉(t@a). By the η-rule, we have t ≈ 〈a〉(t@a),
thus, a is the required name and t@a the required term of type τ .

The similarity between the βα and ηα rules for nominal patterns and the β0

and η rules for higher-order patterns is not a coincidence. We now consider a
typed translation from nominal to higher-order patterns. We assume (for con-
venience) that the constants, names and metavariables of nominal patterns are
the same as the constants, variables, and metavariables of higher-order patterns
respectively. Similarly, we assume that the name types and data types of the
nominal language are base types of the higher-order language. Terms are trans-
lated as follows:

c∗ = c
(t u)∗ = t∗ u∗

X∗ = X

a∗
ν = aν

(〈aν〉t)∗ = λaν .t∗

(t@aν)∗ = (t∗)ˆaν

The translation of types is as follows:

δ∗ = δ
ν∗ = ν

(σ → τ)∗ = σ∗ → τ∗

(〈ν〉τ)∗ = ν → τ∗

Contexts and signatures are translated by replacing each type with its starred
form.

8

Example 1. The translation of t = 〈a〉X @ a@ b is λa.X a b, where X : 〈ν〉〈ν〉δ
in the former and X : ν → ν → δ in the latter.

Lemma 6. If a 6∈ FN(t) then a∗ 6∈ FV (t∗). Also, if Γ ` t ↑ τ then Γ ∗ ` t∗ ↑ τ∗.

Theorem 1. The translation (−)∗ has an inverse (−)† on its range.

Proof. Clearly (−)∗ is injective, and it is surjective on its range by definition.

Lemma 7. If Γ ` t : τ is a nominal pattern and b 6∈ FN(t), then ((a b) · t)∗ =
t∗[b/a]. Dually, if Γ ` u : τ is a higher-order pattern in the range of (−)∗, and
b 6∈ FV (t), then (u[a/b])† = (a b) · u†.

Proof. Proof is by induction on the structure of t. If t = a, then ((a b)·t)∗ = b∗ =
b and t∗[b/a] = a[b/a] = b. Otherwise, t is a name other than a or b, and swap-
ping, substitution, and the (−)∗ translation all fix t. The case for t a constant
or metavariable is similar. For t = t1 t2, the induction step is straightforward.
This leaves the case of abstraction. If t = 〈a〉u, then b # u so by induction we
have ((a b) · u)∗ = u∗[b/a], hence

((a b) · 〈a〉u)∗ = (〈b〉(a b) · u)∗ = λb.((a b) · u)∗ = λb.u∗[b/a]
≈α λa.u∗ = (λa.u∗)[b/a] = (〈a〉u)∗[b/a]

If t = 〈b〉u, then the induction hypothesis does not apply directly, but we can
choose a fresh name b′ # a, b, t such that

((a b) · 〈b〉t)∗ ≈ ((a b) · 〈b′〉(b b′) · t)∗ = (〈b′〉(a b) · (b b′) · t)∗

= λb′.((b b′) · t)∗[b/a] = λb′.t∗[b′/b][b/a] ≈α λb.t∗[b/a] = (〈b〉t)∗[b/a]

where the two middle steps rely on the facts that b 6∈ FN((b b′) · t) and b′ 6∈
FN(t). The case for t = 〈a′〉t for a′ 6= a, b is straightforward.

The second part follows immediately from the first by setting t = u†.

Theorem 2. Let t, u : τ be nominal patterns. Then t ≈ u if and only if t∗ ≈ u∗.

Proof. Proof is by induction on the derivation of t ≈ u in the forward direction.
The interesting cases are for βα and ηα rules. While ηα is straightforward, for
βα we have (〈a〉t)@b ≈ (a b) · t and want to show that (λa.t∗) b ≈ ((a b) · t)∗. By
β0 and the previous lemma we have (λa.t∗) b ≈ t∗[b/a] = ((a b) · t)∗.

The reverse direction is similar, except that we need to use the identity
(t[a/b])† = (a b) · t† in the β0 case.

Corollary 1. t ≈ u is satisfiable if and only if t∗ ≈ u∗ is; moreover, the satis-
fying valuations θ, θ∗ are in bijective correspondence via (−)∗.

