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Abstract
The problem of mechanically formalizing and proving metathe-
oretic properties of programming language calculi, type systems,
operational semantics, and related formal systems has received
considerable attention recently. However, the dual problem of
searching for errors in such formalizations has received compar-
atively little attention. In this paper, we consider the problem of
bounded model-checking for metatheoretic properties of formal
systems specified using nominal logic. In contrast to the current
state of the art for metatheory verification, our approach is fully au-
tomatic, does not require expertise in theorem proving on the part
of the user, and produces counterexamples in the case that a flaw
is detected. We present two implementations of this technique, one
based on negation-as-failure and one based on negation elimina-
tion, along with experimental results showing that these techniques
are fast enough to be used interactively to debug systems as they
are developed.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Constraint and logic lan-
guages; D.2.4 [Software Engineering]: Program Verification—
Model checking; Assertion checkers ; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools; F.3.1 [Logics and
Meaning of Programs]: Specifying and Verifying and Reasoning
about Programs—Mechanical verification; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic—Logic and
constraint programming

General Terms Experimentation, Verification

Keywords nominal logic, model checking, counterexample search

1. Introduction
Much of modern programming languages research is founded
on proving properties of interest by syntactic methods, such as
cut elimination, strong normalization, or type soundness theo-
rems [39]. Convincing syntactic proofs are challenging to perform
on paper for several reasons, including the presence of variable
binding, substitution, and associated equational theories (such as
α-equivalence in the λ-calculus and structural congruences in pro-
cess calculi), the need to perform reasoning by simultaneous or
well-founded induction on multiple terms or derivations, and the
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often large number of cases that must be considered. Paper proofs
are believed to be unreliable due in part to the fact that they usu-
ally sketch only the essential part of the argument, while leaving
out verification of the many subsidiary lemmas and side-conditions
needed to ensure that all of the proof steps are correct and that
enough cases have been considered.

A great deal of attention, recently reinvigorated by the POPLMark
Challenge [2], has been focused on the problem of metatheory
mechanization, that is, formally verifying such properties using
computational tools. Formal, machine-checkable proof is widely
agreed to provide the highest possible standard of evidence for
believing such a system is correct. However, all extant theorem
proving systems that have been employed in metatheory verifi-
cation1 have high learning curves, and using them to verify the
properties of a nontrivial system requires a great deal of effort even
after the learning curve has been surmounted, because inductive
theorem-proving is currently a brain-bound, not CPU-bound, pro-
cess. Moreover, verification attempts provide little assistance in the
case of an incorrect system, even though this is the common case
during the development of such a system. Verification attempts can
fail due to either flaws in the system or mistakes on the user’s part.
Determining which is the case (and how best to proceed) is part of
the arduous process of becoming a power user of a theorem-proving
system.

These observations about formal verification are not new. They
have long been used to motivate model-checking [15]. In model-
checking, the user specifies the system and describes properties
which it should satisfy; it is the computer’s job to search for coun-
terexamples or to determine that none exist. Although it was prac-
tical only for small finite-state systems when first proposed more
than 25 years ago, improved techniques for searching the state
space efficiently (such as symbolic model checking using Boolean
decision diagrams [28]) have now made it feasible to verify in-
dustrial hardware designs. As a result, model checking has gained
widespread acceptance in industry.

We argue that mechanically verified proof is neither the only,
nor always the most appropriate, way of gaining confidence in the
correctness of a formal system; moreover, it is almost never the
most appropriate way to debug such a system. This is certainly the
case in the area of hardware verification, where model-checking has
surpassed theorem-proving in industrial acceptance and applicabil-
ity. For finite systems such as hardware designs, model checking
is, in principle, able to either guarantee that the design is correct,
or produce a concrete counterexample. Model-checking tools are
CPU-bound; thus, they can often leverage hardware advances more
readily than theorem provers. Model-checkers do not generally re-
quire as much expertise as theorem provers; once the model speci-
fication and formula languages have been learned, an engineer can
formalize a design, specify desired properties, and let the system

1 principally theorem provers such as Twelf, Coq, Isabelle/HOL, HOL



do the work. Researchers can (and have) focused on the orthogo-
nal issue of representing and exploring the state space efficiently so
that the answer is produced as quickly as possible. This separation
of concerns has facilitated great progress.

We advocate mechanized metatheory model-checking as a use-
ful complement to established techniques for analyzing program-
ming languages and related systems. Of course, such systems are
usually infinite-state, so cannot be automatically verified in finite
time, but we can at least automate the search for counterexam-
ples over bounded, but arbitrarily large, subsets of the search space.
Such bounded model checking (failure to find a simple counterex-
ample) provides a degree of confidence that a design is correct, al-
beit not as much confidence as full verification. Nevertheless, this
approach shares other advantages of model-checking: it is CPU-
bound, not brain-bound; it separates high-level specification con-
cerns from low-level implementation issues; and it provides explicit
counterexamples. Thus, bounded model checking is likely to be
more helpful than verification typically is during the development
of a system.

In this paper we describe an approach to checking desired prop-
erties of formal systems implemented in αProlog, a logic pro-
gramming language which supports programming with “concrete”
names and binding modulo α-equivalence [11]. Our work is the
first to show how to find bugs in high-level specifications of pro-
gramming languages and other calculi automatically and effec-
tively. We explore techniques based on both negation-as-failure
and negation elimination, along with encouraging, though prelim-
inary, experimental results. Our experience has been that while
brute-force testing cannot yet find “deep” problems (such as the
well-known unsoundness in old versions of ML involving polymor-
phism and references) by itself, it is extremely useful for eliminat-
ing “shallow” bugs or typos.

The structure of the remainder of the paper is as follows. Fol-
lowing a brief introduction to αProlog, Section 2 presents our ap-
proach at an informal, tutorial level. Section 3 introduces the syntax
and semantics of a core language for αProlog which we shall use
in the rest of the paper. Section 4 discusses a simple implementa-
tion of metatheory model-checking in αProlog based on negation-
as-failure (NF). Section 5 discusses a more sophisticated imple-
mentation based on negation elimination (NE), including a discus-
sion of the modifications needed to adapt existing negation elimi-
nation algorithms to αProlog and a sketch of the soundness proof
for the technique. Section 6 presents experimental results that show
that the negation elimination approach may offers performance im-
provements over the other approaches we considered. Sections 7–9
discuss related and future work and conclude.

2. Tutorial Example
2.1 αProlog Background
We will specify the formal systems whose properties we wish to
check, as well as the properties themselves, as Horn clause logic
programs in αProlog. αProlog is a logic programming language
based on nominal logic, a first-order theory axiomatizing names
and name-binding introduced by Pitts [40] and based on Gabbay
and Pitts’ swapping-based approach to binding syntax [20]. Unlike
ordinary Prolog, αProlog is typed; all constants, function symbols,
and predicate symbols must be declared explicitly. We provide a
brief review in this section and a more detailed discussion of a
monomorphic core language for αProlog in Section 3; many more
details, including a detailed semantics, can be found in [11, 12].

In αProlog, there are several built-in types, functions and re-
lations with special behavior. There are distinguished name types
which are are populated with infinitely many name constants. In
program text, a name constant is generally a lower-case symbol

id : name_type. tm : type. ty : type.

var : id -> tm. unit : tm.
app : (tm,tm) -> tm. lam : id\tm -> tm.
pair : (tm,tm) -> tm.
fst : tm -> tm. snd : tm -> tm.

func sub(tm,id,tm) = tm.
sub(var(X),X,N) = N.
sub(var(X),Y,N) = var(Y) :- X # Y.
sub(app(M1,M2),Y,N) = app(sub(M1,Y,N),sub(M2,Y,N)).
sub(lam(x\M),Y,N) = lam(x\sub(M,Y,N)) :- x # (Y,N).
sub(unit,Y,N) = unit.
sub(pair(M1,M2),Y,N) = pair(sub(M1,Y,N),sub(M1,Y,N)).
sub(fst(M),Y,N) = fst(sub(M,Y,M)).
sub(fst(M),Y,N) = snd(sub(M,Y,N)).

