
An Empirical Evaluation of Simple DTD-Conscious
Compression Techniques

James Cheney
University of Edinburgh

Edinburgh, United Kingdom
jcheney@inf.ed.ac.uk

1. INTRODUCTION
The term “XML compression” has been used to describe

techniques addressing several different (though related) prob-
lems, all relevant to Web data management:

1. minimum-length coding for efficient XML document
storage and transmission [13, 5, 10, 1];

2. compact binary formats for efficient (streaming) XML
message processing and transmission [8, 9]; and

3. storage techniques for efficient XML database query
processing [11, 17, 3, 2].

To avoid ambiguity, in this paper, the term “XML compres-
sion” is used in the first (and, we believe, original and most
accurate) sense exclusively. We will compare our proposed
techniques only with other approaches that address problem
(1), not problems (2) or (3).

Since XML markup often displays a high degree of redun-
dancy, ordinary text compressors (gzip [7], bzip2 [15], etc.)
are frequently used for XML storage and transmission. Text
compressors perform adequately for archiving XML files in
many situations; however, they are blind to the underlying
structure of the XML document so may miss compression
opportunities. Because of this, researchers have studied, and
companies have marketed, XML compression tools.

In previous work [5], we developed a streaming XML-
conscious compressor xmlppm, and showed that it provides
compression superior to other contemporary text and XML-
conscious compression techniques (including XMill [13]).

The purpose of this paper is to investigate whether DTD
information can be used to improve compression in xmlppm

enough to justify the added implementation effort. We con-
sider the minimum-length coding problem for valid XML:
Given a data source producing XML conforming to a DTD,
find the smallest possible encoding. We assume both sender
and receiver have access to identical copies of the DTD.

It appears to be common sense that a DTD, XML Schema,
or RELAX/NG schema should be useful in helping to com-
press conforming XML documents, and many of the above

Eighth International Workshop on the Web and Databases (WebDB 2005)
June 16–17, 2005, Baltimore, Maryland, USA
Copyright 2005 held by the author.

approaches exploit or require an XML Schema. However,
we are aware of no rigorous experimental validation of DTD
or schema-conscious XML compression in comparison with
competitive DTD-unconscious XML compression techniques.

We choose to focus on DTDs exclusively (rather than
XML Schema or RELAX/NG schemas) for several reasons:
DTDs are simpler, more established, and more widely adopted;
DTD parsing is built-in to most XML parsers; DTD valida-
tion is easier to implement than for the other approaches;
and substantial compression improvements turn out to be
possible using DTDs only. Nevertheless, XML Schema and
RELAX/NG schemas can provide much more detailed infor-
mation about documents, especially about their text con-
tent. We view generalizing our results to more powerful
schema systems as an important future direction.

Because xmlppm already compresses both XML structure
and text very well, and because of the complexity of the
underlying PPM algorithms, it is easy to generate ideas for
DTD-based compression that work well “on paper” but are
either incompatible with xmlppm or do not improve compres-
sion relative to xmlppm. In this paper we describe dtdppm,
a version of xmlppm that simultaneously validates and com-
presses XML relative to a DTD. Our main contribution is
the development of four simple DTD-based optimizations
that techniques that do work well with xmlppm: ignorable
whitespace stripping, symbol table reuse, element symbol pre-
diction, and bitmap-based attribute list coding. These simple
techniques are validated by experiments showing substantial
compression benefits for a variety of real data sources.

The structure of the rest of the paper is as follows. Section
2 reviews xmlppm. Section 3 presents the DTD-conscious
compression techniques used in dtdppm. Section 4 presents
experimental results, and Section 5 discusses the results.
Section 6 concludes.

2. BACKGROUND
In previous work, we developed xmlppm [5, 4], an algo-

rithm for XML compression based on Prediction by Partial
Match (PPM) [6], one of the most advanced known text
compression techniques. PPM compression builds a statis-
tical model of the data seen so far, and uses it to generate a
probability distribution predicting the next symbol; the ac-
tual symbol is transmitted using arithmetic coding relative
to this distribution. In xmlppm, an XML file is first parsed
using a SAX parser to generate a stream of SAX events.
Each event is encoded using a bytecode representation called
ESAX. The ESAX bytecodes are encoded using one of sev-
eral “multiplexed” PPM compressors, for elements, charac-

<?xml version="1.0"?>
<e a="foo">
 <e2> bar </e2>
 ...
</e>
<!-- Comment -->

Elements

Attributes

Text

Misc

Arithmetic
Coder

XML Bits

0010...XML Bytecoder

ProbabilitiesXML Bytecode

Figure 1: xmlppm architecture

ters, attributes, and miscellaneous symbols. The encoder
and decoder states are in lockstep so that the decoder al-
ways knows which model to use for the next symbol. The
architecture of xmlppm is shown in Figure 1.

