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Abstract

Large XML data files, or XML databases, are now a common way to dis-
tribute scientific and bibliographic data, and storing such data efficiently is an
important concern. A number of approaches to XML compression have been
proposed in the last five years. The most competitive approaches employ one or
more statistical text compressors based on PPM or arithmetic coding in which
some of the context is provided by the XML document structure. The purpose
of this paper is to investigate the relationship between the extant proposals in
more detail. We review the two main statistical modeling approaches proposed
so far, and evaluate their performance on two representative XML databases.
Our main finding is that while a recently-proposed multiple-model approach
can provide better overall compression for large databases, it uses much more
memory and converges more slowly than a single-model approach.

1 Introduction

Over the last few years, XML has become popular as an exchange format for large
data collections, including scientific databases like the Georgetown Protein Struc-
ture Database (pir.georgetown.edu) and UniProt (www.ebi.uniprot.org) as well
as bibliographic databases such as Medline (www.ncbi.nlm.nih.gov) and DBLP
(dblp.uni-trier.de). We refer to such documents as XML databases. Due to
the high redundancy of XML’s text representation, compression is clearly needed
for storing and transmitting XML databases efficiently. Although there is no obsta-
cle to using general-purpose text compressors to compress XML (and this is what
is done most frequently in practice), several researchers have proposed XML-specific
compression techniques which take advantage of the structure of XML to improve
compression beyond what is typically achieved by text compressors alone.

The first such effort was Liefke and Suciu’s XMill [8], a compressor which splits
the text of the XML document into containers and compresses each container using a
text compressor, such as gzip, bzip2 or PPM [5]. XMill is fast and typically provides
compression improvement of around 20% compared to gzip, but typically does not

1



compress better than bzip2 or PPM. In addition, XMill runs “offline”, that is, it pro-
cesses the document in large chunks, rather than processing it one symbol at a time.
Cheney [3] developed xmlppm, a streaming compressor that uses a modeling technique
called multiplexed hierarchical modeling (MHM). MHM switches among a small num-
ber of PPM models, one for element, attribute, character, and miscellaneous data,
and “injects” element context symbols into the other models to recover accuracy lost
due to model splitting. xmlppm typically provides compression performance improve-
ments of 10–25% over the best achieved by XMill or bzip2. Adiego, de la Fuente,
and Navarro [1] developed SCMPPM, a variant of the xmlppm approach which uses
a technique called structural context modeling (SCM): rather than switching among
a small number of models based on the syntactic class of the data, SCMPPM uses a
separate model to compress the content under each element symbol. Leighton, Dia-
mond and Müldner [7] developed AXECHOP, which uses XMill’s container approach
for text content and grammar-based compression to encode the element structure of
the document. Hariharan and Shankar [6] presented XAUST, a compressor which
takes advantage of DTD information to compress the element structure and which
uses the structural context model to compress character data (albeit using order-4
arithmetic coding rather than PPM). Cheney [4] developed dtdppm, a DTD-conscious
extension of xmlppm, and reported experiments indicating that DTD information pro-
vides compression improvements in the neighborhood of 20–40% relative to xmlppm

for small, highly structured documents, but little improvement for large documents.
Although several approaches have been proposed, we believe that not enough

careful empirical evaluation of the proposals has been performed. For example, both
SCMPPM and XAUST were compared with xmlppm and compression improvements
in the neighborhood of 20% were reported. While it is certainly plausible that the
structural context model approach underlying both techniques provides significant
compression benefits relative to xmlppm, we believe that the experimental results in
the above papers do not provide enough evidence to establish this conclusively.

One reason for skepticism is that the version of xmlppm used in their experiments
uses a single 1MB model for character data, while SCMPPM uses one 1MB model
per element symbol and XAUST has no memory limit. For large documents, both
SCMPPM and XAUST typically use considerably more than 1MB of model memory,
so it is unclear whether the reported compression improvements are due to more
accurate modeling or the use of more memory. In addition, the SCMPPM approach
may allocate much more memory than it actually uses, which may limit the amount
of memory it can use effectively.