#check "sub_fun" 5 : sub(M,x,N) = M1,
sub(M,x,N) = M2

=> M1 = M2.
#check "sub_id" 5 : sub(M,x,var(x)) = M.
#check "sub_fresh" 5 : x # M => sub(M,x,N) = M.
#check "sub_sub" 5 : x # N’

=> sub(sub(M,x,N),y,N’)
= sub(sub(M,y,N’),x,sub(N,y,N’)).

Figure 1. Terms and substitution

that has not been declared as something else (such as a predicate or
function symbol). Names can be used in abstractions, written a\M
in programs. Abstractions are considered equal up to α-renaming
of the bound name for the purposes of unification in αProlog. Thus,
where one writes λx.M , νx.M , etc. in a paper exposition, in αPro-
log one writes lam(x\M), nu(x\M), etc. In addition, the freshness
relation a # t holds between a name a and a term t that does
not contain a free occurrence of a. Thus, where one would write
x 6∈ FV (t) in a paper exposition, in αProlog one writes x # t.

Horn clause logic programs over these operations suffice to de-
fine a wide variety of core languages, type systems, and operational
semantics in a convenient way. Moreover, Horn clauses can also be
used as specifications of desired program properties, including ba-
sic lemmas concerning substitution as well as main theorems such
as preservation, progress, and type soundness. We therefore con-
sider the problem of checking specifications

#check "spec" n : A1, ..., An => C.

where spec is a label naming the property, n is a parameter that
bounds the search space, and A1 through An and C are atomic for-
mulas describing the preconditions and conclusion of the prop-
erty. As with program clauses, the specification formula is implic-
itly universally quantified. As a simple, running example, we con-
sider the lambda-calculus with units, pairs, and function types to-
gether with appropriate specifications of properties that one usually
wishes to verify.

Terms and substitution In contrast to other techniques such as
higher-order abstract syntax, there is no built-in substitution oper-
ation in αProlog, so we must define it explicitly. However, sub-
stitution can be defined declaratively in αProlog; see Figure 1.
For convenience, αProlog provides a function-definition syntax,
but this is presently just translated to an equivalent (but far more
verbose) relational implementation, using flattening (more sophis-
ticated functional logic programming techniques, such as narrow-
ing [21], would require the development of novel nominal equa-
tional unification algorithms).

After the definition of the sub function, we have added some
directives that state desired properties of substitution that we wish



unitTy : ty.
==> : ty -> ty -> ty. infixr ==> 5.
** : ty -> ty -> ty. infixl ** 6.

type ctx = [(id,ty)].

pred wf_ctx(ctx).
wf_ctx([]).
wf_ctx([(X,T)|G]) :- X # G, wf_ctx(G).

pred tc(ctx,tm,ty).
tc([(V,T)|G],var(V), T).
tc(G,lam(x\E),T1 ==> T2) :- tc ([(x,T1)|G], E, T2).
tc(G,app(E1,E2),T) :- tc(G,E1,T ==> T0),

tc(G,E2,T0).
tc(G,pair(M,N),T1 ** T2) :- tc(G,M,T1), tc(G,N,T2).
tc(G,fst(M),T1) :- tc(G,M,T1 ** T2).
tc(G,snd(M),T1) :- tc(G,M,T1 ** T2).
tc(G,unit,unitTy).

#check "tc_weak" 5 : x # G, tc(G,E,T)
=> tc([(x,T’)|G],E,T).

#check "tc_sub" 5 : x # G, tc(G,E,T),
tc([(x,T)|G],E’,T’),wf_ctx(G)

=> tc(G,sub(E’,x,E),T’).

Figure 2. Types, contexts, and well-formedness

to check. First, the sub_fun property states that the result of sub-
stitution is uniquely defined. Since sub is internally translated to
a relation in the current implementation (and since mode and de-
terminism analysis are not yet available in αProlog), this is some-
thing we ought to check. Second, sub_id checks that substituting
a variable with itself has no effect. The sub_fresh property is the
familiar lemma that substituting has no effect if the variable is not
present in M ; the last property sub_sub is a standard substitution
commutation lemma.

Types and typechecking Next we turn to types and typechecking,
Figure 2. We introduce constructors for simple types including unit,
pairing, and function types. The typechecking judgment is stan-
dard. In addition, we check some standard properties of typecheck-
ing, including weakening (tc_weak) and the substitution lemma
(tc_sub). Note that since we are merely specifying, not proving,
the substitution lemma, we do not have to state its general form.
However, since contexts are encoded as lists of pairs of variables
and types, we do have to explicitly define what it means for a con-
text to be well-formed: contexts must not contain multiple bindings
for the same variable. This is specified using the wf_ctx predicate.

Evaluation and soundness Now we arrive at the main point
of this example, namely defining the operational semantics and
checking that the type system is sound with respect to it, Figure 3.
We first define values, introduce one-step and multi-step call-by-
value reduction relations, define the progress relation indicating
that a term is not stuck, and specify type preservation (tc_pres),
progress (tc_prog), and soundness (tc_sound) properties.

2.2 Specification checking
The alert reader may have noticed several errors in the program
above. In fact, every specification we have ascribed to it is violated.
Some of the bugs were introduced deliberately, others were discov-
ered while debugging the specification using an early version of
the checking tool. Before proceeding, the reader may wish to try to
find all of the errors using his or her preferred formal verification
method.

We now describe the results of the specification checker on
the above program, along the way giving intuition concerning the

pred value(tm).
value(lam(_)).
value(b).
value(pair(V,W)) :- value(V),value(W).

pred step(tm,tm).
step(app(lam(x\M),N),sub(N,x,M)).
step(app(M,N),app(M’,N)) :- step(M,M’).
step(pair(M,N),pair(M’,N)) :- step(M,M’).
step(pair(V,N),pair(V,N’)) :- value(V),step(N,N’).
step(fst(M),fst(M’)) :- step(M,M’).
step(fst(pair(V,_)),V) :- value(V).
step(fst(M),fst(M’)) :- step(M,M’).
step(snd(pair(_,V)),V) :- value(V).

pred progress(tm).
progress(V) :- value(V).
progress(M) :- step(M,_).

pred steps(exp,exp).
steps(M,M).
steps(M,P) :- step(M,N), steps(N,P).

#check "tc_pres" 5 : tc([],M,T), step(M,M’)
=> tc([],M’,T).

#check "tc_prog" 5 : tc([],E,T) => progress(E).
#check "tc_sound" 5 : tc(empty,E,T), steps(E,E’)

=> tc(empty,E’,T).

Figure 3. Reduction, type preservation, progress, and soundness

counterexample search strategy. First, consider the substitution
specifications. The specification checker produces the following
typical (though slightly sanitized) output for the first two:

Checking for counterexamples to
sub_fun: sub(M,x,N) = M1, sub(M,x,N) = M2 => M1 = M2
Checking depth 1 2 3
Counterexample found:
M = fst(var(x)), M1 = fst(var(x)),
M2 = snd(var(V)), N = var(V)
--------
Checking for counterexamples to
sub_id: sub(M,x,var(x)) = M
Checking depth 1 2
Counterexample found:
M = var(V1)
x # V1

The first error is due to the following bug:

sub(fst(M),Y,N) = snd(sub(M,Y,N))

should be

sub(snd(M),Y,N) = snd(sub(M,Y,N))

Of course, this kind of problem could also be detected by a mode
analysis (which has, however, not yet been developed for αProlog).

The second error appears to be due to the typo in the clause

sub(var(X),Y,N) = var(Y) :- X # Y.

which should be

sub(var(X),Y,N) = var(X) :- X # Y.