This XML-conscious, multiplexed modeling approach of-
fers several benefits over simply using PPM compression di-
rectly on XML text. First, xmlppm tokenizes element and
attribute names, so less time is spent on low-level PPM
compression. Second, text, element, and attribute content
in XML have different statistical characteristics, so using
different models for each kind of data improves compres-
sion. Third, xmlppm uses its knowledge of the structure of
XML documents to influence the underlying statistical mod-
els and improve compression. Specifically, the element, at-
tribute and text PPM models are given “hints” about the
surrounding XML element context. (The paper [5] gives full
details.)

PPM techniques are among the most advanced known text
compression techniques, and many XML documents consist
primarily of unstructured text, so it is not surprising that
using PPM leads to improved XML compression. However,
this level of performance comes at a cost. In the origi-
nal reported experiments [5], the implementation of xmlppm
was very slow (ranging from 5–40 times slower than bzip2).
Since then, the speed of xmlppm has been improved consid-
erably by incorporating Shkarin’s highly optimized PPMII
implementation of PPM [16]. The most recent version of
xmlppm [4] is still about a factor of 5–10 slower than gzip,
but is generally as fast as or faster than bzip2, while pro-
viding better compression.

Table 1 compares gzip, bzip2, the current implementa-
tion of xmlppm, and dtdppm on the corpus used in [5]. The
experimental setup is described in Section 4. The XML
column lists the size of the input files in bytes; the other
columns measure compression rate in bits per input charac-
ter (bpc) for each compressor. Times are in seconds. The
final column % shows the percentage change in compres-
sion rate or execution time for dtdppm vs. xmlppm (that is,
((X −D)/X)%, where X is the rate/time for xmlppm and D
the rate/time for dtdppm). The results are discussed further
in Section 4.1.

3. COMPRESSION TECHNIQUES
We modified the current version of xmlppm to read in and

validate its input relative to a DTD: the resulting DTD-
conscious compressor is called dtdppm. In dtdppm, the DTD
validation state is available for use during compression, so
DTD-specific optimizations are possible. We have imple-
mented four DTD-based optimizations: ignorable whites-
pace stripping, symbol table reuse, element symbol predic-
tion, and bitmap-based attribute list coding.

XML gzip bzip2 xmlppm dtdppm change
(bytes) (bpc) (bpc) (bpc) (bpc) %

elts 113181 0.622 0.416 0.375 0.327 13%
pcc1 51647 0.557 0.444 0.301 0.229 24%
pcc2 262669 0.320 0.183 0.145 0.123 15%
pcc3 186857 0.374 0.227 0.167 0.144 14%
play1 251898 2.160 1.549 1.449 1.453 −0.21%
play2 136841 2.141 1.630 1.473 1.464 0.62%
play3 279703 2.267 1.647 1.569 1.566 0.18%
sprot 10268 2.056 2.048 1.692 1.430 16%
stats1 669347 0.798 0.369 0.294 0.282 4.2%
stats2 616094 0.750 0.338 0.272 0.258 5.3%
tal1 734590 0.313 0.123 0.117 0.102 13%
tal2 510111 0.322 0.151 0.127 0.107 16%
tal3 251698 0.330 0.198 0.152 0.125 18%
tpc 287992 1.476 1.101 1.007 0.980 2.6%
tree 6704 1.734 1.494 1.104 0.715 35%
w3c1 220794 1.888 1.464 1.302 1.275 2.0%
w3c2 196233 1.947 1.534 1.365 1.338 2.0%
w3c3 201849 2.139 1.722 1.530 1.471 3.8%
w3c4 104938 1.804 1.521 1.333 1.280 4.0%
w3c5 247465 1.823 1.435 1.336 1.287 3.7%
weblog 2304 2.160 2.559 1.747 1.420 18%
total 5343183 1.035 0.701 0.625 0.603 3.6%
time(s) 0.61 2.38 1.89 2.50 −32%