This shows that nominal pattern unification coincides with a special case of
higher-order pattern unification: specifically, the case for terms in which the only
form of binding is λ-abstraction over void base types ν. In fact, many applications
of higher-order patterns are possible within this fragment: it is commonplace to

9

use an abstract or empty type for the “type of variable names” in, for exam-
ple, a higher-order abstract syntax encoding of the π-calculus [10]. However,
applications involving λ-abstraction over non-void types are also common [7].

This translation is interesting, but we have only shown that there is a corre-
spondence between two very limited special cases of the two problems. Next we
show how to translate full higher-order pattern unification to nominal pattern
unification.

5 Higher-order pattern unification as nominal pattern
unification

In higher-order patterns, λ-term variables are not limited to a collection of void
base types, but may be of any type, so variables may be applied to argument
lists including repeated variables, metavariables, or more general terms (that
is, the pattern restriction is not required of argument lists whose head is not a
variable). This permits the formation of terms such as λx, y.y (λz.Fz) x x which
are not in the range of (−)∗; i.e., which do not correspond to a nominal pattern.
Such terms are not in the domain of (−)†, so the approach investigated in the
last section does not apply.

However, there is another translation that works. The reason the idea of the
previous section doesn’t work is that in higher-order patterns, variables play one
of two roles: they can be passed as arguments to metavariables, but they can also
act as functions on lists of arguments. The latter role is not supported directly
by nominal patterns, because name types ν are populated only by names.

Given a higher-order language L, we construct a nominal language L∗∗ pos-
sessing a name-type ντ for each simple type τ of L and a data type δ for each
basic type δ of L. We define a translation on L-types as follows:

δ∗∗ = δ (τ1 → τ2)
∗∗ = 〈ντ1〉τ2

∗∗

Note that each τ -type of L translates to a σ-type of L∗∗. Given a signature
Σ, we write Σ∗∗ for the result of replacing all the types in Σ with their (−)∗∗

translations; similarly for contexts Γ ∗∗. Moreover, we add the following new
constants to L∗∗:

varτ : ντ → τ∗∗

appτ1τ2 : (τ1 → τ2)
∗∗ → τ1

∗∗ → τ2
∗∗

This signature is infinite, since the function symbols varτ and appτ1τ2 are indexed
with types. However, in any particular situation, only finitely many ντ types
and finitely many constants of the above signature need to be considered. After
unwinding definitions, the type of appτ1τ2 is 〈ντ1〉τ2

∗∗ → τ1
∗∗ → τ2

∗∗. The types
of these constants are legal τ -types in L∗∗.

Intuitively, ντ is the type of names of variables of type τ , and var “casts” a ντ

to its value, simulating the evaluation of a variable at the head of an application
in a higher-order term. Similarly, app simulates application: given an abstraction

10

〈ντ1〉τ2
∗∗ and a translated term of type τ1

∗∗, application produces a term of type
τ2

∗∗.
The idea of the translation is to use the var, app, and lam constructors to

represent ground λ-term structure, and use names, abstraction and concretion
to represent subterms involving metavariables. In this translation, we assume
that λ-calculus variables are the same kinds of symbols as names in nominal
patterns.

c∗∗ = c
xτ

∗∗ = var(xντ
)

(λx.t)∗∗ = 〈x〉t∗∗

(t u)∗∗ = app(t∗∗, u∗∗)
X∗∗ = X

(tˆa)∗∗ = t∗∗ @ a

Example 2. Note that variable occurrences are treated differently depending on
context: variables on the left-hand side of a flexible application (−) (̂−) are
left alone, while others are encapsulated in a var(−)-constructor which casts a
variable name of type ντ to an expression of type τ∗∗. Thus, the translation of
λx, y.c (F ˆxˆy) is 〈x〉〈y〉app(var(c), F @x@ y), where F : τ1 → τ2 → δ in the
former is mapped to F : 〈ντ1〉〈ντ2〉δ in the latter.

The translation preserves well-formedness and is invertible; these facts are
easy to show by induction.

Proposition 2. If x 6∈ FV (t) then x∗∗ 6∈ FN(t∗∗). If Γ ` t ↑ τ where t is a
higher-order pattern, then Γ ∗∗ ` t∗∗ ↑ τ∗∗. Similarly, if Γ ` t ↓ τ or Γ ` t ⇓ τ ,
then Γ ∗∗ ` t∗∗ ↓ τ∗∗. Also, the translation has an inverse (−)††.