After fixing these errors, no more counterexamples are found
for ”sub fun”, but we have

Checking for counterexamples to
sub_id: sub(M,x,var(x)) = M
Checking depth 1 2 3 4
Counterexample found:



M = pair(var(x),b)

Looking at the relevant clauses, we notice that

sub(pair(M1,M2),Y,N) = pair(sub(M1,Y,N),sub(M1,Y,N)).

should be

sub(pair(M1,M2),Y,N) = pair(sub(M1,Y,N),sub(M2,Y,N)).

After this fix, the only remaining counterexample involving
substitution is

Checking for counterexamples to
sub_id: sub(M,x,var(x)) = M
Checking depth 1 2 3 4
Counterexample found:
M = fst(lam(x4877\var(x)))

The culprit is this clause

sub(fst(M),Y,N) = fst(sub(M,Y,M)).

which should be

sub(fst(M),Y,N) = fst(sub(M,Y,N)).

Once these bugs have been fixed, the tc_sub property checks
out, but tc_weak and tc_pres are still violated:

Checking for counterexamples to
tc_weak: x # G, tc(G,E,T), wf_ctx(G) => tc([(x,T’)|G],E,T)
Checking depth 1 2 3 4
Counterexample found:
E = var(V)
G = [(V,base)]
T = base
T’ = base ==> base
--------
Checking for counterexamples to
tc_pres: tc([],M,T), step(M,M’) => tc([],M’,T)
Checking depth 1 2 3 4 5 6
Counterexample found:
M = app(lam(x\fst(var(x))),b)
M’ = b
T = base ** T

For tc_weak, of course we have to change the too-specific clause

tc([(V,T)|G],var V, T).

to

tc(G,var V, T) :- mem((V,T),G).

For tc_pres, M should never have typechecked at type T, and
the culprit is the application rule:

tc(G,app(E1,E2),T) :- tc(G,E1,T ==> T0),
tc(G,E2,T0).

Here, the types in the first subgoal are backwards, and should be

tc(G,app(E1,E2),T) :- tc(G,E1,T0 ==> T),
tc(G,E2,T0).

Some bugs remain after these corrections, but they are all de-
tected by the checker. In particular, the clauses

tc(G,snd(M),T1) :- tc(G,M,T1 ** T2).
step(app(lam(x\M),N),sub(N,x,M)).

should be changed to

tc(G,snd(M),T2) :- tc(G,M,T1 ** T2).
step(app(lam(x\M),N),sub(M,x,N)).

After making these corrections, none of the specifications produce
counterexamples up to the depth bounds shown.

3. Core language
The implementation of αProlog includes a number of high-level
conveniences including parameterized types such as lists, poly-
morphism, function definition notation (as used in subst above),
and non-logical features such as negation-as-failure and the “cut”
proof-search pruning operator. For the purposes of metatheory
model-checking we consider only input programs within a smaller,
better-behaved fragment for which the semantics (and accompany-
ing implementation techniques) are well-understood [12, 11, 10,
48]. In particular, to simplify the presentation we consider only
monomorphic, non-parametric types.

A signature Σ = (ΣD, ΣN , ΣF ) consists of sets ΣD and ΣN

of base data types δ and name types ν, respectively, together with
a collection ΣF of function symbol declarations f : τ → δ. Here,
types τ are formed according to the following grammar:

τ ::= 1 | δ | τ × τ ′ | ν | 〈ν〉τ

where δ ∈ ΣD and ν ∈ ΣN . We consider constants of type δ to be
function symbols of arity 1→ δ.

Given a signature, the language of terms over sets V of variables
x, y, z, . . . and A of names a, b, . . . is defined by the following
grammar:

t, u ::= a | π ·X | 〈〉 | 〈t, u〉 | 〈a〉t
π ::= id | (a b) ◦ π

We say that a term is ground if it has no variables (but possibly
does contain names). Suspended permutations appearing before
variables are often omitted, that is, we write X for id · X . The
abstract syntax 〈a〉t is synonymous with the concrete syntax a\t
for name-abstraction.

The swapping operation is defined as follows on ground terms:

π · 〈〉 = 〈〉 π · f(t) = f(π · t) π · 〈t, u〉 = 〈π · t, π · u〉
π · a = π(a) π · 〈a〉t = 〈π · a〉π · t

where π(a) denotes the result of applying the permutation π (con-
sidered as a function) to a.

We consider atomic formulae for equality (t ≈ u) and freshness
(t # u), where t is a term of some name type. The freshness
relation is defined on ground terms using the following inference
rules:

(a 6 ·= b)

a # b a # 〈〉
a # t

a # f(t)

a # t a # u

a # 〈t, u〉
a # b a # t

a # 〈b〉t a # 〈a〉t

Similarly, the equality relation, which identifies abstractions up to
“safe” renaming, is defined on ground terms as follows:

a ≈ a c ≈ c

t1 ≈ u2 t2 ≈ u2

〈t1, t2〉 ≈ 〈u1, u2〉
t ≈ u

f(t) ≈ f(u)

a ≈ b t ≈ u
〈a〉t ≈ 〈b〉u

a # (b, u) t ≈ (a b) · u
〈a〉t ≈ 〈b〉u

Given a signature which includes a distinguished base type o of
propositions along with predicate symbols p : τ → o, we consider
goal and (definite) program clause formulas G and D, respectively,
defined by the following grammar:

A ::= t ≈ u | t # u

G ::= ⊥ | > | A | p(t) | G ∧G′ | G ∨G′

| ∃X:τ. G | ∀X:τ. G | Na:ν. G

D ::= > | p(t) | G ⊃ D | D ∧D′ | ∀X:τ. D



Γ : ∇ |= C

Γ : ∆;∇ ⇒ C
con

Γ : ∆;∇ ⇒ G1 Γ : ∆;∇ ⇒ G2

Γ : ∆;∇ ⇒ G1 ∧G2
∧R

Γ : ∆;∇ ⇒ Gi

Γ : ∆;∇ ⇒ G1 ∨G2
∨Ri

Γ : ∇ |= ∃X:τ. C Γ, X:τ : ∆;∇, C ⇒ G

Γ : ∆;∇ ⇒ ∃X:τ. G
∃R

Γ : ∇ |= ∀X:τ. C Γ, X:τ : ∆;∇, C ⇒ G

Γ : ∆;∇ ⇒ ∀X:τ. G
∀R

Γ : ∇ |= Na:ν. C Γ#a:ν : ∆;∇, C ⇒ G

Γ : ∆;∇ ⇒ Na:ν. G
NR

Γ : ∆;∇ D−→ A D ∈ ∆

Γ : ∆;∇ ⇒ A
sel

t ≈ u

Γ : ∆;∇
p(t)
−→ p(u)

hyp
Γ : ∆;∇ Di−→ A

Γ : ∆;∇ D1∧D2−→ A

∧Li
Γ : ∆;∇ D−→ A Γ : ∆;∇ ⇒ G

Γ : ∆;∇ G⊃D−→ A
⊃L

Γ : ∇ |= ∃X:τ. C Γ, X:τ : ∆;∇, C
D−→ A

Γ : ∆;∇ ∀X:τ. D−→ A
∀L

Figure 4. Proof search semantics of αProlog programs

The novel features of nominal logic programs consist of the fresh-
ness and equality constraints (t # u, t ≈ u) described above and
the Gabbay-Pitts fresh-name quantifier N. The latter, intuitively,
quantifies over names not appearing in the formula (or in the val-
ues of its variables); that is, provided the free variables and names
of φ are {a, ~X}, the formula Na:ν. φ is logically equivalent to
∃A:ν. A # ~X ∧ φ.

Although we permit programs to be defined using arbitrary (sets
of) definite clauses ∆, we take advantage of the fact that such
programs can always be normalized to sets of clauses of the form
∀ ~X. G ⊃ p(t). It is useful to single out in a normalized program
∆ all the clauses that belong to the definition of a predicate; thus,
we define def(p, ∆) = {D | D ∈ ∆, D = ∀ ~X. G ⊃ p(t)}.

