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ABSTRACT
Several proposals for updating XML have been introduced.
Many of them have a rather complicated semantics due to
the interaction of side-effects and updates, and some pro-
posals also complicate the semantics of XQuery because ar-
bitrary side-effecting update statements are allowed inside
queries. Moreover, static typechecking has not been studied
for any proposed XML update language.

In this paper, we survey prior work on XML update lan-
guages and motivate an alternative approach to updating
XML. We introduce an update language called Lux, which
stands for Lightweight Updates for XML. Lux can perform
relational database-style updates, has a simple, determinis-
tic operational semantics, and has a sound static type sys-
tem based on regular expression types and structural sub-
typing.

1. INTRODUCTION
Query and transformation languages for tree-structured

data, such as XML, have been extensively investigated. XML,
in particular, is now widely used for streaming, exchang-
ing and storing data, and standards for validating (DTDs,
XML Schema [15]), transforming (XSLT [12]), and querying
(XQuery [4]) XML data have reached an advanced stage; for-
mal semantics and type systems for such languages are well-
understood, and mature, efficient implementations exist or
are in development. However, dedicated update languages
for XML have received much less attention.

Several languages for updating XML have been proposed
over the last few years [22, 30, 5, 31, 29, 7, 19, 9, 20, 8],
with a trend towards increasing expressiveness and seman-
tic complexity. Some design choices and other features1 of
the various proposals can be characterized by the answers
to a number of questions shown in Figure 1, many of which
correspond directly to MUST- or SHOULD-requirements
in the current draft of the W3C’s XQuery Update Facility

1Note that many of these features are subject to change as
the result of further study of the languages.
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Requirements [10]. Early XML update language propos-
als considered only sequences of atomic operations without
iteration, but more recent proposals include sophisticated
forms of iteration and control of side-effects so are much
more expressive. Expressiveness is certainly a reasonable
design goal, but it is important to weigh the benefits of
added expressiveness against their costs in increased seman-
tic and implementation complexity: sophisticated update
operations are more difficult to optimize, typecheck, and
analyze.

The situation in the relational/SQL world is very differ-
ent. In SQL, side-effecting update statements cannot be
embedded within arbitrary queries; moreover, the update
language is considerably weaker than the query language.
For example, SQL’s INSERT-DELETE-UPDATE statements can-
not simulate joins. This simplicity has a number of advan-
tages. First, update optimization appears much easier than
query optimization. Second, since updates cannot occur in-
side queries, query optimization is unburdened by the obli-
gation to prove the absence (or irrelevance) of side-effects.
A third benefit of SQL’s simplistic approach to updates is
that it is possible to statically typecheck them before exe-
cution. None of this is to say that SQL’s update facility is
perfect. But understanding what made it successful despite
its limitations may be helpful when designing an update
language for XML, especially given that updating relational
data stored as XML is an important use case for XML up-
date languages [10, 24].

In recent XML update proposals, however, updates intro-
duce considerable complexity over XQuery. Some propos-
als permit updates as ordinary XQuery expressions, which
means that many of XQuery’s advantages as a purely func-
tional language disappear due to the presence of side-effects.
Other proposals separate queries and updates, but permit
updating sets of nodes selected using arbitrary XPath or
XQuery expressions. In either case, the results of iterative
update operations may be nondeterministic. To avoid non-
determinism arising from updates and iteration, many pro-
posals use a two-phase “snapshot” semantics. Even so, pre-
dicting the behavior of an update based on this semantics
seems difficult. As a result, nontrivial static analyses appear
necessary to determine whether updates can be reordered or
applied eagerly [1, 2, 18].

Static typechecking also appears likely to pose significant
challenges for most of the extant update languages. To the
best of our knowledge, static typing has not been inves-
tigated for any such proposal. This may seem surprising
because type systems for XML transformation and query



Atomic: What atomic updates are allowed?

I: Inserting data before or after a node

A: Appending or prepending data to a node’s child list

D: Deleting a node (and its subtree)

R: Replacing a node’s value

N: Renaming a node’s label

Selection: How can parts of a document be selected for up-
dating?

XPath: Using XPath expressions

XQuery: Using XQuery expressions

Ad hoc: Using ad hoc formalism

Style: What style of programming is used for update state-
ments, and how do such statements interact with XQuery
expressions?

Ad hoc: Update statements use a separate, ad hoc syn-
tax unrelated to XQuery (e.g. sequences of atomic
updates)

Separate: Update statements use an XQuery-like syn-
tax and contain XQuery expressions but are not al-
lowed as XQuery expressions themselves.

Combined: Update statements are allowed as XQuery
expressions of type ()

Nondeterminism: How is nondeterminism arising from the
interaction of side-effects and evaluation order handled?

Unspecified: issue not discussed; no formal semantics

Checked: pending update lists with determinism en-
forced by dynamic checks

Fixed order: pending update lists with determinism
enforced by fixing an evaluation order

User control: nondeterminism controlled by user an-
notations

Mutability: Can an update change the value of a variable?

Transforms: Can values be constructed by “transformation”
(applying an update to a copy of some data)?

Formal: Has a formal semantics been developed?

Types: Has a static type system been developed?

Figure 1: Some design choices and other character-
istics of XML update languages.

languages have received considerable attention [14, 26, 17,
21]. However, XML values are immutable in all of these
languages. In most XML update proposals, mutability is
incorporated using standard imperative programming fea-
tures; in particular, current proposals allow for updating
XML document nodes using their identities as references.

While imperative programming techniques are well-under-
stood and familiar, they also have many drawbacks from
the point of view of typechecking. Updates and variables
can “alias”; that is, an update may change the value of
a variable in ways that may be hard to predict statically.
Thus, when an update takes place, a type system would
have to determine how to modify the types of variables to
reflect the changes. This means that variables are essentially
mutable, even though many proposals do not provide for
direct assignment to variables. For these reasons, we will
adopt an approach in which variables are always immutable;
mutability is carefully controlled by the type system.

A third difficulty encountered in many proposals is the
issue of node identity. The XQuery and XPath data models
expose node identifiers for all nodes in the document tree; as
noted above, many update languages uses these identifiers as
update targets. Many update languages therefore view the
XML data as a “heap” mapping node identifiers to records
containing other identifiers or base values (such as integers
or strings). Their semantics accounts for “in-place” updates;
thus, an update might change a child of a node while leaving
the node intact. Also, two updates which differ with respect
to the node identity semantics may be equivalent if node
identities are ignored.

However, nothing in XQuery or XPath’s existing seman-
tics specifies how node identities should be transformed when
a document is updated. Instead, these languages only spec-
ify their behavior within queries. Consequently, it seems
reasonable to consider other policies for dealing with node
identity during updates. One attractive policy is to ignore
node identity altogether for the purpose of updating: that
is, to define a value-based semantics for updates, and disal-
low the use of node identifiers when defining updates. This
approach leads to a much simpler semantics which satisfies
more equational laws that can be used to optimize updates.

The purpose of this paper is to investigate an XML update
language which is less expressive than most proposals but
has a simple, deterministic semantics and can be statically
typechecked. Our language, Lux (Lightweight Updates for
XML), has the following properties:

• All standard update operations (insert, append, delete,
rename, replace) are supported.