A second objection to the experimental methodology used to evaluate SCMPPM
and XAUST is that both only considered overall compression performance for very
large documents (from 1MB to 1GB range). Because it splits text among many
models, the SCM modeling technique seems likely to converge to its minimum bit
rate more slowly than either MHM or plain PPM. Although rapid convergence is not
important for compressing large XML databases, it may be important for compressing
large collections of small XML documents; this may be a more realistic scenario for
employing compression in an information-retrieval setting.

Of course, to some extent both criticisms apply to the experiments in Cheney [3, 4]
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as well, since memory use was not taken into account there either and the earlier paper
did not evaluate the performance of xmlppm for large documents (in part because few
XML databases were publicly available at the time). In this paper, we will remedy
these omissions.

The purpose of this paper is to compare the proposed statistical modeling tech-
niques carefully enough to be able to draw some conclusions about their relative
performance in different situations. To simplify matters, we argue that the dominant
factor in XML database compression is the method used for compressing unstructured
text. We present the results of experiments comparing plain PPM, MHM, and SCM
on two representative XML databases. Our experiments measure the memory uti-
lization (amount of allocated memory that is actually used), the tradeoff of memory
use vs. compression rate, and the convergence rate (the relationship between amount
of input data seen and compression rate). We also present and evaluate a hybrid
approach that attempts to combine the good features of MHM and SCM.

Our main findings are as follows. Neither approach is better in all situations. The
SCM approach does, as previous experiments suggest, provide compression benefits
over MHM for large files. However, these benefits come at a high memory cost. SCM
has very low memory utilization, and performs significantly worse than either MHM
or PPM when less than 10MB of model memory is available. In addition, SCM
converges to its limiting compression rate more slowly than MHM, so is less suitable
for compressing small or nonuniform files. The hybrid approach we propose avoids
the worst-case behavior of the MHM and SCM models, but we believe that further
improvements are possible.

The rest of this paper is structured as follows. We first review the MHM and SCM
modeling techniques in detail, and present a hybrid technique. We then present the
experimental methodology and analyze experimental results concerning the memory
use and convergence behavior of the approaches. We conclude with a discussion of
future directions.

2 XML compression models

In this paper, we focus on statistical approaches to XML compression, as employed
by xmlppm, dtdppm, SCMPPM, and XAUST, since these techniques have the best
published results. We first make and justify two simplifying assumptions: we will
focus only on compression performance for the text content of XML documents, and
we will ignore the issue of whether a DTD is used. These assumptions dramatically
decrease the number of combinations of features of the above four compressors we
need to compare, and reduce the problem to comparing the effectiveness of the SCM
and MHM models when encoding the text content of an XML document.

We believe that the technique used for compressing unstructured text in the dom-
inant factor affecting XML database compression performance. As Table 1 shows,
gzip reduces the structure of typical XML databases to 10–19% of the size of the
whole compressed document, whereas an XML-conscious compressor such as xmlppm
typically compresses the element content to 1–4% of the total compressed size. Signif-
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gzip xmlppm

file struct total %struct struct total %struct
DBLP 9.9MB 52.4MB 19% 667KB 33.4MB 2.0%
Medline 2.7MB 20.2MB 14% 539KB 13.7MB 3.9%
XMark 4.1MB 38.1MB 11% 287KB 27.6MB 1.0%
PSD 13.6MB 108MB 12% 2.5MB 79.6MB 3.1%

Table 1: Structure cost for gzip and xmlppm for several XML databases. For each
compressor, the first two columns report the compressed size of the structural data
and total compressed size. The last column shows the cost of structure as a percentage
of the compressed document size.

icant improvments to XML database compression can only take place by improving
the encoding of text content. Therefore, we will focus exclusively on how text is
encoded by the various approaches.