As mentioned earlier, the implementation of αProlog includes
a notationally convenient syntax for defining functions. Func-
tions f of n arguments can be defined using clauses of the form
f(~t) = u :− G; these are translated to n + 1-ary predicate clauses
pf (~t, u) :− G. Uses of f within goals such as G[f(~t)] are trans-
lated to subgoals of the form ∃X. pf (~t, X) ∧G[X].

A similar technique can be used to provide more convenient
elimination forms for pair and abstraction types. The projection
functions πi : τ1 × τ2 → τi can be defined directly using the
equation πi(X1, X2) = Xi. The elimination form for abstraction,
called concretion and written t @ a, can be implemented by trans-
lating G[t @ a] to ∃X. t ≈ 〈a〉X ∧G[X]. We use these elimination
forms freely in the rest of the paper, subject to the proviso that they
must be expanded before any program transformations are applied.

Finally, concrete-syntax program clauses containing free names
and variables such as

tc(G,lam(x\M),T ==> U) :- x # G, tc([(x,T)|G],M,U).

are viewed as equivalent to closed formulas such as:

∀G, F, T, U.
( Nx. F = 〈x〉M ∧ x # G ∧ tc([(x, T )|G], M, U))
⊃ tc(G, lam(F ), T =⇒ U)

Note that this transformation yields a proper definite clause in
which Nis used only in the subgoal. Such clauses have been studied
in previous work [12, 48] and it is known that resolution based
on nominal unification is sound and complete for proof search for
this case, in contrast to the general case where a more complicated
equivariant unification problem must be solved [7].

We define contexts Γ to be sequences of bindings of names or
of variables:

Γ ::= · | Γ, X:τ | Γ#a:ν

Note that names in closed formulas are always introduced using the
N-quantifier; as such, names in a context are always intended to be

fresh with respect to the values of variables and other names already
in scope when introduced. For this reason, we write name-bindings
as Γ#a:ν.

We define constraints to be G-formulas of the following form:

C ::= t ≈ u | t # u | C ∧ C′ | ∃X:τ. C | ∀X:τ. C | Na:ν. C

We write ∇ for a set of constraints. Constraint-solving is modeled
by the satisfiability judgment Γ : ∇ |= C. For constraints ∇, C
containing only free variables/names from Γ, this judgment means
that for every ground instantiation θ of the variables consistent with
freshness assertions in Γ, if

∧
θ(∇) holds, then θ(C) holds.

Efficient algorithms for constraint solving and unification for
nominal terms of the above form and for freshness constraints of
the form a # t were studied by Urban, Pitts, and Gabbay [49].
Note, however, that we also consider freshness constraints of the
form π ·X # π′ · Y . These constraints are needed to express the
alpha-inequality predicate neq (see Section 5.2). Constraint solv-
ing and satisfiability become NP-hard in the presence of these con-
straints [13, Ch. 7]. In the current implementation, such constraints
are delayed until the end of proof search, and any remaining con-
straints of the form π · X # π′ · X are checked for consistency
by brute force; these are essentially finite domain constraints. Any
remaining constraints π · X # π′ · Y where X and Y are not
necessarily equal are always satisfiable.

We use here a proof-theoretic model of the semantics of αPro-
log programs, introduced in [10, 12], and shown here in Figure 4.
This semantics allows us to focus on the high-level proof search
issues relevant to proving the correctness of negation elimination,
without requiring us to introduce or manage low-level operational
details concerning constraint solving. The only novelty is the pres-
ence of rules for universally quantified goals, which are handled
here as in λProlog. The semantics defines two judgments: goal-
directed or uniform proof search Γ : ∆;∇ ⇒ G, and program
clause-directed or focused proof search Γ : ∆;∇ D−→ A, where ∆
is a set of clauses and∇ a set of constraints.

4. Implementation using negation-as-failure
We consider informal #check specifications to correspond to spec-
ification formulas of the form

N~a.∀ ~X. H1 ∧ · · · ∧Hn ⊃ A (1)

where H1, . . . , Hn, A are atomic formulas (including equality and
freshness constraints). A (finite) counterexample is a closed sub-
stitution θ such that θ(H1), . . . , θ(Hn) all hold (that is, are deriv-
able), but the conclusion θ(A) finitely fails (that is, is not derivable
in finitely many steps).

We define the bounded model checking problem for such pro-
grams and properties as follows: given a resource bound (e.g. a
bound on the sizes of counterexamples or number of inference steps
needed), decide whether a counterexample can be derived using the
given resources, and if so, compute such a counterexample.

We consider two approaches to solving this problem using
negation-as-failure. First, in principle, we could simply enumer-
ate all possible valuations and test them, using negation-as-failure.



tc(G,E,T)

mem((X,T),G)

G=[(X,T)|G’]

E=unit,
T=unitTy

G=[_,(X,T)|G’]

mem((X,T),G’)

tc(G,lam(F),T)

mem((X,T),G)

E=lam(a\var(a)),
T=T1 ==> T1

E=lam(a\unit),
T=T1 ==> unitTy

tc(G,M,T1 ** T2) tc(G,M,T1 ** T2)

E=fst(var(X))
G=[(X,T**T2))

E=snd(var(X))
T=T1 ** T

Figure 5. “Finished” derivations for tc(G,E,T) up to depth 3

More precisely, given predicates gen[[τ ]] : τ → o for each type
τ (see Figure 6), which generate all possible values of type τ , we
may translate a specification of the form (1) to a goal

N~a.∃ ~X:~τ. gen[[τ ]](X1) ∧ · · · ∧ gen[[τ ]](Xn) ∧ ~H ∧ not(A) (2)

where, here, not(A) is the ordinary negation-as-failure familiar
from Prolog. Such a goal can simply be executed in the αPro-
log interpreter, using the number of resolution steps permitted to
solve each subgoal as a bound on the search space. This method
combined with iterative deepening should find a counterexample,
if one exists.

Second, we consider an approach that enumerates derivations
of the hypotheses and then tests whether the negated conclusion
is satisfiable under the resulting answer constraint. This avoids
wasteful backtracking due to premature commitment to a ground
instantiation. For example, if we have

gen[[τ ]](X), gen[[τ ]](Y ), bar(Y ), foo(X), not(baz(X, Y ))

and we happen to generate an X that simply does not satisfy
foo(X), we will still search all of the possible instantiations of
Y and derivations of bar(Y ) up to the depth bound before trying
a different instantiation of X . Instead, it seems more efficient to
use the definitions of foo and bar to guide search towards suitable
instantiations of X and Y . Compared with the ground substitution
enumeration technique above, this derivation-first approach simply
delays the gen predicates until after the hypotheses:

N~a.∃ ~X:~τ. ~H ∧ gen[[τ ]](X1) ∧ · · · ∧ gen[[τ ]](Xn) ∧ not(A) (3)

In fact, we only need to generate instantiations for the variables Xi

actually appearing in A, since only they need to be ground to ensure
that negation-as-failure is well-behaved. Of course, the order of the
other hypotheses ~H can also affect search speed, but we leave this
choice in the hands of the user in the current implementation.

In essence, this derivation-first approach generates all “fin-
ished” derivations of the hypotheses ~H up to a given depth, con-
siders all sufficiently ground instantiations of variables in each up
to the depth bound, and finally tests whether the conclusion finitely
fails for the resulting substitution. A finished derivation is the result
of performing a finite number of resolution steps on a goal formula
in order to obtain a goal containing only equations and freshness
constraints. For example, the proof search tree in Figure 5 shows
all of the finished derivations of tc(G, E, T ) using at most 3 res-
olution steps. Here, the conjunction of constraint formulas along
a path through the tree describes the solution corresponding to the
path.