• Nodes can be selected using only restricted XPath ex-
pressions; only horizontal iteration is allowed.

• Side-effecting update statements are not allowed as
queries.

• Variables are immutable.

• The semantics is value-based, one-pass, and determin-
istic.

• Updates can be statically typechecked using regular
expression types.

Our approach owes much to an update language called CPL+
for a generalized form of the relational data model, devel-
oped by Liefke and Davidson [23]. Lux can be viewed as an
adaptation of their approach to an XML setting.

Lux is work in progress. Currently, we have developed
a core language that consists of a small number of sim-
ple, orthogonal features, with a deterministic operational
semantics and sound type system. We have also imple-
mented a proof-of-concept interpreter and typechecker for
the core language. In this paper, we will present a motivat-
ing high-level language; however, this high-level language is
only meant to be illustrative and is subject to change.

The structure of this paper is as follows. Section 2 in-
troduces the high-level version of Lux via a sequence of ex-
amples. Section 3 defines the operational semantics of the
core Lux language, and gives translations of the high-level
queries. Section 4 defines a type system for Lux updates,
proves its soundness with respect to the operational seman-
tics, and discusses the typechecking decision problem. Sec-
tion 5 relates our approach to previous database and XML



Atomic Selection Style Nondeterminism Transforms Mutability Formal Types
XML:DB XUpdate [22] IADRN XPath Ad hoc Unspecified No No No No
Updating XML [30] IDRN XPath Separate Unspecified No Yes No No
Bruno et al. [5] IADRN XPath Ad hoc Unspecified Yes No No No
XML-RL Update [31] IADR Ad hoc Ad hoc Unspecified No Yes Yes No
UpdateX [29] IADR XQuery Separate Fixed order No Yes Yes No
Context logic [7] IADR XPath(child) Ad hoc Fixed order No Yes Yes No
XQuery! [19] IADRN XQuery Combined User control No Yes Yes No
XQuery Update [9] IADRN XQuery Combined Checked Yes Yes No No
LiXQuery+ [20] IADRN XQuery Combined User control Yes Yes Yes No
XQueryP [8] IADRN XQuery Combined User control Yes Yes No No
Lux IADRN XPath(child) Separate N/A No No Yes Yes

Table 1: Summary of XML update language characteristics. See Figure 1 for explanations of the column
entries and Section 5 for further discussion.

update languages and work on static type systems for XML;
Section 6 discusses extensions and future directions and Sec-
tion 7 concludes.

2. OVERVIEW AND EXAMPLES

2.1 Full language syntax
As with CPL+, XQuery and many other languages, we

introduce a high-level, readable syntax with complex, over-
lapping operations which can be translated to a much sim-
pler core language. Update statements allow us to create
and drop (delete) top-level documents, insert XQuery val-
ues into trees based on paths (at the beginning or end of
a child list or before or after a node), update subtrees at a
given path, delete from a path all subtrees satisfying a con-
dition, rename subtrees at a given path, or replace subtrees.
Statements can also be sequenced and restricted using con-
ditional expressions, and let-expressions can be used to bind
variables to the values of expressions.

Path expressions in updates are used in two distinct senses,
“tree-oriented” and “sequence-oriented”. In tree-oriented
updates, the update expects a singleton tree and is exe-
cuted once for each subtree selected by the path expression;
in sequence-oriented updates, the update operates on an ar-
bitrary sequence and is executed on the child-list of each
node selected by the path expression.

Tree-oriented insertions (INSERT BEFORE/AFTER) insert a
value before or after each node selected by the path expres-
sion. Similarly, tree-oriented deletes (DELETE) assume that
we have selected a single node and want to delete it. Plain
replacement REPLACE Path WITH is tree-oriented by default.

Sequence-oriented insertions (INSERT INTO) insert a value
into the child-list of each selected node, at the beginning
(AS FIRST) or end (AS LAST). Sequence-oriented deletes (DELETE
FROM) delete nodes from the child-list of each selected node.
The REPLACE Path CONTENT WITH operator is sequence-ori-
ented; it replaces the content of a path with new content.

The “dot” path expression . refers to the currently se-
lected part of the tree; its value depends on context. Path
expressions always begin with ./, but in the examples we
usually omit this prefix. In what follows, we assume familiar-
ity with XQuery and XPath syntax, and with XDuce-style
regular expression types for XML data.

2.2 Creating a database and loading data
Suppose we start an XML database with no pre-loaded

data; its type is the empty sequence (). We want to create

UpdStmt ::= CREATE DOCUMENT Name

| DROP DOCUMENT Name

| INSERT (AS (FIRST|LAST))? INTO Path

VALUE Expr

| INSERT (BEFORE|AFTER) Path VALUE Expr

| UPDATE (IN?) Path BY UpdStmt

| LET $var := Expr IN UpdStmt

| DELETE (FROM)? Path

| RENAME Path TO Name

| REPLACE Path (CONTENT?) WITH Expr

| UpdStmt WHERE Cond

| UpdStmt ; UpdStmt

| { UpdStmt }

Path ::= . | Path/Name | Path/*

Expr ::= XQuery expressions

Cond ::= XQuery/XPath conditional expressions

Figure 2: Concrete syntax of Lux updates.

a small database listing books and authors. The following
Lux updates accomplish this:

U1 : CREATE DOCUMENT books[];

CREATE DOCUMENT authors[]

After this update, the database has type

books[],authors[]

Now we want to load some XML data into the database.
Since XML text is included in XQuery’s expression lan-
guage, we can just do the following:

U2 : INSERT INTO books VALUE

<book><author>Charls Dickens</author>

<title>A Tale of Two Cities</title>

<year>1858</year></book>

<book><author>Lewis Carroll</author>

<title>Through the Looking-Glass</title>

<year>??</year></book>;

INSERT INTO authors VALUE

<author><name>Charles Dickens</name>

<born>1812</born>

<died>1870</died></author>

<author><name>Lewis Carroll</name>

<born>1832</born>

<died>1898</died></author>

This results in a database with type



books[ book[author[string],title[string],

year[string]]* ],

authors[ author[name[string],born[string],

died[string]]* ]

2.3 Updating data
The data we initially inserted was incomplete and incor-

rect. Now we want to fill in some of the missing data and
correct an error.

U3 : UPDATE books/book BY

REPLACE CONTENT author WITH "Charles Dickens";

REPLACE CONTENT year WITH "1859"

WHERE title = "A Tale of Two Cities"

U4 : UPDATE books/book BY

REPLACE CONTENT year WITH "1872"

WHERE title = "Through the Looking-Glass"

This update leaves the structure of the database unchanged.

2.4 Restructuring the database
SQL updates include ALTER TABLE statements that make

it possible to add or remove columns. Similarly, we can add
an element to each book in books as follows:

U5 : INSERT AS LAST INTO books/book

VALUE publisher["Grinch"]

After U5, the books database has type

books[ book[author[string],title[string],

year[string],publisher[string]]* ]

Now perhaps we want to add a co-author; for example, per-
haps Lewis Carroll collaborated on “Through the Looking-
Glass” with Charles Dickens. This is not as easy as adding
the publisher field to the end because we need to select a
particular node to insert before or after. In this case we
happen to know that there is only one author, so we can
insert after that; however, this would be incorrect if there
were multiple authors, and we would have to do something
else (such as inserting before the title).