Table 1: XMLPPM corpus

3.1 Ignorable whitespace stripping
Much of the whitespace in an XML document is irrele-

vant to the data being represented: for example, whites-
pace is often used only as a visual cue to the document’s
hierarchical structure. We call this whitespace ignorable.
Our implementation attempts to drop ignorable whitespace
whenever possible. PPM algorithms typically use up to 10
of the most recent characters as context to predict the next
symbol. Compressing long sequences of whitespace flushes
the context, so the model is unprepared for whatever comes
next. Therefore, though it may seem trivial, whitespace
stripping is crucial for good PPM compression performance
because it helps prevent PPM models from losing track of
context.

It is not generally safe to drop whitespace in the absence
of a DTD, since whitespace is significant in some elements
(e.g., <xsl:text>). However, in the presence of a DTD,
whitespace can usually be safely ignored whenever it occurs
inside an element whose content model does not mention
#PCDATA. dtdppm tests for this whenever character data is en-
countered, and ignorable whitespace is dropped. When doc-
uments with ignored whitespace are decompressed, dtdppm
optionally inserts newlines and indentation so that the re-
sulting document will be human-readable rather than one
long line.

Nevertheless, there may be documents with whitespace
that is ignorable by our definition but which users wish to
preserve, so whitespace stripping is optional.

3.2 Symbol table reuse
In xmlppm, element and attribute tags (and some other

kinds of symbols) are replaced by symbol table references.
However, in the absence of a DTD, the symbol table needs
to be built dynamically by the encoder and decoder, so the
text for each symbol is sent when it is first encountered in
the document. In dtdppm, the DTD is available to both
encoder and decoder, and it is not necessary to transmit the

symbols inline. Instead, both encoder and decoder can refer
to a symbol table built from the DTD.

The savings from this optimization are not dramatic, since
the DTD may be much smaller then the document; however,
symbol table reuse is important in a situation in which many
small documents are to be compressed, especially since or-
dinary compression techniques are less effective for smaller
documents.

3.3 Element symbol prediction
In the absence of a DTD, any element tag can, in principle,

occur anywhere in the document. However, in valid XML,
elements may have regular expression content models

<!ELEMENT foo (bar,(baz|bar)*)>

that constrain the children of the element. For highly struc-
tured data, frequently there is only one possible next element
symbol; this can be determined by inspecting the state of the
DTD validator. When this is the case, the dtdppm encoder
omits the element bytecode since the decoder can infer the
next element symbol from context. Similarly, it is possible
to test whether the remaining content model is empty. In
this case, the “end-element” bytecode that would ordinar-
ily be sent is omitted because the decoder can infer it from
context.

This technique may seem trivial since it does not do any-
thing special other than to omit symbols that can be pre-
dicted from context. However, more sophisticated tech-
niques seem to interact badly with PPM. For example, in
approaches like those of Levene and Wood [12] or XCom-
prez [10], element content sequences are encoded in a more
sophisticated way that is dependent on the remaining reg-
ular expression content model. We experimented with a
simple form of this approach in dtdppm, but found that it
does not help much relative to ordinary xmlppm compression.
This is because PPM compresses byte-aligned text, so us-
ing non-byte-aligned encodings for element symbols confuses
the underlying PPM model. Nevertheless, this is definitely
an area where improvement may be possible. Combining so-
phisticated regular expression coding techniques with PPM
compression is a challenge left for future work.

3.4 Bitmap-based attribute list encoding
Attribute list declarations

<!ATTLIST elt att1 TYPE1 DFLT1 att2 TYPE2 DFLT2 ...>

are one of the most complicated features of DTDs. Attribute
values can have one of several types TYPE:

CDATA Arbitrary text
ID Globally unique, can’t be FIXED

IDREF(S) Must refer to an ID

NMTOKEN(S) Must be a name token
ENTITY(IES) Must be a declared ENTITY

NOTATION (v1| · · · |vn) Enumerated, declared NOTATION

(v1| · · · |vn) Enumerated type
Attribute types IDREF, NMTOKEN, and ENTITY can be plural.
Attributes can also have several default specifications DFLT:

"dflt" Default value is "dflt"

#FIXED "dflt" Must be present and equal "dflt"
#REQUIRED Value must be present
#IMPLIED May be absent, no default

In XML, the order of attribute-value pairs is irrelevant; thus,
we may rearrange the attribute list if doing so improves

compression. In dtdppm, we encode attribute lists by send-
ing a (byte-aligned) bitmap indicating which attributes are
present, then sending the attribute values. Default and type
constraints are used to avoid sending redundant information.