We implemented a variant of the αProlog interpreter that limits
the number of resolution steps taken when trying to prove a hypoth-
esis to the bound b provided as part of the #check declaration, and
uses the ad hoc limit 2∗b when solving not(A). The reason for the
larger bound on the conclusion is that often the derivation of the
conclusion combines the derivations of the hypotheses (consider,
for example, the derivation transformations involved in proofs of
substitution lemmas). We only report a counterexample when the

gen[[τ ]] : τ → o

gen[[1]](t) = t ≈ 〈〉
gen[[τ1 × τ2]](t) = gen[[τ1]](π1(t)) ∧ gen[[τ2]](π2(t))

gen[[δ]](t) = genδ(t)

gen[[〈ν〉τ ]](t) = Na:ν. gen[[τ ]](t @ a)

gen[[ν]](t) = >

genδ(t) :−
∨
{∃X:τ. t = f(X) ∧ gen[[τ ]](X)

| f : τ → δ ∈ Σ}

Figure 6. Term-generator predicates

negated goal fails in fewer than 2 ∗ b steps, not because it runs out
of resources; the latter case could result in false positives.

The gen[[τ ]] predicates are currently implemented as a built-in
generic functions in αProlog. On user request, the interpreter gen-
erates predicates genδ for all user-defined datatypes δ; these can be
used within #check directives. Note that we do not exhaustively
instantiate base types such as name-types; instead, we just use a
fresh variable to represent all possible names.

The implementation of counterexample search using negation-
as-failure described in the previous section still has several disad-
vantages:

• Negation-as-failure is unsound for non-ground goals, so we
must blindly instantiate all free variables before solving the
negated conclusion2. This is expensive and prevents optimiza-
tions by reordering the negated conclusion.

• Proving soundness and completeness of counterexample search
requires proving properties of negation-as-failure in αProlog
which have not yet been studied.

• Nested negations are not well-behaved, so we cannot use nega-
tion in “pure” programs or specifications we wish to check.

We therefore consider another approach, based on negation
elimination.

5. Negation Elimination
Logical frameworks with a logic programming interpretation such
as αProlog or hereditary Harrop formulae cannot directly express
negative information, although negation is a useful specification
tool. The issue of negation in logic programming has been exten-
sively researched, though negation-as-failure has proven to be uni-
versally accepted from a practical standpoint, in spite of its noto-
rious difficulties, namely the lack of a unique intuitive semantics.
However, when we are interested in using a logic programming lan-
guage as a logical framework, where adequacy of the encoding of
object logics is paramount, we have to be more picky and select a
sound notion of negation.

Negation elimination (NE) is a source-to-source transformation
aimed at replacing negated subgoals with calls to “equivalent” pos-
itively defined predicates. NE bypasses complex semantic and im-
plementation issues arising for NF since, in the absence of local
variables, it yields an ordinary (α)Prolog program whose success
set is included (or coincides in the case of terminating programs)
with the complement of the success set of the original negated pred-
icate. In the context of specification checking, negation elimination
has several advantages: it avoids the expensive term generation step

2 As well known, this can be soundly weakened to checking for bindings of
the free variables of the goal upon a successful derivation of the latter.



needed to ground free variables, it is more transparently correct,
and it may open up other opportunities for optimization.

Replacing occurrences of negated predicates with positive ones
which are operationally equivalent entails two phases:

• Complementing (nominal) terms/patterns. Certainly, one rea-
son a goal can fail is when its arguments do not unify with
any clause head in its definition. To exploit this observation,
we pre-compute the complement of the term structure in each
clause head by constructing a set of terms that differ in at least
one position. This is known as the (relative) complement prob-
lem [25], which we formally define in Section 5.1.

• Complementing clauses. This can be seen as a negation normal
form procedure which is consistent with the operational seman-
tics of the language. The idea of the clause complementation
algorithm is thus to compute the complement of each head of a
predicate definition using term complementation, while clause
bodies are negated pushing negation inwards until atoms are
reached and replaced by their complement. The contribution of
each of the original clauses are finally merged via unification.

5.1 Term complement
An open term t in a given signature can be seen as the intensional
representation of the set of its ground instances, notation ‖t‖.
According to this interpretation, the complement of t (Not(t)) is
the set of ground terms which are not instances of t, i.e. are in the
set-theoretic complement of ‖t‖. It is natural to generalize this to
the notion of relative complement, a suitable representation of all
the ground instances of a given (finite) set of terms which are not
instances of another given one, in symbols:

‖t1, . . . , tn‖ − ‖u1, . . . , um‖

where dots represent (set theoretic) union. Let FV (t1, . . . , tn) =
~x disjoint from FV (u1, . . . , um) = ~y. Then the relative comple-
ment problem can be also expressed by the following (restricted)
form of equational problem [16], where the zi’s are free variables.

∃~x∀~y.

n∧
i=1

zi = ti ∧
m∧

i=1

zi 6= ui

A complement operator must satisfy the following desiderata:
for fixed t, and all ground terms s

1. Exclusivity: it is not the case that s is both a ground instance of
t and of Not(t).

2. Exhaustivity: s is a ground instance of t or s is a ground instance
of Not(t).

As it was initially remarked in [25], this cannot be achieved
unless we restrict to linear terms, viz. such that they have no
repeated occurrences of the same logic variables. However, this
restriction is immaterial for our intended application, thanks to left-
linearization, a simple source to source transformation, where we
replace repeated occurrence of the same variable in a clause head
with fresh variables which are then constrained in the body by ≈.

However, complementing nominal terms, similarly to the higher-
order case, introduces new issues. In fact, even restricting to pat-
terns, (intuitionistic) lambda calculi are not closed under comple-
mentation, due the presence of partially applied lambda terms.
Consider a higher-order pattern (lam [x] E), where the logic
variable E does not depend on x. Its complement contains all the
functions that must depend on x, but this is not directly express-
ible with a finite set of patterns. This problem may be solved by
developing a strict lambda calculus, where we can directly express
whether a function depends on its argument [31]. This is not an
issue for nominal terms as presented in αProlog, since we do not

no rule for 1, ν, 〈ν〉τ

g ∈ Σ, g : τ → δ, f 6≡ g
Not f1

Not(f(t))⇒ g(X) : δ

Not(t)⇒ s : τ
Not f2

Not(f(t))⇒ f(s) : δ

Not(t1)⇒ s1 : τ1

Not p1

Not(〈t1, t2〉)⇒ 〈s1, X2〉 : τ1 × τ2

Not(t2)⇒ s2 : τ2

Not p2

Not(〈t1, t2〉)⇒ 〈X1, s2〉 : τ1 × τ2

Figure 7. Term complement

consider logical variables at function types. However, the presence
of names, abstractions, and swappings leads to a similar problem.
Indeed, consider the complement of say lam(x\var(x)): it would
contain terms of the form lam(x\var(Y)) such that x # Y. This
would yield not only some non-determinism w.r.t. the rules for
complementing abstractions, but it also means that the comple-
ment of a term (containing free or bound names) cannot again be
represented by a finite set of nominal terms. This would not be
problematic if we took the (constraint) disunification route; how-
ever, as far as negation elimination is concerned, it is simpler to
restrict to a core language that is complement-closed: require terms
in the heads of source program clauses to be linear and also for-
bid occurrence of names (including swapping and abstractions) in
clauses heads. These are replaced by logic variables appropriately
constrained in the clause body by a concretion to a fresh name.
Note also that the syntax of D-formulas in Section 3 already en-
forces this, as Nquantification is not allowed over clause heads.

Thus, we can simply use a nondeterministic, type directed,
version of the standard rules for first-order term complementation
(listed in Figure 7), where the X’s are fresh logic variables and
f : τ → δ. Define Not(t) = N : τ iff N = {n | Not(t) ⇒
n : τ}. The correctness of the algorithm follows from previous
results [3, 31]. We intend to address the general case of nominal
term complement in future work (Section 8).