U6 : UPDATE books/book BY

INSERT AFTER author

VALUE <author>Charles Dickens</author>

WHERE name = "Through the Looking-Glass"

Now the books part of the database has the type:

books[ book[author[string]*,title[string],

year[string],publisher[string]]* ]

Now that some books have multiple authors, we might want
to change the flat author lists to nested lists:

U7 : REPLACE books/book WITH

<book><authors>{author}</authors>

{title}{year}{publisher}</book>

This visits each book and changes its structure so that the
authors are grouped into an authors element. The resulting
database has type:

books[ book[authors[author[string]* ],title[string],

year[string],publisher[string]]* ]

2.5 Deleting data
Suppose we later decide that the publisher field is unnec-

essary after all. We can get rid of it using the following
update:

U8 : DELETE books/book/publisher

This results in schema

books[ book[authors[author[string]* ],

title[string],year[string]]* ]

Now suppose Lewis Carroll no longer interests us and we
wish to remove all of his books from the database.

U9 : DELETE FROM books

WHERE book/authors/author = "Lewis Carroll"

This update does not modify the type of the database. Fi-
nally, we can delete a top-level document as follows:

U10 : DROP DOCUMENT authors

2.6 Execution model
In general, an update operation with a path expression in

it is evaluated as follows: The path expression is evaluated,
yielding a sequence of context nodes. Then the correspond-
ing basic update operation (insert, delete, etc.) is applied to
each node in this set in turn, using it as the context node.

If arbitrary XPath or XQuery expressions could be used
to select context nodes, it would be easy to construct exam-
ples for which the result of an update depends on traversal
order. For example, suppose the document is of the form
<a><b/></a>. If the following update were allowed:

UPDATE // BY { DELETE a/b; RENAME * TO c }

then the result depends on the order in which the updates
are applied. The two possible results are <a/> and <a><c/></a>.
Not only is this behavior nondeterministic, it is difficult to
typecheck (and likely also difficult to parallelize). For this
reason, we place severe restrictions on the path expressions
which may be used define a context node selection.

We identify two key properties which help to ensure that
updates are deterministic and can be typechecked. First, an
update can only modify data at or beneath its current con-
text node. We call this the side-effect isolation property. For
example, navigating to the context node’s parent and then
modifying another sibling is not allowed. In addition, when-
ever an iterative update occurs (that is, one involving a loop
traversing a number of nodes), we require that the iteration
is deterministic; that is, the result of an iterative update is
independent of the order in which the nodes are updated. We
call this the traversal-order independence property.

To ensure isolation of side effects and traversal-order in-
dependence, it is sufficient (but maybe not necessary) to
restrict the XPath expressions that can be used to select
a context node. Specifically, only the child axis2 and path
composition are allowed. This ensures that only descendants
of a given context node can be selected as the new context
node and that a selection of new context nodes contains no
pairs of nodes in an ancestor-descendant relationship. Con-
sequently, the side effects of an update are confined to the
subtree of its context node, and the result of an iteration is

2The attribute axis can also be handled, but the descendant,
parent, and sibling axes seem nontrivial to handle.



independent of the traversal order. This keeps the semantics
deterministic and helps make typechecking feasible.

In Section 3, we will define a core language that sat-
isfies the side-effect isolation and traversal-order indepen-
dence properties. Our implementation currently compiles a
high-level language similar to the one outlined in this sec-
tion to the core language. Some of the compilation rules
used by the implementation are shown in Section 6.5; how-
ever, treatment of the full language and compilation and
optimization issues is left for future work.

2.7 Non-design goals
Although we believe Lux works well for database-style

updates (especially for SQL-like updates over XML data),
there are several things that other proposals do that we make
no attempt to do. Whether this is an advantage or disad-
vantage depends on the application.

Node identity: The XQuery data model provides iden-
tifiers for all nodes. Many XML update proposals take node
identities into account and can use them as to update parts
of the tree “by reference”. In contrast, Lux’s semantics is
purely value-based: node identities are inaccessible to up-
dates. It does not appear difficult to add support for node
identity within XQuery expressions in Lux; however, this
seems to make static typechecking extremely difficult, be-
cause of the possibility of aliasing and nondeterminism.

Pattern matching: Many transformation/query languages
(e.g. [21, 12]) and some update languages (e.g. [23, 31]) al-
low defining transformations by pattern matching, that is,
matching tree patterns against the data. Pattern matching
is crucial for transforming XML, but we believe it is not as
important for updates. We have not considered general pat-
tern matching in Lux, in order to keep the type system and
operational semantics as simple as possible.

Side-effects in queries: Several motivating examples
for XQuery! [19] depend on the ability to perform side-
effects within queries. Examples include logging accesses
to particular data or profiling or debugging an XQuery pro-
gram. Lux cannot be used for these applications because
side-effects are not allowed within queries.

Deep updates/recursion: Lux is only capable of hori-
zontal iteration: iteration over all of the children of a node.
Lux does not include recursively defined updates or recur-
sive types, and cannot meaningfully update data arbitrarily
deeply in the tree. Thus, a single Lux update cannot, for
example, update all person elements everywhere in the tree
in-place—even relative to a non-recursive DTD. Lux is not
suitable for performing XML transformations such as ren-
dering XML data to XHTML, or updating genuinely recur-
sive data. While it does not seem problematic to support
the descendant axis in query expressions within Lux (us-
ing the same typing rules as Collazzo et al. [13]), it appears
difficult to extend our approach to typecheck updates that
make use of recursion or the descendant, sibling or parent
axes.

Joins: Lux updates cannot, by themselves, iterate super-
linearly over the data to perform a join. However, updates
can use embedded XQuery expressions to restructure the
database, for example:

INSERT INTO tmp VALUE

FOR $x in books,$y in authors

WHERE $x/author = $y/name

RETURN <pair>{$x}{$y}</pair>

3. FORMALIZATION

3.1 Core query language
Because Lux uses queries to construct values, we need to

introduce a query language and define its semantics before
doing the same for Lux. We will use a small fragment of
XQuery called µXQ, introduced by Colazzo, Ghelli, Manghi
and Sartiani [13].

Following [13], we distinguish between tree values t ∈
Tree, which include strings w ∈ Σ∗ (for some alphabet Σ),
boolean values, and singleton trees n[v]; and (forest) values
v ∈ V al = Tree∗, which are sequences of tree values:

(Forest) values v ::= () | t, v
Tree values t ::= n[v] | w | true | false

We overload the set membership symbol ∈ for trees and
forests: that is, t ∈ v means that t is a member of v con-
sidered as a list. Two forest values can be concatenated by
concatenating them as lists; abusing notation, we identify
trees t with singleton forests t, () and write v, v′ for forest
concatenation. We define a comprehension operation on for-
est values as follows:

[f(x) | x ∈ ()] = ()

[f(x) | x ∈ t, v] = f(t), [f(x) | x ∈ v]

This operation takes a forest (t1, . . . , tn) and a function f(x)
from trees to forests and applies f to each tree ti, concate-
nating the resulting forests in order. Comprehensions sat-
isfy basic Vonda laws as well as some additional equations
(see [16]). We write ≈ for equality of tree or forest values;
this is just structural equality.