As observed by Miller, in a ηlβn higher-order pattern unification problem,
the only kinds of redices that occur are β0 redices. Since the β0η theory is sim-
ulated by the βαηα theory in nominal patterns, higher-order pattern unification
is equivalent to nominal pattern unification.

Theorem 3. A higher-order pattern unification problem t ≈? u in ηlβn-normal
form has a solution if and only if its translation t∗∗ ≈? u∗∗ has a nominal pattern
unifier.

Proof. For the forward direction, suppose that t, u are normalized and have a
higher-order pattern unifier θ, so that θ(t) ≈ θ(u) up to ηlβn-normalization.
Moreover, this normalization process can only involve β0-redices, because there
are no metavariables of extensional function types in t, u (as argued above). Let
θ∗∗ = [X := θ(X)∗∗ | X ∈ Dom(θ)] be the translation of θ. Following a similar
argument to the one used in Theorem 2, β0-normalization can be simulated
in the nominal pattern calculus via βα-normalization. Thus, θ∗∗ is a nominal
pattern unifier of t∗∗ ≈? u∗∗.

The reverse direction is similar. Since only βα-redices can be introduced in
a nominal pattern unifier θ for t∗∗ ≈? u∗∗, we can use the reverse translation
(−)†† to translate θ to a higher-order pattern unifier θ††.

11

6 Nominal Pattern Unification as Nominal Unification

In this section, we show how to reduce nominal pattern unification to nomi-
nal unification. This is not as trivial as it sounds, for nominal patterns include
the concretion operation not found in ordinary nominal terms, and so nomi-
nal pattern unification is not an immediate special case of nominal unification.
In addition, nominal unification permits metavariables to be instantiated with
terms containing free names, whereas nominal pattern unifiers must be closed.

We deal with the second problem first. Given a problem P with metavariables
X and names a, let #(a,X) = {a # X | a ∈ a,X ∈ X}. This set of constraints
ensures that no name mentioned in P can appear free in any substitution for
P ’s metavariables. Moreover, the nominal unifiers produced by Urban et al.’s
algorithm only involve the names mentioned in the original problem.

Concretion can be eliminated from nominal pattern unification problems as
follows. If t @ a is a subterm of a nominal pattern unification problem P [t @ a],
then that problem is equivalent to the problem P [Y], 〈a〉Y ≈? t, where Y is a
fresh metavariable. This is because we know that a must be fresh for t (because of
the well-formedness constraint) and so by the η-rule, we know that t can always
be expressed as 〈a〉Y for some value Y ; this is precisely the value denoted by
t @ a.

Given a nominal pattern unification problem P over names a and variables
X, we write P# for the result of eliminating concretions from P and adding the
freshness constraints #(a,X). We claim that P# and P are equivalent problems,
and in addition that the answer to P can be computed from that of P#. However,
the final step in this process is complicated, so we will illustrate it via examples
first.

Example 3. Consider the problem 〈a〉X ≈? 〈a〉Y @ a. In this case the translation
is

#({a}, {X, Y }), Y ≈ 〈a〉Y ′, 〈a〉X ≈ 〈a〉Y ′

The nominal unifier is a # X, Y = 〈a〉X. Since a # X, and a is the only name
in scope, Y = 〈a〉X is a nominal pattern unifier for the original problem.

Example 4. The translation of the problem 〈a〉〈b〉X @ a@ b ≈? 〈a〉〈c〉Y @ c@ a
is (after some trivial simplifications)

#({a, b}, {X, Y }), X ≈ 〈a〉〈b〉X ′, Y ≈ 〈c〉〈a〉Y ′
, 〈a〉〈b〉X ′ ≈ 〈a〉〈c〉Y ′

The most general unifier is b # Y ′, X ≈ 〈a〉〈b〉(b c) · Y ′, Y ≈ 〈a〉〈c〉Y ′. Since
b # Y ′, we know that Y ′ can only depend on a and c, so there must be a Z
such that Y ′ = Z @ a@ c, where Z is a nominal pattern metavariable (i.e., can
be substituted only with closed patterns). Solving for X, Y in terms of Z, we
obtain X = 〈a〉〈b〉(a b) · (Z @ a@ c) = 〈a〉〈b〉Z @ a@ b, Y = 〈a〉〈c〉Z @ a@ c; this
is a nominal pattern unifier of the original problem.