The details of the encoding are as follows. First, the at-
tribute list is scanned in order to build a bit vector. This bit
vector says which attribute values are going to be sent next.
#FIXED and #REQUIRED attributes are not included, since
they must be present in a valid document. For #IMPLIED

attributes, 1 indicates present, 0 absent. For attributes with
a default value, 1 indicates that the value is non-default, 0
otherwise. Subsequently, the values of #REQUIRED attributes
and other attributes whose bitmap value is 1 are trans-
mitted. The values of attributes with enumerated types
(v0| · · · |vn) are encoded as bytecodes 0, . . . , n.

For example, given

<!ATTLIST elt att1 CDATA #FIXED "foo"

att2 (x|y|z) #REQUIRED

att3 CDATA #IMPLIED

att4 NMTOKEN "bar">

the encoding of the attribute list of

<elt att1="foo" att2="y" att4="baz">

is 40 01 ’b’ ’a’ ’z’ 00. The top two bits of the first byte
(4016 = 010000002) code the absence of att3 and (non-
default) presence of att4; 01 codes enumerated value y; and
the non-default value baz of att4 is transmitted as a null-
terminated string.

There are many possible variations on this theme. We
initially tried two simpler ideas, based on adjacency lists
and vector representations of attribute lists, each of which
worked well for some examples but not for others; the bitmap
approach combines the advantages of the two approaches.

4. EVALUATION
The design of a corpus for testing compression techniques

can be a subtle issue, because of the possibility of accidental
bias towards one or another kind of data. So far, no stan-
dard corpus for XML compression (let alone DTD/schema-
conscious compression) has emerged. Desirable characteris-
tics of test data include that the data (and DTDs) be freely
available online, that there are nontrivial amounts of data
(whole documents instead of short examples), that the data
is actually valid relative to the DTD, and finally, that the
data be “realistic” (i.e., not random or arbitrary). Obvi-
ously many of these criteria are subjective. Unfortunately,
it is not easy to find data sources having all these charac-
teristics.

We have evaluated dtdppm on five corpora:

• The XMLPPM corpus [5]

• Short documents (NewsML)

• Medium structured application data (MusicXML)

• Medium flat datasets (UW XML repository)

• Large datasets (DBLP, Medline, PSD, XMark)

We are aware of other collections of valid XML, such as
the Niagara experimental data1 but have not had time to
experiment with these other sources.
1http://www.cs.wisc.edu/niagara/data.html

Our experiments were performed on an AMD Athlon 64
3000+ (1.8Ghz clock speed) with 512MB RAM, running Red
Hat Fedora Core 3. We report compression in bits per char-
acter (relative to the original XML input) and total compres-
sion time for gzip, bzip2, xmlppm, and dtdppm for each data
source. (For PPM techniques decompression takes the same
time as compression.) The PPM models used by xmlppm

and dtdppm are order 5 models with 1MB of working mem-
ory per model (for a total of 4MB). We also benchmarked
the current version of XMill2, and found that, as in [5], it
compresses no better than bzip2 but runs up to three times
faster. Because of limited space, these results are omitted.

In addition, we compared the effectiveness of the individ-
ual compression techniques, and found that no single tech-
nique was dominant. Space limits preclude a full discussion.

4.1 The XMLPPM corpus
For comparison with previous work, we evaluated the per-

formance of dtdppm using the same data3 used by [5]. This
corpus contains XML files ranging from small (1KB) to large
(700KB), and including both highly textual data and highly
structured data. DTDs for each file were either constructed
by hand or obtained online. Some errors and inaccuracies
in existing DTDs were corrected.

The realism of this benchmark is debatable; its chief virtue
is variety. Also, results for this benchmark may be skewed
since we constructed some of the DTDs ourselves (with com-
pression in mind), rather than using given DTDs.