Two compressors, dtdppm and XAUST, make use of DTD information. DTDs
primarily provide information about the element and attribute structure, and pro-
vide little information about text content. There is one important exception: in the
presence of a DTD, formatting whitespace (indentation) can be detected and ignored.
Doing so can be very beneficial to PPM-based compressors because indentation tends
to flush the PPM context (as observed by Cheney in evaluating dtdppm [4]). However,
such whitespace is usually already removed in large XML databases. DTDs do not
provide any other opportunities for improving text content compression. So for our
purposes, it is irrelevant whether the compressor has access to a DTD.

xmlppm and dtdppm use essentially the same technique for compressing text,
namely MHM. Similarly, both SCMPPM and XAUST use essentially the same ap-
proach, namely structural context modeling. We now describe the exact behavior of
the four approaches we shall evaluate.

Plain PPM An obvious approach to compressing the text in an XML document is
simply to compress it using a single PPM model. This corresponds to the multiplexed

modeling technique used in an early version of xmlppm [3]. PPM shall serve as our
performance baseline.

Multiplexed Hierarchical Modeling The MHM approach switches among sev-
eral PPM models, one for element, attribute, character, and miscellaneous content.
So, it uses a single PPM model to compress all of the character data in a document.
In addition, in MHM, whenever the element context changes, a bytecode symbol rep-
resenting the new element context is injected into the text model. This means that
the bytecode is reported to the PPM model, so that the context and statistics are
updated, but the symbol is not encoded. It is only safe to inject symbols that the
decoder will also be able to inject at the corresponding point during decoding. In
xmlppm, the element structure is encoded in a separate PPM model, so the surround-
ing element bytecode is always available to the decoder when it is needed.

As an example, consider the XML document shown in Figure 1. Assuming that the
elements book, title, author are encoded as bytecodes 00, 01, and 02 respectively,
the encoding of the character data of this document in MHM is
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<book>

<title>Gone with the Wind</title> <author>Margaret Mitchell</author>

<chapter>...</chapter> ... <chapter> ... </chapter>

</book>

Figure 1: Simple XML example

(00) "\n " (01) "Gone..." (00) " " (02) "Marg..." (00) "\n"

Here, string literals "abc" abbreviate null-terminated sequences ’a’ ’b’ ’c’ \0,
and injected bytecodes are enclosed in parentheses. When a start tag is encountered,
its code is injected, while when an end tag is encountered, its parent’s code is injected.
Also, whitespace must be preserved, since in the absence of a DTD, we have no way
to know whether whitespace is significant.

The motivation for symbol injection is to give the PPM compressor “hints” con-
cerning the surrounding element context. These hints can aid compression by priming
the compressor to deal with whatever text is coming next. For example, the byte-
code for book is highly correlated with whitespace. On the other hand, because the
injected bytecodes are treated just like ordinary characters by the PPM model, this
approach may lose accuracy because symbols have multiple meanings.

Structural Context Modeling In structural context modeling, one PPM model
M(e) is allocated for each element symbol e. (In a real compressor, an additional
model is required to compress any text outside the main XML document tree, such
as comments; we ignore this issue). As in MHM, the compressor switches between
models on the basis of the XML content. However, instead of using a single model for
all text, SCM uses a different model M(e) to compress all text immediately enclosed
in e. As an example, the XML document of Figure 1 is encoded as follows:

M(book) "\n " " " "\n"

M(title) "Gone..."

M(author) "Marg..."

M(chapter) "..."

Here, each line corresponds to a model, and text is encoded from left to right. The
motivation for model splitting in SCM is the same as for symbol injection in MHM:
text enclosed in the same element context is likely to be similar, so using separate
models should provide compression benefits. Nevertheless, since each model must
adapt to the distribution of its text independently, this approach also has the potential
drawback that separate models that contain statistically similar text may duplicate
effort.

Hybrid Context Modeling As we shall observe later, MHM tends to converge
rapidly and require little memory, while SCM converges slowly, needs more memory,
but compresses significantly better than MHM can. Neither model dominates in terms
of compression vs. memory use or convergence rate. This motivates consideration of
modeling techniques that combine the advantages of MHM and SCM.