Again following [13], we distinguish between tree variables
x̄ ∈ TV ar, introduced by for, and forest variables, x ∈
V ar, introduced by let. We write X ∈ V ar ∪ TV ar for
an arbitrary tree or forest variable. The other syntactic
classes of our variant of µXQ include labels l, m,n ∈ Lab
and expressions e ∈ Exp; the abstract syntax of expressions
is defined by the following BNF grammar:

e ::= () | e, e′ | n[e] | w | x | let x = e in e′

| true | false | if c then e else e′ | e = e′

| x̄ | x̄/child | e :: n | for x̄ ∈ e return e′

The distinguished variables x̄ in for x̄ ∈ e return e′(x) and
x in let x = e in e′(x) are bound in e′(x). Here and else-
where, we employ common conventions such as considering
expressions containing bound variables equivalent up to α-
renaming and employing a richer concrete syntax including,
for example, parentheses.

To simplify the presentation, we split µXQ’s projection
operation x̄ child :: l into two expressions: child projection
(x̄/child) which returns the children of x̄, and node name
filtering (e :: n) which evaluates e to an arbitrary sequence
and selects the nodes labeled n. We also define the children
of a value other than n[v] to be the empty sequence rather
than leaving it undefined. Thus, the ordinary child axis
expression x̄ child :: n is syntactic sugar for (x̄/child) ::
n and the “wildcard” child axis is definable as x̄ child ::
∗ = x̄/child. We also consider only one built-in operation,
equality.

An environment is a pair of functions σ : (V ar → V al) ×
(TV ar → Tree). Abusing notation, we write σ(x) for π1(σ)(x)
and σ(x̄) for π2(σ)(x̄); similarly, σ[x := v] and σ[x̄ := t]



children(n[f ]) = f

children(v) = () (v 6≈ n[v′])

[[true]]σ = true [[false]]σ = false

[[()]]σ = () [[e, e′]]σ = [[e]]σ, [[e′]]σ
[[n[e]]]σ = n[[[e]]σ] [[w]]σ = w

[[x]]σ = σ(x) [[x̄]]σ = σ(x̄)

[[let x = e1 in e2]]σ = [[e2]]σ[x := [[e1]]σ]

[[if c then e1 else e2]]σ =



[[e1]]σ [[c]]σ ≈ true

[[e2]]σ [[c]]σ ≈ false

[[e = e′]]σ =



true [[e]]σ ≈ [[e′]]σ
false [[e]]σ 6≈ [[e′]]σ

[[e :: n]]σ = [n[v] | n[v] ∈ [[e]]σ]

[[x̄/child]]σ = children(σ(x̄))

[[for x̄ ∈ e1 return e2]]σ = [[[e2]]σ[x̄ := t] | t ∈ [[e1]]σ]

Figure 3: Semantics of query expressions.

denote the corresponding environment updating operations.
The semantics of expressions is defined as shown in Figure 3.
The function children : V al → V al maps a singleton tree
n[f ] to its child list and maps other values to the empty
sequence. We write σ ⊢ e ⇒ v when v = [[e]]σ.

3.2 Core update language
We now introduce the core Lux update language, which

includes statements s ∈ Stmt, tests φ ∈ Test, and directions
d ∈ Dir:

s ::= skip | s; s′ | if e then s else s′ | let x = e in s

| insert e | delete | snapshot x in s | φ?s | d[s]

φ ::= n | ∗ | bool | string

d ::= left | right | children | iter

Updates include standard constructs such as the no-op skip,
sequential composition, conditionals, and let-binding. The
basic update operations include insertion insert e, which in-
serts a value provided the context is empty; deletion delete,
which deletes the selected value; and the “snapshot” opera-
tion snapshot x in s, which binds x to the current value of
the context node and then applies an update s, which may
refer to x. Also, snapshot is not equivalent to XQuery!’s
snap operator; snapshot binds x to an immutable value
which can be used in s, whereas snap delimits a “snapshot
semantics” execution of a side-effecting query. There is no
way to refer to the context node of an update within a µXQ
query without using snapshot.

Updates also include tests φ?s which allow us to examine
the local structure of a tree value and perform an update
if the structure matches. The node label test n?s checks
whether the tree is of the form n[v], and if so executes s,
otherwise is a no-op; the wildcard test only checks that the
value is a singleton tree. Similarly, bool?s and string?s
test whether a tree value is a boolean or string value.

Finally, updates include navigation operators that change
the selected part of the tree, and perform an update on the
sub-selection. The left and right operators perform an
update on the empty sequence located to the left or right

σ; v ⊢ s ⇒U v′

σ; v ⊢ skip ⇒U v

σ; v ⊢ s ⇒U v1 σ; v1 ⊢ s′ ⇒U v2

σ; v ⊢ s; s′ ⇒U v2

σ ⊢ e ⇒ v σ[x := v]; v1 ⊢ s ⇒U v2

σ; v1 ⊢ let x = e in s ⇒U v2

σ ⊢ e ⇒ true σ; v ⊢ s1 ⇒U v′

σ; v ⊢ if e then s1 else s2 ⇒U v′

σ ⊢ e ⇒ false σ; v ⊢ s2 ⇒U v′

σ; v ⊢ if e then s1 else s2 ⇒U v′

σ ⊢ e ⇒ v

σ; () ⊢ insert e ⇒U v σ; v ⊢ delete ⇒U ()

σ[x := v]; v ⊢ s ⇒U v′

σ; v ⊢ snapshot x in s ⇒U v′
t ∈ [[φ]] σ; t ⊢ s ⇒U v

σ; t ⊢ φ?s ⇒U v

t 6∈ [[φ]]

σ; t ⊢ φ?s ⇒U t

σ; v ⊢ s ⇒U v′

σ; n[v] ⊢ children[s] ⇒U n[v′]

σ; () ⊢ s ⇒U v′

σ; v ⊢ left[s] ⇒U v′, v

σ; () ⊢ s ⇒U v′

σ; v ⊢ right[s] ⇒U v, v′

σ; t1 ⊢ S ⇒U v′1 σ; v2 ⊢ iter[s] ⇒U v′2

σ; t1, v2 ⊢ iter[s] ⇒U v′1, v
′

2 σ; () ⊢ iter[s] ⇒U ()

Figure 4: Operational semantics of updates.

of a value. The children operator applies an update to
the child list of a tree value. Conversely, the iter operator
applies an update to each tree value in a forest.

We distinguish between singular (unary) updates which
apply only when the context is a tree value and plural (multi-
ary) updates which apply to a sequence. Tests φ?s are al-
ways singular. The children operator applies a plural up-
date to all of the children of a single node; the iter operator
applies a singular update to all of the elements of a sequence.
Other updates can be either singular or plural in different
situations. Our type system (presented in Section 4) tracks
arity as well as input and output types in order to ensure
that updates are well-behaved.