Nevertheless, the results (Table 1) do indicate that DTD-
conscious compression can be worthwhile for a variety of
kinds of XML. In particular, small XML fragments (sprot,
from SwissPROT; tree, from Penn Treebank; and weblog,
a web log excerpt) exhibit substantial improvements of 16–
35%, and large, highly-structured files (elts, periodic table
data; pcc1-3, formal proofs; tal1-3, typed assembly lan-
guage files) improve 13–24%. On the other hand, exam-
ples with a lot of text or very regular structure (play1-3,
Shakespeare plays; stats1-2, baseball statistics; tpc, TPC
benchmark data; w3c1-5, W3C standards) did not compress
significantly better (0-5% improvement); one example com-
presses 0.14% worse. For these examples, xmlppm already
compresses regular structure well and the DTDs provide no
information that would help improve text compression. As
with most of our examples, dtdppm ran slightly slower than
xmlppm.

4.2 Short documents
NewsML4 is an XML dialect designed for news articles

from press services (e.g. Reuters). The 80KB NewsML
DTD defines a NewsML document as some metadata and
uses XHTML for the article content (another 56KB). We ob-
tained the DTD and a collection of 246 example NewsML ar-
ticles, ranging from 6.5–18.2KB (average size 11.2KB). The
compression results for the NewsML data are summarized in
Table 2. The “NewsML” line shows the compression rates
over the entire corpus; the “time” line shows the total com-
pression time.

These results suggest that NewsML documents benefit
substantially from DTD-conscious compression, largely, we
believe, due to symbol table reuse. Both xmlppm and dtdppm

2http://www.cs.washington.edu/homes/suciu/XMILL/
3available at http://xmlppm.sourceforge.net/
4http://www.newsml.org

gzip bzip2 xmlppm dtdppm change
(bpc) (bpc) (bpc) (bpc) %

NewsML 2.292 2.241 1.982 1.484 25%
time(s) 0.38 2.19 1.54 6.11 −300%
MusicXML 0.304 0.216 0.223 0.127 43%
time(s) 0.10 1.78 0.57 0.77 −35%

Table 2: NewsML and MusicXML results

are considerably slower than bzip2 in this case; reparsing
the 136KB of DTD files accounts for roughly 55% of dtdppm
running time. This overhead could be alleviated by special-
izing the compressor to the DTD.

4.3 Medium structured application data
XML is becoming a widespread format for storing appli-

cation data: for example, recent versions of popular office
suites either store application data as XML directly, or offer
the ability to export data in XML. However, standard DTDs
for such data are not always available, stable, or heeded.

MusicXML5 is an XML dialect for representing music.
MusicXML documents can be translated to a sheet music
PDF file of either all parts or a single part, as well as to
a MIDI file that can be played directly on a synthesizer or
further processed using sequencing software. We obtained
the MusicXML DTD files (106KB total) and 18 example
MusicXML files ranging from 8.8–230KB (101KB average),
each corresponding to one or two sheets of a musical score.
The compression results for MusicXML are shown in Ta-
ble 2. The best compression is obtained by dtdppm; the
average improvement is 43%. Note that plain xmlppm gener-
ally compresses MusicXML slightly worse than bzip2, but
both xmlppm and dtdppm are slightly faster.

The MusicXML web page claims that gzip-compressed
MusicXML documents are only about twice as large as equiv-
alent documents in MuseData, a custom format. Since dtdppm
compresses MusicXML 58% better than gzip on average,
this suggests dtdppm is competitive with a hand-coded bi-
nary format.

4.4 Medium flat datasets
XML is sometimes used to export, or publish, the data in

a relational table or database, often with some added struc-
ture. The UW XML repository6 includes several example
XML data sources, many of which consist of a flat sequence
of elements with identical structure. Unfortunately, many of
these examples do not possess DTDs, or are not valid. We
chose several medium-sized examples that do have DTDs
and are valid to evaluate dtdppm for such data.