We propose a hybrid approach called Hybrid Context Modeling (HCM). In this
approach, we initially use a single model with context symbol injection, as in MHM.
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In addition, we track the number of symbols seen in each element context. When this
number exceeds a given bound m, the element context is considered “mature”, and is
allocated its own PPM model, as in SCM. In any sufficiently large file, many elements
are likely to mature, so to limit memory use, we place a limit n on the number of
separate models. Only the first n contexts to mature are allocated models.

We evaluated several combinations of m and n parameters, and found that HCM
with m = 10000, n = 8 tends to perform well; we used these parameters in the
reported experiments.

3 Experimental methodology

We evaluated the compression performance of PPM, MHM, SCM, and HCM models
for variety of memory sizes and a variety of input sizes. We implemented each model-
ing technique on top of the PPMII implementation of PPM by Dmitry Shkarin [11].
PPMII provides very effective text compression and very good performance, and is
not difficult to modify to support symbol injection. Each implementation encodes
only the text data of the XML document; additional element structure that would be
needed to decompress the document is not encoded. Thus, the results we report are
estimates which we believe predict overall compression behavior.

Since all of the models rely on PPM compression, the running time differences
between the models did not appear to be significant, except perhaps for incidental
reasons such as cache or virtual memory behavior. In particular, the observed over-
head of symbol injection in MHM is small, since the number of injected element
symbols is generally much smaller than the number of text symbols. We used models
with maximum order 5 in all the experiments; informal experiments with larger or
smaller orders exhibited similar trends.

We evaluated the modeling techniques in three ways. First (Figure 2), we mea-
sured the memory utilization of the compressors, that is, the amount of memory
actually used vs. the amount allocated. Second (Figure 3), we measured compression
rate vs. amount of memory used. Finally (Figure 4), we measured the convergence
behavior of the compressors, that is, the relationship between the compressed bit rate
and the amount of input data seen.

Measuring the amount of memory actually used by these models requires care.
The reason is that the PPMII models each allocate a block of memory and manage
it manually, rather than using malloc and free; when memory runs out, the model
is restarted. Not all of this memory is necessarily used by the model; in particular,
in SCM or HCM elements with little text content will never use up their allocated
memory, and modern operating systems typically do not allocate physical pages for
virtual memory that is not used. Thus, it is not fair to estimate the memory used
by a model by its total allocated memory size. Instead, we measured the resident set

size (as reported by the operating system) at the end of compression. This includes
all memory used by the program, not just by the PPM models. To obtain a variety
of memory usage scenarios, we considered PPM model sizes from 4KB to 256MB in
increasing powers of two; SCM ran out of memory for models larger than 32MB.
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The convergence rate experiments measured compression (bits per input char-
acter) for each model using the first 10, 20, 50, 100, 200, 500, . . . lines of the source
files. For each model, we used the largest possible memory setting, in order to delay
convergence as long as possible and minimize the effect of model restarts.

We used two large database files as benchmarks. The first, dblp.xml (300MB),
is an XML version of the DBLP bibliographic database. DBLP has flat, regular
structure, and is representative of flat or relational XML datasets. The second,
psd7003.xml (717MB), is part of the Georgetown Protein Sequence Database (PSD).
PSD consists of irregularly-structured records describing properties of proteins along
with metadata such as journal citations. PSD has deeper and more irregular structure
than DBLP, and is representative of XML databases used in bioinformatics.

We experimented with additional real XML databases, including data from Med-
line (a medical bibliographical database) and UniProt (a bioinformatics database), as
well as synthetic XML database benchmarks [2, 9, 10]. However, the real databases
behaved similarly to either DBLP or PSD, while none of the synthetic databases be-
haved like any real databases. We believe this is because the textual context of the
synthetic databases is randomly generated; indeed, all the synthetic benchmarks are
distributed as relatively small C/C++ programs that generate large XML files, so
compression is not a pressing issue for such databases. As a result, we do not believe
the synthetic benchmarks make useful compression benchmarks.