Figure 4 shows the operational semantics of Core Lux.
We write σ; v ⊢ s ⇒U v′ to indicate that given environment
σ and context value v, statement s evaluates to value v′. The
rules for tests are defined in terms of the following semantic
interpretation of tests:

[[bool]] = {true, false}

[[string]] = Σ∗

[[n]] = {n[v] | v ∈ V al}

[[∗]] = {n[v] | n ∈ Lab, v ∈ V al}

Note that while we described the evaluation of Lux up-
dates informally in terms of nodes, we can define the se-
mantics entirely in terms of forest and tree values, without
needing to define an explicit store. This would not be the
case if we considered full XQuery, which includes node iden-
tity comparison operations.

It is straightforward to show that an update run against
a given environment and input value has most one output
value:

Theorem 1. Let σ, v, s, v1, v2 be given such that σ; v ⊢



repl e = delete; insert e

delete n = iter[n?delete]

if c then s = if c then s else skip

update n by [s] = iter[n?s]

update in n by [s] = update n by [children[s]]

update x in n by [s] = update n
by [snapshot x in children[s]]

delete x from n = update x in n
where c by [if c then delete]

insert← e = left[insert e]

insert→ e = right[insert e]

Figure 5: Abbreviations for derived update expres-
sions.

s ⇒U v1 and σ; v ⊢ s ⇒U v2. Then v1 = v2.

Proof. Straightforward by induction on the structures of
the two derivations. The interesting cases are those for con-
ditionals and iteration, since they are the only statements
that have more than one applicable rule. However, in each
case, only matching pairs of rules are applicable.

Figure 6 shows the example updates from Section 2 trans-
lated to core Lux. To simplify the presentation, we use full
XQuery syntax for subqueries, rather than more verbose
core µXQ queries, and use several abbreviations introduced
in Figure 5.

4. TYPE SYSTEM
As noted earlier, some updates expect that the input value

is a singleton (for example, children, n?s, etc.) while oth-
ers work for an arbitrary sequence of trees. Singular (tree-
oriented) updates may fail if applied to a sequence. This
makes programming and debugging updates tricky, so our
type system should prevent such run-time errors. Moreover,
as with all XML transformation languages, we often would
like to ensure that when given an input tree of some type τ ,
an update is guaranteed to produce an output tree of some
other type τ ′. For example, updates made by non-privileged
users are usually required to preserve the database schema.

4.1 Types, subtyping and typing rules
We consider a regular expression type system with struc-

tural subtyping, similar to those considered in several trans-
formation and query languages for XML [21, 13, 16].

τ ::= α | () | τ |τ ′ | τ, τ ′ | τ∗

α ::= bool | string | n[τ ]

We call types of the form α singular types (or tree types),
and types of all other forms plural (or forest types). It should
be obvious that a value of singular type must always be a
sequence of length one (that is, a tree); plural types may
have values of any length. There exist plural types with only
values of length one, but which are not syntactically singular
(for example int|bool). As usual, the + and ? quantifiers
can be defined as follows: τ+ = τ, τ∗ and τ ? = τ |(). Type
variables and recursive type definitions are not included.

U1 : insert (books[], authors[])

U2 :



update in books by insert→ (...);
update in authors by insert→ (...);

U3 :

8

>

>

>

<

>

>

>

:

update in books by [
update x in book by [
if x/title = "AToTC" then [
update in author by [repl "CD"];
update in year by [repl "1859"]]]]

U4 :

8

>

>

<

>

>

:

update in books by [
update x in book by [
if x/title = "TtLG" then [
update in year by [repl("1872")]]]]

U5 :

8

<

:

update in books by [
update in book by [
insert→ (publisher[])]]

U6 :

8

>

>

>

<

>

>

>

:

update in books by [
update x in book by [
if x/title = "TtLG" then [
update author by [
insert→ (author["CD"])]]]]

U7 :

8

>

>

<

>

>

:

update in books by [
update x in book by [
repl (book[authors[x/authors],

x/title, x/year,x/publisher])]]

U8 :



update in books by [
update in book by [delete publisher]]

U9 :

8

<

:

update books by [
delete x from book
where x/authors/author = "LC"]

U10 : delete authors

Figure 6: Translations of example queries into core
Lux.

As in XDuce, a type denotes a set of matching values:

[[string]] = Σ∗ [[bool]] = {true, false}

[[()]] = {()} [[n[τ ]]] = {n[v] | v ∈ [[τ ]]}

[[τ, τ ′]] = {v, v′ | v ∈ [[τ ]], v′ ∈ [[τ ′]]}

[[τ |τ ′]] = [[τ ]] ∪ [[τ ′]]

[[τ∗]] = {()} ∪ {v1, . . . , vn | v1 ∈ [[τ ]], . . . , vn ∈ [[τ ]]}

In addition, we define a binary subtyping relation on types.
A type τ1 is a subtype of τ2 (τ1 <: τ2), by definition, if
[[τ1]] ⊆ [[τ2]]. Since our system simply re-uses the subtyping
judgment from XDuce’s type system, we know that subtyp-
ing is decidable; although XDuce subtyping is EXPTIME-
complete in general, the algorithm of Hosoya, Vouillon and
Pierce is well-behaved in practice [21]. Therefore, we shall
not give explicit inference rules for checking or deciding sub-
typing, but treat it as a “black box”. We also consider sub-
typing relations between tree types and tests: we say that
α <: φ if [[α]] ⊆ [[φ]]. This is decidable using the following
rules:

bool <: bool string <: string n[τ ] <: n n[τ ] <: ∗

We consider contexts Γ of the form

Γ ::= · | x:τ | x̄:α



Γ ⊢ e : τ

Γ ⊢ () : () Γ ⊢ w : string

Γ ⊢ true : bool Γ ⊢ false : bool

Γ ⊢ e : τ Γ ⊢ e′ : τ ′

Γ ⊢ e, e′ : τ, τ ′
Γ ⊢ e : τ

Γ ⊢ n[e] : n[τ ]

x̄:α ∈ Γ
Γ ⊢ x̄ : α

x:τ ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : τ1 Γ, x:τ1 ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

Γ ⊢ c : bool Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ if c then e1 else e2 : τ1|τ2

x̄:n[τ ] ∈ Γ

Γ ⊢ x̄/child : τ

Γ ⊢ e : τ τ :: n ⇒ τ ′

Γ ⊢ e :: n : τ ′

Γ ⊢ e1 : τ1 Γ ⊢ x̄ in τ1 → e2 : τ2

Γ ⊢ for x̄ ∈ e1 return e2 : τ2

Γ ⊢ e : τ τ <: τ ′

Γ ⊢ e : τ ′

τ :: n ⇒ τ ′

n[τ ] :: n ⇒ n[τ ]

α 6= n[τ ]

α :: n ⇒ () () :: n ⇒ ()