This situation seems to offer great promise, since the DTD
tells us almost everything we need to know about the struc-
ture of the data: only a few details (such as the number of
rows) need to be filled in. However, data with very regular
structure already compresses very well using plain XML-
conscious compression techniques, because the DTD only
tells the compressor things it learns quickly for itself. As
a result, the amount of improvement that can be expected
for such data is limited. On the other hand, many of the
medium-sized files make liberal use of whitespace for read-
ability. As a result, some improvement to compression re-

5http://www.recordare.com/xml.html
6http://www.cs.washington.edu/research/xmldatasets/

XML gzip bzip2 xmlppm dtdppm change
(bytes) (bpc) (bpc) (bpc) (bpc) %

321gone 24442 2.213 2.228 1.884 1.741 7.5%
cornell 30979 1.026 0.954 0.880 0.732 17%
ebay 35472 2.480 2.580 2.189 2.103 3.9%
reed 283582 0.533 0.332 0.327 0.274 16%
SigRec 478337 1.363 0.812 0.802 0.745 7.1%
ubid 20246 1.494 1.515 1.296 1.114 14%
wash 3068693 0.525 0.317 0.390 0.275 30%
yahoo 25347 1.971 1.903 1.620 1.470 9.3%
total 3967098 0.673 0.431 0.477 0.372 22%
time(s) 0.28 3.21 1.17 1.65 −41%

Table 3: Medium flat file benchmark results

sulting from whitespace stripping is to be expected.
The experimental results are shown in Table 3. In a few

examples (reed, wash, course information; cornell, person-
nel records; ubid, auction data), dtdppm achieves a substan-
tial improvement because of whitespace stripping, improv-
ing compression substantially (14–30%). For the other ex-
amples (321gone, ebay, yahoo, auction data; SigRec, bib-
liographic records) improvement was in the more modest
4–9% range. Overall compression improved 22% relative to
xmlppm (mostly because of wash). For this dataset, bzip2

compressed better than xmlppm, but dtdppm performed best
overall. Perhaps surprisingly, both xmlppm and dtdppm were
2–2.5 times as fast as bzip2.

4.5 Large datasets
Another increasingly common scenario is the use of XML

as a format for serializing large databases. Examples in-
clude scientific databases like SwissPROT/UniPROT and
the Georgetown Protein Sequence Database and bibliographic
databases like DBLP and Medline. These databases are typ-
ically made available on the Web and updated at intervals
ranging from daily to yearly. Because of their size, scalable
and effective compression is very important.

Another large dataset example is the data generated by
XMark. The XMark benchmark [14] has been proposed as
a means for comparing the performance of XML databases.
It consists of a DTD for auction data and a data generator
which generates a random valid document of size propor-
tional to a given “scaling factor”.

In Table 4, we present the results of compressing four
large datasets: xmark is an example XMark file7, medline
is one part of the PubMed database8, psd is a file from
the Georgetown Protein Sequence Database, and dblp is an
XML serialization of the DBLP database. The psd and dblp

examples were obtained from the UW XML repository.
The results vary. For xmark, dtdppm and xmlppm compress

7.7% worse than bzip2. This is the only example in the pa-
per for which dtdppm is not competitive (i.e., within 1% of
the best). For other examples, dtdppm’s compression is com-
petitive or best. However, xmark data may not be a realistic
compression benchmark because it is randomly generated.
The DTDs for these documents do not provide many oppor-
tunities to predict a unique next symbol, so the behavior
of dtdppm is essentially the same as xmlppm. Also, all of
these documents use whitespace only trivially (i.e., each el-
ement tag is on its own line, but there is no indenting), so

7http://www.xml-benchmark.org
8http://www.ncbi.nlm.nih.gov/

XML gzip bzip2 xmlppm dtdppm change
(bytes) (bpc) (bpc) (bpc) (bpc) %

xmark 116MB 2.616 1.754 1.888 1.889 −0.02%
time(s) 13.4 46.3 39.1 39.5 −0.8%
medline 127MB 1.278 0.888 0.841 0.838 0.4%
time 7.5 65.1 32.3 33.0 −2.2%
psd 717MB 1.209 0.857 0.867 0.846 2.5%
time 33.9 389.7 169.3 170.0 −0.4%
dblp 103MB 1.479 0.963 0.940 0.947 −0.8%
time(s) 6.9 48.8 27.3 28.2 −3.2%

Table 4: Large benchmark results

whitespace stripping has little effect. Compression time is
also similar to xmlppm in most cases, although interestingly
dtdppm and xmlppm are generally 15–60% faster than bzip2.