Remark 1. There is a minor hitch in this argument, due to the fact that there
may be types that have no closed terms. For example, if data type δ consists

12

only of terms of the form v(a) for names aν and v : ν → δ, then the unification
problem X ≈? X, where X : δ, has no solution among closed terms, but it does
have a nominal unifier.

This is similar to the difficulty in ordinary (typed) unification in the presence
of possibly-void types. It is customary to either ignore this problem or assume
that all types have at least one (closed) term. In our case, it is decidable (for
finite signatures) whether each σ-type possesses any closed terms. We call such
types nonvoid. For example, ν and δ (where δ is as in the previous paragraph)
obviously possesses no closed terms, while 〈ν〉ν and 〈ν〉δ are nonvoid. Moreover,
a substitution θ is called nonvoid if all the metavariables mentioned in its range
are nonvoid.

Theorem 4. If P is satisfiable then its translation P# is satisfiable. Further-
more, if P# is satisfiable then its unifier can be translated to a substitution which
unifies P if and only if it is nonvoid.

Proof. For the forward direction, clearly if θ satisfies P then θ satisfies each
constraint in #(a,X). In addition, it is easy to show that #(a,X), P [t @ a] is
satisfiable if and only if #(a,X), P [Y], 〈a〉Y ≈? t is satisfiable; thus, by induction
if P is satisfiable then so is P#.

For the reverse direction, suppose ∇, θ is the most general nominal unifier for
P#. Let a be the names of P . Suppose that the free variables in ∇, θ are Y . For
each Y ∈ Y , there is a list of names aYi such that a ∈ A but a # Yi 6∈ ∇. Thus, we
have Yi = Zi @ aYi

for some fresh metavariables Zi such that a # Zi. If we make
this substitution, then we obtain a nominal pattern possibly involving swappings,
but these swappings can be eliminated since each Zi satisfies (ai aj) · Z ≈ Z.
This produces the desired substitution θ′. If θ′ is nonvoid, i.e. each σi is nonvoid
for Zi : σi, then each Zi can be replaced with a closed term 0σi to obtain a
satisfying valuation for P . Conversely, it is not difficult to show that if θ′ is not
nonvoid, then P is unsatisfiable, since (by the first part) any valuation satisfying
P can be used to construct a valuation satisfying P#, which would have to be
an instance of ∇, θ because it is most general. Closed instantiations of all the Zi

could be extracted from such a valuation.

7 Related work

As discussed by Urban et al. [15], nominal unification can apparently be reduced
to higher-order pattern unification, but it is difficult to see how to translate the
resulting higher-order pattern unifier to a nominal unifier. Nevertheless, such
a translation is of interest because if nominal unifiers can be extracted from
higher-order pattern unifiers in linear time, this would give a linear algorithm
for nominal unification. We believe that it would be equivalent (and notation-
ally simpler) to investigate the reduction of full nominal unification to nominal
pattern unification.

Miller [8] showed that higher-order unification problems (and higher-order
logic programs) can be translated to logic programs in Lλ [7], a logic program-
ming language based on higher-order pattern unification. This reduction takes

13

advantage of hereditary Harrop goals and clauses featured in Lλ. We believe that
a similar reduction could be performed in a nominal logic programming language
that provides hereditary Harrop goals and program clauses. While such features
are present in the current implementation of the nominal logic programming
language αProlog, the semantics of goals of the form ∀x.G and D ⊃ G have
not been studied carefully yet for nominal logic programming. This question,
and more generally, the question of whether Lλ programs can be translated to
nominal logic programs (or vice versa) is of interest.

Hamana [4] has investigated the problem of unification modulo the β0-rule
for binding algebra terms [2]. Such terms are similar to nominal or higher-order
patterns except that the lists of names supplied to metavariables may include
repeated names. As a result, unification appears to require some searching for
suitable renamings, and most general unifiers appear not to be unique. Obviously,
this is a special case of higher-order unification, but it appears to be at worst of
nondeterministic polynomial time complexity (since one can guess a sequence of
appropriate renamings to find a unifier in polynomial time). We are interested
in seeing whether this form of unification can also be implemented via nominal
logic programming using Miller’s approach.