τ1 :: n ⇒ τ2

τ∗1 :: n ⇒ τ∗2

τ1 :: n ⇒ τ ′1 τ2 :: n ⇒ τ ′2

τ1, τ2 :: n ⇒ τ ′1, τ
′

2

τ1 :: n ⇒ τ ′1 τ2 :: n ⇒ τ ′2

τ1|τ2 :: n ⇒ τ ′1|τ
′

2

Γ ⊢ x̄ in τ → e : τ ′

Γ ⊢ x̄ in () → e : ()

Γ, x̄:α ⊢ e : τ

Γ ⊢ x̄ in α → e : τ

Γ ⊢ x̄ in τ1 → e : τ2

Γ ⊢ x̄ in τ∗1 → e : τ∗2

Γ ⊢ x̄ in τ1 → e : τ ′1 Γ ⊢ x̄ in τ2 → e : τ ′2

Γ ⊢ x̄ in τ1, τ2 → e : τ ′1, τ
′

2

Γ ⊢ x̄ in τ1 → e : τ ′1 Γ ⊢ x̄ in τ2 → e : τ ′2

Γ ⊢ x̄ in τ1|τ2 → e : τ ′1|τ
′

2

Figure 7: Query well-formedness.

that is, tree variables may only be bound to tree types.
As usual, we assume that variables in contexts are distinct;
this convention implicitly constrains the inference rules. We
write [[Γ]] for the set of all environments σ such that σ(X) ∈
Γ(X) for all X ∈ dom(Γ).

The typing judgment for queries is Γ ⊢ e : τ (that is, in
context Γ, expression e has type τ ); following [13], there
are two auxiliary judgments, Γ ⊢ x̄ in τ → s : τ ′, used
for typechecking for-expressions, and τ :: n ⇒ τ ′, used for
typechecking label matching expressions e :: n. The rules
for these judgment are shown in Figure 7. There are two
typing judgments for updates: singular well-formedness Γ ⊢1

{α} s {τ ′} (that is, in context Γ, update s maps tree type
α to type τ ′), and plural well-formedness Γ ⊢∗ {τ} s {τ ′}
(that is, in context Γ, update s maps type τ to type τ ′).
Several of the rules are polymorphic with respect to the
arity a ∈ {1, ∗}. In addition, there is an auxiliary judgment
Γ ⊢iter {τ} s {τ ′} for typechecking iterations. The rules for
update well-formedness are shown in Figure 8.

4.2 Discussion
Before discussing the metatheoretic properties of the type

system, we discuss its behavior at a high level.
The query typechecking judgment Γ ⊢ e : τ has its usual

meaning: assuming all of the free variables x in e have val-

Γ ⊢a {τ} s {τ ′}

Γ ⊢a {τ} skip {τ}

Γ ⊢a {τ} s {τ ′} Γ ⊢a {τ ′} s′ {τ ′′}

Γ ⊢a {τ} s; s′ {τ ′′}

Γ ⊢ e : bool Γ ⊢a {τ} s {τ1} Γ ⊢a {τ} s′ {τ2}

Γ ⊢a {τ} if e then s else s′ {τ1|τ2}

Γ ⊢ e : τ Γ, x:τ ⊢a {τ1} s {τ2}

Γ ⊢a {τ1} let x = e in s {τ2}

Γ ⊢ e : τ
Γ ⊢∗ {()} insert e {τ} Γ ⊢a {τ} delete {()}

Γ, x:τ ⊢a {τ} s {τ ′}

Γ ⊢a {τ} snapshot x in s {τ ′}

α <: φ Γ ⊢1 {α} s {τ}

Γ ⊢1 {α} φ?s {τ}

α 6<: φ

Γ ⊢1 {α} φ?s {α}

Γ ⊢∗ {τ} s {τ ′}

Γ ⊢1 {n[τ ]} children[s] {n[τ ′]}

Γ ⊢∗ {()} s {τ ′}

Γ ⊢a {τ} left[s] {τ ′, τ}

Γ ⊢∗ {()} s {τ ′}

Γ ⊢a {τ} right[s] {τ, τ ′}

Γ ⊢iter {τ} s {τ ′}

Γ ⊢∗ {τ} iter[s] {τ ′}

τ1 <: τ ′1 Γ ⊢∗ {τ ′1} s {τ ′2} τ ′2 <: τ2

Γ ⊢∗ {τ1} s {τ2}

Γ ⊢iter {τ} s {τ ′}

Γ ⊢iter {τ1} s {τ ′1} Γ ⊢iter {τ2} s {τ ′2}

Γ ⊢iter {τ1, τ2} s {τ ′1, τ
′

2}

Γ ⊢iter {τ1} s {τ ′1} Γ ⊢iter {τ2} s {τ ′2}

Γ ⊢iter {τ1|τ2} s {τ ′1|τ
′

2}

Γ ⊢iter {τ1} s {τ ′1}

Γ ⊢iter {τ
∗

1 } s {τ∗2 }

Γ ⊢1 {α} s {τ}

Γ ⊢iter {α} s {τ} Γ ⊢iter {()} s {()}

Figure 8: Update well-formedness.

ues of type Γ(x), the result of evaluating e will have type τ .
In many functional languages, and several XML update pro-
posals, side-effects have been typechecked by treating side-
effecting update operations as expressions of some “unit”
type, such as (). This works fine as long as the types of val-
ues reachable from the free variables in Γ can never change;
however, if the side-effects do change the types of such val-
ues, then Γ needs to be updated to take these changes into
account.

One possibility is to typecheck updates using a judgment
Γ ⊢ s : () | Γ′; here, Γ′ is the updated context reflecting
the types of the variables after update s. This approach
quickly becomes unmanageable, especially if it is possible for
different variables to “alias”, or refer to overlapping parts of
the data.

This is not the approach to updates that is taken in Lux.
Instead, a Lux update typechecking judgment such as Γ ⊢a

{τ} s {τ ′} assigns an update much richer type information
that describes the type of the context value before and after
running s. The values of variables bound in Γ cannot ever
change, so their types do not need to be updated.

The most unusual rules are those involving the iter, test,
and children, left/right, and insert/delete operators.
The following example should help show how the rules work
for these constructs. Consider the update:

iter {a?children {iter {b? right insert c[]}}}



Intuitively, this update inserts a c after every b under a
top-level a. Now consider the input type a[b[]∗, c[], b[]∗], d[].
Clearly, the output type should be a[(b[], c[])∗, c[], (b[], c[])∗], d[].
To see why this is the case, first note that the following can
be derived for any τ, τ ′, s:

⊢1 {a[τ ]} s {a[τ ′]}

⊢∗ {a[τ ], d} iter {a?s} {a[τ ′], d}

Using the rule for children, we can see that it suffices to
check that iter {b?left insert c[]} maps type b[]∗, c[], b[]∗

to (b[], c[])∗, c[], (b[], c[])∗. This is also an instance of a deriv-
able rule

⊢1 {b[]} s {τ}

⊢∗ {b[]∗, c[], b[]∗} iter {b?s} {τ∗, c[], τ∗}

Hence, we now need to show only that right insert c[]
maps type b to b, c, which is immediate:

⊢ c[] : c[]

⊢1 {()} insert c {b[], c[]}

⊢1 {b[]} right insert c[] {b[], c[]}

4.3 Metatheory
We take for granted the following type soundness property

for queries (a similar property is shown for µXQ in Colazzo
et al. [13]).