5. DISCUSSION
There are several lessons that can be learned from our

experiments. DTD-conscious compression (as embodied in
dtdppm) is very effective for small messages, highly-structured
documents, or documents with large amounts of formatting
whitespace. For large datasets, dtdppm does not compress
significantly better than xmlppm; however, both xmlppm and
dtdppm compress as well as or better than bzip2 but 30-50%
faster. xmlppm will probably never be as fast as gzip, but
xmlppm and dtdppm compress significantly better than gzip

while staying within an order of magnitude of gzip’s speed.
Another observation is that DTDs can be well- or ill-

suited for compression. For example, in stats2 (baseball
statistics), the DTD says that each player element has a
sequence of optional sub-elements (e?

1, . . . , e
?
n
), but the ac-

tual data exhibits only two instances of this content model.
Similarly, common content models like (e1| · · · |en)∗ do not
provide any information that helps dtdppm. Finding ways to
take advantage of such content models is an important area
for future work, especially since the same kind of techniques
may be useful for compressing regular expression-typed text
in XML Schema.

Another problem is that XML’s data model is ordered,
whereas many data sources (e.g. relation fields, semistruc-
tured data trees, or BibTeX records) are conceptually un-
ordered. DTDs cannot express unordered content models
efficiently so the content model (e1| · · · |en)∗ is often used as
an approximation. Other schema systems such as ASN.1,
RELAX/NG and XML Schema do provide unordered con-
tent models, but it is not obvious how to compress with
respect to such content models effectively. One possibility is
to sort content in unordered content models so as to place
it in a normal form, as with attribute lists; however, this
transformation is non-streaming.

XML encourages a structured approach to data manage-
ment, but this approach is usually followed only up to a
point. A typical example of the use of low-level character
data formats is the use of date strings Mar 15 17:55 instead
of XML markup

<date><month>Mar</month><day>15</day>

<time><hour>17</hour><min>55</min></date>

The former representation is briefer and more human-readable,
but xmlppm will likely compress the latter much better. XML
Schema’s datatypes (especially dates) may be useful for im-
proving compression for this kind of data.

6. RELATED WORK
Liefke and Suciu’s XMill [13] is probably the best known

XML compressor. One interesting aspect of XMill is that
it allows user-defined container specifications using XPath
expressions to define containers and to specify datatype-
specific compressors. This can significantly improve com-
pression, but may require nontrivial user effort. It is pos-
sible that XMill could be made schema-conscious by auto-
matically generating specifications from schemas.

Levene and Wood [12] propose DTD-based encodings for
XML data in which the encoding is dependent on the cur-
rent content model. For example, content matching r|s is
encoded by sending 0 if the content matches r, or 1 if it
matches s, then encoding the content relative to r or s re-
spectively. This encoding has not been implemented as far
as we know; also, although Levene and Wood prove an op-
timality result, it rests on very strong assumptions (data
must conform to a nonrecursive DTD and be generated by
independent random choices). This is a step in the right
direction, but more theoretical understanding is needed.

Jeuring and Hagg [10] have developed XComprez, which
compresses valid XML using an encoding similar to that
of Levene and Wood. They use a powerful experimental
programming language called Generic Haskell in which the
compressor constitutes approximately 650 lines of code (in
contrast to 4300 lines of C++ code for xmlppm and 9000 lines
for dtdppm). It is not yet clear whether this approach scales
to large XML documents, but advanced programming tools
like Generic Haskell may make it easier to rapidly prototype
compression techniques prior to full-scale implementation.

SCMPPM [1] is an XMLPPM variant that uses a sepa-
rate PPM model to compress the text content under each
element. It achieves reported improvements of 20% over
plain XMLPPM when compressing large TREC datasets.
However, it has not been evaluated on other data, so this
result must be taken with a grain of salt.

7. FUTURE WORK
As stated in the introduction, we view dtdppm as the first

step in a logical progression to RELAX/NG- and XML sche-
ma-conscious compression tools. In particular, RELAX/NG
seems like a logical next step because it is not much more
complicated than DTD yet supports datatypes for text con-
tent. As for XML Schema, we are intrigued by the possibility
of compressing text relative to arbitrary regular expressions.
However, we suspect that obvious ways of doing this will not
be as effective as plain PPM or xmlppm; instead, we intend
to find a way to combine PPM and regular expression-based
modeling. If such an approach can be found, we believe it
will also help with element content compression.