All experiments were performed on an AMD Athlon 3000+ (clock speed 1.8 Ghz,
512MB RAM) running Fedora Core 3.

4 Analysis

Memory utilization Figure 2 plots the memory utilization of the four methods,
along with the curve for 100% utilization. Memory utilization for PPM and MHM is
near 100% until the model size exceeds the memory needs of the document. The SCM
approach allocates one model of size M for each of k observed element symbols, for a
total memory allocation of kM bytes. In practice this upper limit is rarely reached:
most of the text is usually located in one of a small number of contexts. The HCM
approach (with n = 8) allocates 9M bytes; as with SCM, this limit is rarely reached,
but memory utilization is significantly higher than for SCM.

Memory vs. bit rate Figure 3 plots the compressed bit rate (bits per character)
vs. amount of memory used. First, we note that MHM always performs better (in
the limit, 5–10% better) than PPM using the same amount of memory. On the other
hand, SCM performs worse than PPM until 3–10MB, and performs worse than MHM
up to 10–20MB. Nevertheless, eventually SCM performs up to 5–10% better than
MHM ever does. Although HCM performs slightly better than either MHM or SCM
at one or two points, it compresses worse than MHM for low memory and worse than
SCM for high memory.

Convergence rate Figure 4 plots the bit rate vs. amount of input data seen.
Interestingly, PPM has the best performance for short documents, followed by MHM;
we believe this is because the element bytecodes injected by MHM initially interfere
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with compression. The SCM model performs up to 5% worse initially, but catches
up at around the 100KB–1MB range. Again, HCM behaves like MHM initially and
then behaves like SCM. For DBLP, HCM exhibits a slight “bump” at around the 10–
50KB mark, presumably because of a brief decrease in coding effectiveness as element
contexts mature and are allocated separate models. This can probably be avoided by
training the new models before they are used.

5 Future work

Although DTDs provide no information useful for improving text content compres-
sion in typical XML databases, other schema systems such as XML Schema or RE-
LAX/NG can provide considerably more detail about text content, such as regular
expression or semantic constraints. This information should be useful in improving
XML database compression.

To keep the number of experiments and results manageable, we varied the amount
of input data seen and amount of memory used, but kept the model order fixed. In
informal experiments, varying the model order did not appear to affect the over-
all trends we observed. The relationship between model order, memory use, and
compression performance needs to be further investigated in order to find the best
tradeoffs for a practical compressor.

Our experiments show that neither MHM nor SCM is better in all situations.
HCM converges more rapidly and uses less memory than SCM while providing better
compression than MHM when enough memory is available. However, HCM seldom
performed better than both MHM and SCM, and we believe there is still a lot of
room for improvement. Essentially, the problem is that neither MHM nor SCM is
sufficiently adaptive to the XML context. We believe that a logical next step is
to develop a model that can take better advantage of XML context information,
without giving up on the benefits of sharing among contexts and without wasting
memory. One possibility is to dynamically cluster or resize models based on additional
statistics. Another possibility might be to modify the underlying PPM models to take
XML context into account. However, this is not a step to be taken lightly, since there
are many benefits to using existing (and well-optimized) implementations such as
PPMII “off the shelf”.

6 Conclusions

XML has become a popular format for online distribution of large datasets. Because
XML markup is highly redundant, compression is necessary for efficient storage and
transmission of such data. Several XML-specific compression techniques have been
proposed, but little careful experimentation comparing the proposals has been per-
formed. In this paper, we have compared four approaches, each of which uses PPM
models to compress the text in XML documents, and three of which also leverage
the element context of XML to improve compression. We have confirmed claims by
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other researchers that the SCM approach provides the best overall compression for
large documents, but observed that it requires much more memory to obtain this
performance, and performs poorly on short documents. In contrast, the MHM model
proposed in our earlier work has reasonable performance for low memory situations
and small documents, yet performs within 5–10% of the best compression achieved by
SCM. We also proposed and evaluated a hybrid approach called HCM, but found that
it never performs significantly better than both MHM and SCM. These experiments
should guide research towards improvements in XML compression.
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