Theorem 2 (Query soundness). If Γ ⊢ e : τ , σ ∈
[[Γ]] and σ ⊢ e ⇒ v then v ∈ [[τ ]].

The corresponding result also holds for updates, by a straight-
forward structural induction argument:

Theorem 3 (Update soundness).

1. If Γ ⊢1 {α} e {τ ′}, t ∈ [[α]], σ ∈ [[Γ]], and σ; t ⊢ e ⇒U v′

then v′ ∈ [[τ ′]].

2. If Γ ⊢∗ {τ} e {τ ′}, v ∈ [[τ ]], σ ∈ [[Γ]], and σ; v ⊢ e ⇒U v′

then v′ ∈ [[τ ′]].

We now consider the decision problem of checking types
for queries and updates. The subsumption rule makes type-
checking non-syntax-directed. However, given a context and
query, we can calculate a unique syntax-directed result type,
if it can be typed:

Lemma 1. Given Γ and e, there exists at most one τ such
that Γ ⊢ e : τ has a subsumption-free derivation.

Similarly, given a context, update, and initial type, we can
calculate a unique syntax-directed output type:

Lemma 2. Given Γ, a, τ , and s, there exists at most one
τ ′ such that Γ ⊢a {τ} e {τ ′} has a subsumption-free deriva-
tion.

Since there are no functions or function types in the query
and update languages, we believe it is possible to show that
all uses of the subsumption rules can be permuted down in
a derivation tree:

Conjecture 1 (Subsumption). If a query or update
typing judgment is derivable, it is derivable using at most
one instance of the subsumption rule, at the root of the tree.

Conjecture 1 would imply the completeness of the follow-
ing algorithm for typechecking a query or update against
a fixed context and input/output types: first, calculate the
result type using only the syntax-directed rules (without
subsumption), then test whether this is a subtype of the
desired output type. This algorithm is sound whether or
not Conjecture 1 holds; however, if the conjecture is not
true, then more work will be necessary to design a complete
typechecking algorithm.

Type inference appears trickier, but is not crucial in a
database update setting, because of the absence of function
types and because we always know the schema of an XML
database statically (assuming the database has a schema).
Nevertheless, the ability to typecheck a query or update in
isolation from a database schema is potentially useful, and
type inference and principal types should be investigated.

5. RELATED WORK

5.1 Updates in other data models
SQL’s update facility has been standard for a long time;

its features are essentially the same as the update facilities in
early databases such as INGRES [28]. Research on database
updates has focused on efficiently maintaining or updating
views of a database or checking that integrity constraints
are preserved, not in increasing expressiveness. Object-
oriented databases generally provide for updates via general-
purpose programming in an object-oriented language such
as C++ or Java. The Lore semistructured database [25] pro-
vides a more sophisticated update language interface which
permits bulk creation and deletion of edges based on sub-
queries. Liefke and Davidson’s update language CPL+ [23]
extends CPL [6], a typed language for querying data con-
sisting of arbitrary combinations of record and monadic col-
lection types, with path-based insert, update, and delete
operations. High-level CPL+ updates were formalized by
translation to a simpler core language with orthogonal op-
erations for iteration, navigation, insertion/deletion, and re-
placement.

5.2 Static typing for XML processing
XML processing systems can be characterized as domain-

specific transformation languages (e.g. XSLT [12], XDuce [21]),
query languages (e.g. XQuery, XPath [14]), or general-
purpose programming languages with native XML support
(e.g. Xtatic [17]). We will focus on only the most closely
related work; Møller and Schwartzbach [26] provide a much
more complete survey of type systems for XML transforma-
tion languages.

Hosoya, Vouillon, and Pierce [21] introduced XDuce, the
first statically typed XML transformation language. They
used a structural type system based on regular expressions in
which types can be interpreted as regular tree languages and
subtyping is language inclusion. Subtyping is EXPTIME-
complete, but Hosoya et al. developed an algorithm that
appears well-behaved in practice.

XQuery has a type system based on XML Schema, with
regular expression types and nominal subtyping; its opera-
tional semantics and type system have been standardized in
the W3C’s XPath 2.0/XQuery 1.0 Formal Semantics [14].
Siméon and Wadler [27] investigated XML Schema’s nomi-
nal subtyping and established some basic formal properties
of validation. Their work helped clarify inconsistencies in



the informal XQuery type system specification.
Colazzo, Ghelli, Manghi and Sartiani [13] considered the

problem of typechecking an XQuery core language called
µXQ, from the point of view of both result analysis (the
result of the query always matches a type) and correctness
analysis (every subexpression which is statically guaranteed
to evaluate to () is syntactically ()).

5.3 XML updates
We will briefly describe each of the XML update languages

of which we are aware. Since many features are common,
we will focus on the distinctive features only; Table 1 sum-
marizes the current state of knowledge about the languages
in terms of the design space in Figure 1.

Laux and Martin [22] developed an early working draft
of an XML update language called XUpdate. Tatarinov,
Ives, Halevy and Weld [30] considered XQuery language
extensions for XML updates, focusing on the performance
of updates to XML data stored in a relational database.
Bruno, Le Maitre, and Murisasco [5] proposed an extension
to XQuery to include transformation operators, which ap-
ply an update to a copy of a value. Wang, Liu and Lu [31]
investigated adding XML update primitives to XML-RL, a
rule-based query language with pattern-matching query op-
erations.

UpdateX, due to Sur, Hammer and Siméon [29], is an
XML update language based on XQuery. UpdateX permits
arbitrary XQuery expressions as update content, but up-
dates cannot occur within queries and the syntax of updates
has some arbitrary-seeming restrictions. Benedikt, Bonifati,
Flesca, and Vyas [1, 2] studied the semantics of UpdateX,
and developed analyses that support various optimizations.

Calcagno, Gardner and Zarfaty [7] investigated XML up-
dates in the setting of context logic, a logic of “trees with
holes”. They considered a Hoare logic for reasoning about
low-level update operations comparable to those provided by
the the DOM interface. This work currently applies only to
unordered, deterministic trees, a simplification of full XML.

Ghelli, Re and Siméon [19] have developed XQuery!, an
XML query language with side-effects. In XQuery!, update
statements are allowed as expressions returning (). Side-
effects in expressions are treated lazily; they are collected
into a pending update list and by default only performed at
the end of the query; the snap operator can be used to force
pending updates to be performed earlier. Ghelli, Rose, and
Siméon [18] have developed a commutativity analysis for
XQuery!.

The W3C XQuery Update Facility [9] has been under de-
velopment for several years. The current version is similar
to XQuery!; the two main differences are the absence of the
snap operator and the presence of transformations.

LiXQuery+ is an update language introduced by Hidders,
Paredaens, and Vercammen [20] in order to study the ex-
pressive power of XQuery-based update languages.

XQueryP, due to Chamberlin, Carey, Florescu, Kossman,
and Robie [8], is an extension to XQuery that includes both
updates and traditional imperative programming features,
including block structure, assignment, an updating keyword
for declaring impure functions, and while-loops. XQueryP
also includes an atomic keyword which groups operations
into atomic blocks (transactions).