5.2 Clause Complementation via generic operations
Clause complementation is usually described in terms of contra-
position of the only-if part of the completion [3, 6, 33]. We in-
stead present a more direct, syntax-directed approach. To com-
plement atomic constraints such as equality and freshness, we
need (α-)inequality and non-freshness; we implemented these us-
ing type-directed code generation within the αProlog interpreter.
We write neqδ , nfrδ , etc. as the names of the generated clauses
(cf. analogous notions in [18]). Each of these clauses is defined as
shown in Figure 8, together with auxiliary, type-indexed functions
neq [[τ ]],nfr [[τ ]], etc. which are used to construct appropriate sub-
goals for each type. In particular, note that recursion through data
types δ is broken through calling the predicates neqδ , nfrν,δ .

Complementing goals (Figure 10) is intuitive: we just put the
latter in negation normal form, respecting the operational seman-
tics of failure. Note that the self-duality of the N-quantifier (cf. [40,
20]) allows goal negation to be applied recursively. The existential
case is instead more delicate: a well known difficulty in the the-
ory of negation elimination is that in general Horn programs are
not closed under complementation [26]; if a clause contains a ex-
istential variable (more commonly known as a local variable) i.e. a



neq [[τ ]] : τ × τ → o

neq [[1]](t, u) = ⊥
neq [[τ1 × τ2]](t, u) = neq [[τ1]](π1(t), π1(u))

∨ neq [[τ2]](π2(t), π2(u))

neq [[δ]](t, u) = neqδ(t, u)

neq [[〈ν〉τ ]](t, u) = Na:ν. neq [[τ ]](t @ a, u @ a)

neq [[ν]](t, u) = t # u

neqδ(t, u) :−
∨
{∃X, Y :τ. t = f(X) ∧ u = f(Y )

∧ neq [[τ ]](X, Y )

| f : τ → δ ∈ Σ}

∨
∨
{∃X, Y. t = f(X) ∧ u = g(Y )

| f : τ → δ, g : τ ′ → δ ∈ Σ,

f 6= g}

nfr [[ν, τ ]] : ν × τ → o

nfr [[ν,1]](a, t) = ⊥
nfr [[ν, τ1 × τ2]](a, t) = nfr [[ν, τ1]](a, π1(t))

∨ nfr [[ν, τ2]](a, π2(t))

nfr [[ν, δ]](a, t) = nfrν,δ(a, t)

nfr [[ν, 〈ν′〉τ ]](a, t) = Nb:ν′. nfr [[τ ]](a, t @ b)

nfr [[ν, ν]](a, b) = a ≈ b

nfr [[ν, ν′]](a, b) = ⊥ (ν 6 ·= ν′)

nfrν,δ(a, t) :−
∨
{∃X:τ. t = f(X) ∧

nfr [[ν, τ ]](a, X) | f : τ → δ ∈ Σ}

Figure 8. Inequality and non-freshness

logic variable that does not appear in the head of the clause, the
complemented clause will contain a universally quantified goal,
call it ∀∗X:τ. G. Moreover, this quantification cannot be directly
realized by the standard generic search operation. In the latter
∀X : A. G succeeds iff G[a/X] succeeds, for a new eigenvariable
a, while extensional quantification refers to every term in the do-
main, viz. ∀∗X:τ. G holds iff so does G[t/X] for every (ground)
term of type τ . Since this is hardly practical to implement from the
logic programming standpoint, extensional quantification has been
interpreted by case analysis [5] and SLD-derivations have been ex-
tended with such a step. Figure 9 shows the proof search semantics
of the ∀∗-quantifier.

Clause complementation is now unsurprising: given a rule
∀(q(t) ← G), its complement must contain a ‘factual’ part mo-
tivating failure due to clash with the head; the remainder NotG(G)
expresses failure in the body, if any. This is accomplished in Fig-
ure 11 by the NotDi function, where a set of negative facts is built
via term complementation Not(t); moreover the negative counter-
part of the source clause is obtained via complementation of the
body. Finally all the contributions from each source clause in a def-
inition are merged by conjoining the above with a clause for a new
predicate symbol, say p¬(X), which calls all the p¬i (Figure 12).

We list in Figure 13 the complement of the typechecking pred-
icate from Section 2. This results from a final (not yet fully imple-
mented) optimization pass consisting of renaming and inlining the
definitions of the p¬i . As expected, local variables in the application
and projection cases yield the corresponding ∀∗-quantified bodies.

Γ : ∆;∇ ⇒ ∀X:τ. G

Γ : ∆;∇ ⇒ ∀∗X:τ. G
∀∗∀

Γ : ∆;∇ ⇒ G[〈〉/X]

Γ : ∆;∇ ⇒ ∀∗X:1. G
∀∗1

Γ : ∆;∇ ⇒ ∀∗X1:τ1.∀∗X2:τ2. G[〈X1, X2〉/X]

Γ : ∆;∇ ⇒ ∀∗X:τ1 × τ2. G
∀∗×

Γ : ∆;∇ ⇒ Na:ν.∀∗Y :τ. G[〈a〉Y /X]

Γ : ∆;∇ ⇒ ∀∗X:〈ν〉τ . G
∀∗abs

Γ : ∆;∇ ⇒
∧
{∀∗Y :τ. G[(f Y )/X] | f : τ → δ ∈ Σ}
Γ : ∆;∇ ⇒ ∀∗X:δ. G

∀∗δ

Figure 9. Proof rules for extensional universal quantification

NotG(>) = ⊥
NotG(p(t)) = p¬(t)

NotG(t ≈τ u) = neq [[τ ]](t, u)

NotG(a #ν,τ u) = nfr [[ν, τ ]](a, u)

NotG(G ∧G′) = NotG(G) ∨NotG(G′)

NotG(G ∨G′) = NotG(G) ∧NotG(G′)

NotG(∃X:τ. G) = ∀∗X:τ. NotG(G)

NotG( Na:ν. G) = Na:ν. NotG(G)

NotG(∀X:τ. G) = ∀X:τ. NotG(G)

Figure 10. Negation of a goal

NotDi (∀(p(t) :− G))) =
∧
{∀(p¬i (u)) | Not(t)⇒ u : τ}

∧∀(p¬i (t) :− NotG(G))

Figure 11. Negation of a single clause

NotD(∀(p(t1) :− G1, . . . , p(tn) :− Gn)) =

∀(
∧

i

NotDi (p(ti) :− Gi))

∧ ∀X. (p¬(X) :−
∧

i

p¬i (X))

Figure 12. Negation of all clauses defining p

pred not_tc ([(id,ty)],exp,ty).
not_tc(G,var(X),T) :- not_mem((X,T),G).
not_tc(G,app(M,N),U) :- forall* T.

(not_tc(G,M,arr(T,U));
(tc(G,M,arr(T,U)),
not_tc(G,N,T))).

not_tc(G,lam(M),T ==> U) :- new x.
not_tc([(x,T)|G],M@x,U).

not_tc(G,pair(M,N),T ** U) :- not_tc(G,M,T) ;
not_tc(G,N,U).

not_tc(G,fst(M),T) :- forall* U. not_tc(G,M,T ** U).
not_tc(G,snd(M),U) :- forall* T. not_tc(G,M,T ** U).
not_tc(G,lam(M),unitTy).
not_tc(G,lam(M),_ ** _).
not_tc(_,unit,_ ==> _).
not_tc(_,unit,_ ** _).
not_tc(G,pair(M,N),unitTy).
not_tc(G,pair(M,N),_ ==> _).

Figure 13. Negation of typechecking predicate



The most important property for our intended application is
soundness, which we state in terms of exclusivity of clause com-
plementation. Let ∆− = ∆ ∪NotD(∆).

THEOREM 1 (Exclusivity). 1. It is not the case that Γ : ∆;∇ ⇒
G and Γ : ∆−;∇ ⇒ NotG(G).