Finally, we are interested in combining nominal and higher-order unification,
or more generally, developing nominal equational unification techniques that in-
clude higher-order unification, Hamana’s β0-unification, structural equivalence
in the π-calculus, and other equational theories involving name-binding as spe-
cial cases. We believe that nominal equational unification techniques would be
extremely useful for programming, prototyping, and formalizing programming
languages, logics, and type systems.

8 Conclusion

We have shown that higher-order pattern unification can be reduced to nominal
unification via an intermediate language of nominal patterns. This shows that
any computation that can be performed using higher-order pattern unification
can also be performed using nominal unification. It also shows that higher-order
patterns are not just an ad-hoc invention of interest for efficiency reasons, but
that they can be given formal status using nominal logic: in particular, semantic
models of binding syntax for higher-order patterns can be constructed using the
same techniques as for nominal logic.

Previous work has been focused on determining whether nominal unification
is really “new” (that is, whether it is trivially reducible to higher-order pattern
matching). We agree with Urban et al. that while it may not be new, there are
good reasons for studying nominal unification directly rather than through the
lens of higher-order unification. Moreover, our experience has been that nominal
unification is much closer to first-order unification and considerably simpler to
explain and implement than higher-order pattern unification (compare Urban
et al. [15] to treatments such as Miller [7, 8], Nipkow [11], Dowek et al. [1], or
Hamana [5]). This is not meant as a criticism of these works! Instead, our point

14

is that even if one does not believe that nominal techniques are worth investi-
gating as an alternative to higher-order abstract syntax, we believe that they are
of value as an aid to understanding higher-order abstract syntax, particularly
higher-order patterns.

References

1. G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit substi-
tutions: The case of higher-order patterns. Technical Report Rapport de Recherche
3591, INRIA, December 1998.

2. M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding.
In Giuseppe Longo, editor, Proceedings of the 14th Annual IEEE Symposium on
Logic in Computer Science, pages 193–202, Washington, DC, 1999. IEEE, IEEE
Press.

3. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

4. Makoto Hamana. A logic programming language based on binding algebras. In
Proc. Theoretical Aspects of Computer Science (TACS 2001), number 2215 in Lec-
ture Notes in Computer Science, pages 243–262. Springer-Verlag, 2001.

5. Makoto Hamana. Simple β0-unification for terms with context holes. In Proceedings
of the 16th International Workshop on Unification (UNIF 2002), pages 9–13, 2002.

6. Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–67, 1975.

7. Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. J. Logic and Computation, 1(4):497–536, 1991.

8. Dale Miller. Unification of simply typed lambda-terms as logic programming. In
Koichi Furukawa, editor, Logic Programming, Proceedings of the Eighth Interna-
tional Conference, pages 255–269, Paris, France, June 24–28 1991. MIT Press.

9. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

10. Dale Miller and Alwen Tiu. A proof theory for generic judgments: extended ab-
stract. In Proc. 18th Symp. on Logic in Computer Science (LICS 2003), pages
118–127. IEEE Press, 2003.

11. Tobias Nipkow. Functional unification of higher-order patterns. In Proc. 8th IEEE
Symp. Logic in Computer Science, pages 64–74, 1993.

12. A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound
names modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Proc. 5th
Int. Conf. on Mathematics of Programme Construction (MPC2000), number 1837
in Lecture Notes in Computer Science, pages 230–255, Ponte de Lima, Portugal,
July 2000. Springer-Verlag.

13. Zhenyu Qian. Linear unification of higher-order patterns. In Proceedings of the
International Joint Conference CAAP/FASE on Theory and Practice of Software
Development, pages 391–405. Springer-Verlag, 1993.

14. M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programmming with
binders made simple. In Proc. 8th ACM SIGPLAN Int. Conf. on Functional Pro-
gramming (ICFP 2003), pages 263–274, Uppsala, Sweden, 2003. ACM Press.

15. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Com-
puter Science, 323(1–3):473–497, 2004.

15