Finally, the prototype implementation9 has a few bugs
that need to be fixed, and several worthwhile optimizations
appear possible (particularly pre-compiling or specializing
dtdppm to a DTD).

8. CONCLUSIONS
The purpose of this paper was to determine whether DTD-

conscious compression techniques offer enough benefits, rel-
ative to state-or-the-art XML compression, to be worth the
(nontrivial) implementation effort needed. We implemented

9http://xmlppm.sourceforge.net/dtdppm

a validating compressor, dtdppm, which reads in a DTD
and XML document and simultaneously validates and com-
presses it. In addition, dtdppm performs several optimiza-
tions on the encoding which are only possible in the presence
of a DTD. Put together, these optimizations can improve
compression by up to 43% over xmlppm. While dtdppm can
be very effective for small or highly-structured documents, it
may not compress unstructured, mostly-text, or large doc-
uments significantly better than xmlppm. Nevertheless, we
found xmlppm and dtdppm compress large documents as well
as bzip2 but significantly (15-60%) faster.

We believe that this is the first comprehensive assessment
of a DTD-conscious XML compression tool.

9. REFERENCES
[1] J. Adiego, P. de la Fuente, and G. Navarro. Merging

prediction by partial matching with structural contexts
model. In Proc. 2004 IEEE Data Compression Conference
(DCC’04), page 522, 2004.

[2] Peter Buneman, Byron Choi, Wenfei Fan, Robert
Hutchison, Robert Mann, and Stratis Viglas. Vectorizing
and querying large XML repositories. In Proc. 21st Int.
Conference on Data Engineering (ICDE 2005), 2005. To
appear.

[3] Peter Buneman, Martin Grohe, and Christoph Koch. Path
queries on compressed XML. In Int. Conference on Very
Large Data Bases (VLDB’03), pages 141–152, 2003.

[4] J. Cheney. xmlppm, version 0.98.2.
http://xmlppm.sourceforge.net/.

[5] James Cheney. Compressing XML with multiplexed
hierarchical models. In Proc. 2001 IEEE Data Compression
Conference (DCC 2001), pages 163–172. IEEE, 2001.

[6] J. G. Cleary and I. H. Witten. Data compression using
adaptive coding and partial string matching. IEEE Trans.
Comm., COM-32(4):396–402, 1984.

[7] J.-L. Gailly. gzip, version 1.2.4. http://www.gzip.org/.
[8] Marc Girardot and Neel Sundaresan. Millau: An encoding

format for efficient representation and exchange of XML
over the web. Computer Networks, 33(1–6):747–765, 2000.

[9] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto
Onizuka, and Dan Suciu. Processing XML streams with
deterministic automata and stream indexes. Transactions
on Database Systems, 29(4), December 2004.

[10] Johan Jeuring and Paul Hagg. Generic programming for
XML tools. Technical Report UU-CS-2002-023, Utrecht
University, 2002.

[11] W.Y. Lam, W. Ng, P.T. Wood, and M. Levene. XCQ: XML
compression and querying system. In Proc. 12th Int.
Conference on the World Wide Web (WWW 2003), 2003.

[12] M. Levene and P. T. Wood. XML structure compression. In
Proc. 2nd Int. Workshop on Web Dynamics, 2002.

[13] Hartmut Liefke and Dan Suciu. XMill: An efficient
compressor for XML data. In SIGMOD ’00: Proc. 2000
ACM SIGMOD international conference on management
of data, pages 153–164. ACM Press, 2000.

[14] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
benchmark project. Technical Report INS-R0103, Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, The
Netherlands, 2001.

[15] J. Seward. bzip2, version 0.9.5d.
http://sources.redhat.com/bzip2/.

[16] Dmitry Shkarin. PPM: One step to practicality. In Proc.
12th IEEE Data Compression Conference, pages 202–211,
2002.

[17] P. M. Tolani and J. R. Haritsa. XGRIND: A query-friendly
XML compressor. In Proc. 18th Int. Conference on Data
Engineering (ICDE’02), pages 225–234. IEEE, 2002.