2. It is not the case that Γ : ∆;∇ D−→ p(t) and Γ : ∆−;∇ NotD(D)−→
¬p(t)

The proof, by mutual induction on the derivation of Γ : ∆;∇ ⇒ G

and Γ : ∆;∇ D−→ p(t), follows the lines in [30].
Completeness can be stated as follows: if a goal G finitely fails

from a program D, then its complement NotG(G) should be prov-
able from NotD(D). In a model checking context, this is is a desir-
able, though not vital property. In fact, it is well known [19] that the
semantics of NF has a very high degree of unsolvability and com-
pleteness results have been proven w.r.t. a three-valued semantics,
due to Kunen [24]. Logic programs define recursively enumerable
relations, and it is only possible to define the complement of an r.e.
relation if and only if it is recursive. We therefore cannot expect
true completeness results unless we restrict to recursive programs.
As a simple example, if ∆ defines the r.e. predicate halts which
recognizes Turing machines that halt on their inputs, it is obvious
that the predicate ¬halts defined by NotD(∆) cannot define the
exact complement of halts. Determining whether a logic program
defines a recursive relation is an orthogonal issue, but see, e.g. the
termination analysis approach taken in the Twelf system [38]. Nev-
ertheless, we do not believe completeness is necessary for our ap-
proach to be useful, even for systems with undecidable predicates
such as first-order sequent calculi or undecidable typing or subtyp-
ing relations.

6. Experimental results
We implemented counterexample search in the αProlog interpreter
using both negation-as-failure and negation-elimination, as out-
lined in the previous section. In this section, we present perfor-
mance results comparing these approaches. We consider the exam-
ples presented in Section 2 as test data, using both the “buggy”
version we have presented and a version with all bugs that were
detected by the checker fixed.

We performed informal experiments comparing the two ap-
proaches based on negation-as-failure. Not surprisingly, we found
that placing the generator predicates at the end of the list of hy-
potheses rather than at the beginning made a dramatic difference—
as did the ordering of subgoals in certain cases. We omit experi-
mental results for the naive (generators-first) NF approach since
it appears obvious that the derivation-first approach is always
preferable. The machine used was an AMD Athlon 3000+ running
Ubuntu Linux v6.10 with 1GB RAM.

For the negation-elimination approach, we considered two vari-
ants, one (called NE) in which the ∀∗ quantifier is implemented
fully as a primitive in the interpreter, and a second in which ∀∗ is
interpreted as ordinary intensional ∀. The second approach, which
we call NE−, is incomplete relative to the first; some counterexam-
ples found by NE may be missed by NE−. Nevertheless, NE− is
potentially faster since it avoids the overhead of run-time dispatch
based on type information (and since it searches a smaller number
of counterexample derivations).

We attempted to identify the best orderings for the subgoals
in each approach. For example, in the NE-based approach, some
subgoals (such as context well-formedness predicates wf_ctx) can
be delayed past the negation predicate to improve performance.

Time to find counterexamples We first measured the time needed
by each approach to find counterexamples. The counterexamples

NF NE NE−

tc_weak 0 3.36 0.13
tc_subst 0 3.06 0.32
tc_pres 0.02 0.01 0.02
tc_prog 0.08 0.03 0.1
tc_sound N/A 0.19 0.22

Table 1. Time to find counterexamples

found were not necessarily the same. For the checks involving sub-
stitution, all counterexamples were found in less than 0.01 seconds.
Table 1 shows the times needed for the checks involving typecheck-
ing, in seconds. One counterexample could not be found by NF
within five seconds.

These results are encouraging, because they suggest that both
NE and NE− remain competitive with NF, despite the fact that they
potentially cover much more of the search space within a given
depth bound. Moreover, in at least one case (tc_sound) the NE
approaches were able to find a counterexample that NF was not
able to within a reasonable interactive time. Finally, these results
suggest that in many cases (at least for finding “shallow” bugs), the
relatively incomplete search strategy of NE− can be used in place
of NE. The faster NE− approach can be used first, with NE used if
no counterexamples are found using NE−.

Time to exhaust a finite search space We next measured the
amount of time it takes for a given approach to exhaust its search
space up to a given depth bound n. For each technique and test, we
measured this time for n = 1, 2, . . . up until the point where search
time exceeded a “reasonable” few seconds. The experimental re-
sults are shown in Table 2. The first column shows the name of the
checked property; the second shows the search depth n used. For
each test, we used the largest n for which all three approaches were
successful in a reasonable period of time.

These results are mixed. In some cases, particularly those in-
volving substitution, NE and NE− are clearly much more efficient
than the NF approach. In others, particularly key lemmas such as
substitution and weakening, NE often takes significantly (up to a
factor of 4) longer, with NE− usually in between. For tc_sound
the situation is particularly bad, with NE 15-20 times slower than
NF or NE−. On the other hand, for the tc_prog checks, both NE-
based techniques are faster.

However, it is important to note that the search spaces consid-
ered by each of the approaches for a given depth bound are not
equivalent. Thus, the comparisons among the approaches up to a
given bound may be apples-to-oranges. Indeed, it is not clear how
we should report the sizes of the search spaces, since even a simple
unifier X = f(c, Z) represents an infinite (but clearly incomplete)
subset of the search space. We can, however, say that the search
space considered by NE for a given bound n contains the spaces
considered by the other two; thus, in cases where NE does better
than another approach (as with tc_prog), it is clear that this is a
significant improvement.

The translation of negated clauses in NE and NE− (Section 5) is
a conjunction of disjunctions. This causes our algorithm to do inef-
ficient backtracking. This can probably be improved using standard
optimization techniques which are not implemented in the current
αProlog prototype.

A second source of inefficiency, which accounts for the differ-
ence between NE− and NE, is the extensional quantifier ∀∗, and
in particular its implementation as a built-in proof search operation
which dispatches on type information at run-time. This is obviously
inefficient and we believe it could be improved. However, doing



n NF NE NE−

sub_fun 3 4.5 2.42 3.02
sub_id 4 0.09 0.25 0.27
sub_fresh 4 13.98 0.15 0.16
sub_comm 3 2.39 6.01 5.09
tc_weak 4 5.31 21.19 16.95
tc_subst 4 12.43 98.44 64.7
tc_pres 6 0.73 1.04 0.91
tc_prog 7 8.89 3.75 4.51
tc_sound 6 1.49 36.44 1.98

Table 2. Time to search up to bound n

so appears to require significant alterations to the implementation,
such as support for higher-order programming.

Further experience In addition to the relatively straightforward
lambda-calculus example discussed above, we have used the NF-
based implementation to check for errors in several substantial
examples, including:

• LF typechecking and equivalence algorithms [23]
• The F≤ language described in the POPLMark Challenge (im-

plemented in αProlog by Matthew Fairbairn [17])
• λzap, a “faulty lambda calculus” [50]
• A (type-unsafe) mini-ML language with polymorphism and

references

We did not expect to find previously unknown errors in these sys-
tems; however, the checker gives us some confidence that there are
no obvious typos or transcription errors in our implementations of
the systems. In some cases, we were able to confirm known prop-
erties of the systems via counterexample search. For example, in
λzap, the type soundness theorem applies as long as at most one
fault occurs during execution; we confirmed that two faults can lead
to unsoundness. Similarly, it is well-known that the naive combi-
nation of ML-style references and let-bound polymorphism is un-
sound; we are able to confirm this by guiding the counterexample
search, but the smallest counterexample (that we know of) cannot
be found automatically in interactive time.

Our experiences with the NF-based implementation have been
positive (though this is our opinion and obviously subject to bias).
Most mainstream type systems appear easy to translate into αPro-
log clauses, and writing specifications for programs requires little
added effort and also seems helpful for documentation purposes.

From these experiences, several observations can be made:

1. Checking properties of published, well-understood systems
does confirm that the checker avoids false positives, but does
not necessarily show that the checker is helpful during the de-
velopment of a system. Further study would be needed to es-
tablish this, perhaps via usability studies.