The design goals and constraints of many of these pro-
posals differ from those that motivated this work. Lux is

not meant to be a full-fledged programming language for
mutable XML data. Instead, it is meant to play a role for
XML and XQuery similar to that SQL’s update facilities rel-
ative to relational databases and SQL. It seems expressive
enough for common cases (including many of the relational
use cases in the XQuery Update Facility Requirements [10])
while remaining simple and statically typecheckable.

6. EXTENSIONS AND FUTURE WORK

6.1 Recursive types and nominal subtyping
Our type system is weaker than other XML type sys-

tems in several respects. It does not include type variables
or recursive type definitions, so although it permits hori-
zontal iteration using Kleene star, vertical recursion is not
supported. The type system also employs structural sub-
typing on unannotated XML data, in contrast to the XML
Schema/XQuery type system which employs nominal sub-
typing on validated XML documents in which each element
is tagged with a type name according to the XML Schema
validation algorithm.

Although these are significant restrictions relative to full
DTDs, XML Schemas, or XDuce regular expression types,
we believe they are a reasonable given that Lux is meant to
be used for database-style updates, not queries, stylesheet
transformations, or general-purpose programming with XML.
Many DTDs and XML Schemas encountered in database ap-
plications of XML are nonrecursive and “shallow” [11, 3].

On the other hand, there are use cases for XML updates
involving recursion and XML Schemas [24] which we would
like to handle. Extending the system to include recursive
queries and recursive regular expression types appears to
be straightforward; adding recursive updates may not be.
Adapting our approach to updates to be compatible with
XML Schema-validated documents and the XQuery nominal
subtyping system seems difficult.

6.2 Transformations
Some of the existing update proposals include a facility for

running an update operation within an XQuery expression
in a side-effect-free way. Such a facility can easily be added
using Lux updates:

e ::= · · · | transform e by s

with static and dynamic semantics given by

σ ⊢ e ⇒ v σ; v ⊢ s ⇒U v′

σ ⊢ transform e by s ⇒ v′
Γ ⊢ e : τ1 Γ ⊢∗ {τ1} s {τ2}

Γ ⊢ transform e by s : τ2

6.3 Correctness analysis
Colazzo et al. [13] studied both “result analysis” (deter-

mining the result type of a query given types for its in-
put variables) and “correctness analysis” (ensuring that no
subexpression of the query is statically empty, except for
()). They introduced a type system that statically performs
both result and correctness analysis; moreover, the correct-
ness analysis is complete: it precisely characterizes queries
as either correct or incorrect. This problem is decidable for
µXQ since it lacks recursion.

Correctness analysis is potentially very useful in debug-
ging queries, since often a bug manifests itself as an empty
subquery; such bugs are generally not caught by result anal-
ysis since the empty sequence is a subtype of every type.



φ?u1; φ?u2 ≡ φ?(u1; u2)

d[u1]; d[u2] ≡ d[u1; u2]

snapshot x in snapshot y in e ≡ snapshot x in e[x/y]

snapshot x in e ≡ e (x 6∈ FV (e))

s; delete ≡ delete

d[if c then s1 else s2] ≡ if c then d[s1] else d[s2]

Figure 9: Some equational laws for updates.

Colazzo et al.’s type system for query correctness analy-
sis can clearly also be used in Lux updates to help avoid
bugs in subqueries. Moreover, it seems reasonable to extend
their concept of correctness to updates by judging an update
to be correct only if every sub-statement that is statically
guaranteed to have no effect on the database is literally a
no-op (skip). Updates can easily be incorrect: for exam-
ple, if a test update bool?s is only run against data of type
string, then s will never be executed; also s will never be
typechecked, so might contain nonsense. Such “dead” code
is likely a bug in the update, and should be flagged as a
warning to the programmer. It would be very interesting to
develop a type system for update correctness, especially a
complete one.

6.4 Update optimization
Liefke and Davidson [23] investigated a number of op-

timization techniques for CPL+, including rewriting up-
dates using equational laws that provably improve perfor-
mance (relative to an appropriate cost model), and trans-
forming query-based updates to more efficient in-place up-
dates (“deltafication”). These techniques should also be ap-
plicable to Lux. For example, the equational laws shown in
Figure 9 are clearly valid for Lux.

6.5 Designing a high-level update language
In the first half of this paper we motivated and infor-

mally described a high-level update language that can be
systematically translated to the core Lux language, just as
full XQuery is defined by translation to a much smaller core
language. In addition we have shown how a number of ex-
amples can be so translated. At present our proof-of-concept
implementation provides high-level updates similar to those
in Section 2; they are expanded to core Lux updates dur-
ing parsing. Figure 10 illustrates a few “compilation” rules
which are used in the current system (extending the abbre-
viations of Figure 5). However, this design is subject to
change and is provided as an example only.

7. CONCLUSIONS
In this paper, we have introduced a simple approach to

database-style updates for XML, called Lux (Lightweight
Updates for XML). Our approach is inspired in large part by
the update language CPL+ for nested relational data intro-
duced by Liefke and Davidson. Our approach, like CPL+,
factors complicated operations similar to SQL’s INSERT, DELETE,
and UPDATE statements into a small, orthogonal set of oper-
ations which perform basic updates, navigate, examine the
local database structure, or combine updates. Lux is care-
fully designed so that each update’s side-effects are confined

update x in n/p by u −→ update in n by

update x in p by u
update n/p by u −→ update in n by

update p by u
insert before n value e −→ update n by insert← e
insert after n value e −→ update n by insert→ e
insert as first into n −→ update in n by insert← e
value e
insert as last into n −→ update in n by insert→ e
value e
insert . . . n/p −→ update in n by

value e insert . . . p
value e

delete n/p −→ update in n by

delete p
delete x from n/p −→ update x in n by

where e if c then delete p

Figure 10: Some “compilation” rules for high-level
updates

to a particular subtree, so that the result of an iterative up-
date is independent of the order in which the updates are
performed. Variables are immutable; updates can only mu-
tate the database state. Side-effecting updates are syntac-
tically distinguished from purely functional queries. Node
identifiers are not available for use in defining updates.

These design decisions make it possible to give updates a
simple, deterministic semantics. In contrast, the semantics
of more sophisticated update languages involve two passes,
one to collect atomic updates evaluated against a snapshot
of the database, and another to perform the updates. In
addition, it is possible to provide a type system for the core
update language which can be used to check that an update
has desired input-output behavior. We believe that this is
the first static type system to be developed for an XML
update language.

Besides proving type soundness, we have described a sim-
ple, sound typechecking algorithm that computes an upper
bound on the type of a query or update, then checks whether
the bound is included in the desired result type. We believe
this algorithm is complete, but have not fully verified this
conjecture.

Lux is work in progress, and in the near future we plan
to prove Conjecture 1, improve the design of the high-level
interface, refine the high-level language design, and experi-
ment with large-scale examples (including some of the W3C’s
use cases [24]) inside an XML database management system.
Additional possible areas for future work include static type-
checking relative to XQuery’s type system; considering re-
cursive types and updates; and developing a type system
capturing correctness.
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