2. It is not enough to just check the main properties such as type
soundness, since the system may be flawed in such a way that
soundness holds trivially, but other properties such as inversion
or substitution fail. Instead, it is generally worthwhile to enu-
merate all of the desired properties of the system (including
auxiliary properties that might arise during a proof). This could
be especially helpful when one wishes to make a change to the
system, since the checks can serve as regression tests.

3. The ordering of subgoals often has a significant effect on per-
formance. Many alternative search strategies and optimizations
(e.g. random search, coroutining, “most constrained goal first”,
tabling), could be considered to improve performance.

7. Related work
As stated earlier, our approach draws inspiration from the success
of finite state model-checking systems [15]. Particularly relevant is
the idea of symbolic model checking [28], in which data structures
such as Boolean decision diagrams are used to represent large
numbers of similar states; in our approach, answer substitutions
and constraints with free variables play a similar role.

Another related technique is automated testing in functional
programming languages, for example in the QuickCheck system
for Haskell [14]. QuickCheck provides type class libraries for “gen-
erator” functions that construct test data, and a logical specifica-
tion language to describe the properties the program should sat-
isfy. In conjunction with an implementation of nominal abstract
syntax (such as FreshLib [8]), QuickCheck could be used to im-
plement metatheory model-checking. Using Haskell’s lazy evalua-
tion strategy, QuickCheck is also capable of searching for partially-
instantiated counterexamples. Random testing and counterexample
generation has also been considered in theorem proving systems
such as Isabelle/HOL [4].

Analyses for checking modes, coverage, termination, and other
program properties can be used to verify program properties; this
technique plays an important role in the Twelf system [37, 38].
This approach is also possible (and seems likely to be helpful)
in αProlog, but such analyses have not yet been adapted to the
setting of nominal logic programming. Conversely, it may also be
possible to implement counterexample search in Twelf via negation
elimination along the lines of [30].

In addition, there is a body of related work on declarative de-
bugging in logic programming languages. Generally, in declarative
debugging [34], the programmer identifies a bug (e.g. an undesired
answer that is produced or a desired answer that is not produced)
and the debugger analyzes the proof search process (using feed-
back from an oracle, such as the programmer) to help identify the
responsible clause(s). More recently, Puebla et al. [41] have con-
sidered automated debugging using assertions which state desired
properties of constraint logic programs. In our setting, declarative
debugging could be helpful in explaining why a counterexample is
produced.

Negation and extensional quantification There is a large litera-
ture on negation as failure, constructive/intensional negation, and
disunification; we restrict attention only to closely related work.

Negation elimination (aka intensional negation) has a long par-
allel history dating back the late 80’s [3] and later extended to
CLP’s [6], although no concrete implementation has been reported
until Muñoz-Hernández’s thesis and subsequent papers [33, 32]. In
all these papers, negative predicates are schematically synthesized
by various manipulations of their completion; moreover, existential
goals (that is, goals with local variables) are handled by a somewhat
opaque case-analysis technique. Our approach, instead, adapts the
judgmental techniques in [36, 30]; we have presented a judgmen-
tal and syntax-directed translation, modeled closely on our imple-
mentation, which shows how to translate programs with negation
to programs without negation (but possibly involving ∀∗ to handle
existential quantification).

Proof search via case analysis, as in the extensional universal
quantifier ∀∗, has been studied in several settings. A principle of
“proof by case analysis” was studied in [3, 5] and then some-
what refined in [33]. The proof-theory of success and failure of
existential goals has been investigated in [22], although not in the
presence of generic (intensional) universal quantification. A related
approach is constructive negation, in particular as formulated by
Stuckey [46], in which negated existential subgoals are handled via
a combination of case analysis and disunification. In logic program-



ming, the correctness of this form of reasoning has been formulated
in terms of Kunen’s three-valued semantics [24].

When logic programs are seen as inductive relations, the case-
analysis reasoning performed by ∀∗ is reminiscent of an iterated
use of case analysis on an (algebraic) data-type (cf. case tac in
systems such as Isabelle), or better as an approximation of the ω-
rule in the proof-theory of arithmetic. As such, this is connected
to definitional reflection [45], although in our application we are
allowed to reason by cases “on the right” of the sequent (as an
introduction rule), as opposed to traditional meta-logics where case
analysis corresponds to inversion, i.e. an elimination rule.

Model checking and logic programming The Bedwyr sys-
tem [47, 29] is a generalization of logic programming based on
definitions that allows model checking directly on syntactic expres-
sions possibly containing binding. This is supported by term-level
λ-binders, a fresh name ∇-quantifier, higher-order pattern unifica-
tion and principles of (co)induction. The relationship of (a fragment
of) this framework with nominal logic has been investigated else-
where [9]; in particular, in Bedwyr it is possible to capture both fi-
nite success and finite failure, as a negated atom Γ ` ¬A is seen as
Γ, A ` ⊥ and solved by case analysis (definitional reflection) on A.
However, this treatment seems to be sound only w.r.t. the Horn+∇
fragment of the logic [44], hence checks involving judgments that
rely on higher-order abstract syntax (hypothetical judgments) such
as tc pres cannot be directly expressed in Bedwyr without mov-
ing to a more intricate “2-levels” approach [27].

The Logic-Programming-Based Model Checking project at
Stony Brook (http://www.cs.sunysb.edu/~lmc/) implements
the model checker XMC for value-passing CCS and a fragment
of the mu-calculus on top the XSB tabled logic programming sys-
tem [42, 43], which extends SLD resolution with tabled resolu-
tion. As the latter terminates on programs having finite models and
avoids redundant sub-computations, it can be used as a fixed-point
engine for implementing local model checkers. Similarly, in the
paradigm of Answer Set Programming [35] a program is devised
such that the solutions of the problem can be retrieved constructing
a collection of models of the program. To achieve this, the lan-
guage is essentially the same as Datalog, although constraints can
be used to increase expressivity. These two paradigms do not seem
to provide support for binding syntax that is required for formaliz-
ing and checking metatheoretic properties. On the other hand, opti-
mizations such as tabling could certainly be useful, for example to
improve ∀∗ performance.

8. Future work
At present, the implementation based on negation-elimination is
more fragile than the NF version; we plan to improve the robust-
ness of both implementations and include them in the next release
of αProlog. From a pragmatical standpoint, the implementation of
universal quantification currently involves analyzing type informa-
tion into the run-time system. This appears to be one source of in-
efficiency in predicates such as not_tc that involve local variables.
We are looking into ways to pre-compile this information, in order
to avoid this expensive run-time type analysis.

In this paper, we have restricted attention to a particularly
well-behaved fragment of nominal logic programs in which N-
quantification and names may only be used in goal formulas. This
suffices for many examples, but some phenomena (such as name-
generation) cannot be modeled naturally in this sub-language. We
would like to investigate the general theory of elimination of nega-
tion in nominal logic, in particular complementing clause heads
containing free names. This would also be useful for extending
Twelf-like static analysis to αProlog; in fact coverage analysis can
be stated as a relative complement problem.

We also are interested in comparing our approach with related
logic programming-based model-checking or verification tech-
niques such as Bedwyr [47], XMC [43], and ProVerif [1].

9. Conclusions
A great deal of modern research in programming languages in-
volves proving metatheoretic properties of formal systems, such as
type soundness. Although the problem of specifying such systems
and verifying their properties has received a great deal of atten-
tion recently, verification tools still require a great deal of effort
to learn and use successfully. We have presented an alternative ap-
proach called metatheory model-checking which addresses the dual
problem of identifying flaws in specified systems (that is, coun-
terexamples to desired properties). We introduced several possible
implementation strategies based on different approaches to nega-
tion in nominal logic programming including negation-as-failure
(NF) and negation elimination (NE). We outlined the modifications
needed to accommodate negation elimination in nominal logic pro-
grams and discussed experimental results that show that both tech-
niques have reasonable performance. We plan to address several
obvious performance issues in NE in future work. However, we be-
lieve that the current implementations based on negation-as-failure
and unoptimized negation elimination are already useful for debug-
ging languages formalized using αProlog.
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