
Regular Expression Subtyping for XML Query and
Update Languages

James Cheney

University of Edinburgh

Abstract. XML database query languages such as XQuery employ regular ex-
pression types with structural subtyping. Subtyping systems typically have two
presentations, which should be equivalent: a declarative version in which the
subsumption rule may be used anywhere, and an algorithmic version in which
the use of subsumption is limited in order to make typechecking syntax-directed
and decidable. However, the XQuery standard type system circumvents this issue
by using imprecise typing rules for iteration constructs and defining only algo-
rithmic typechecking, and another extant proposal provides more precise types
for iteration constructs but ignores subtyping. In this paper, we consider a core
XQuery-like language with a subsumption rule and prove the completeness of
algorithmic typechecking; this is straightforward for XQuery proper but requires
some care in the presence of more precise iteration typing disciplines. We extend
this result to an XML update language we have introduced in earlier work.

1 Introduction

The Extensible Markup Language (XML) is a World Wide Web Consortium (W3C)
standard for tree-structured data. Regular expression types for XML [14] have been
studied extensively in XML processing languages such as XDuce [13] and CDuce [1],
as well as projects to extend general-purpose programming languages with XML fea-
tures such as Xtatic [10] and OCamlDuce [9]. Moreover, subtyping (based on regular
tree language inclusion) plays an important role in all of these systems.

XQuery is a W3C standard XML database query language [6]. Static typechecking
is important in XML database applications because type information is useful for op-
timizing queries and avoiding expensive run-time checks and revalidation. XQuery pro-
vides for static typing using regular expression types and subtyping. However, XQuery’s
type system is imprecise in some situations involving iteration (for-loops). In particu-
lar, if the variable $x has type1 a[b[]∗, c[]?], then the query

for $y in $x/* return $y

is assigned type (b[]|c[])∗ in XQuery, but in fact the result will always match the regular
expression type b[]∗, c[]?. The reason for this inaccuracy is that XQuery’s type system
typechecks a for loop by converting the type of the body of the expression (here, $x/a
with type b[]∗, c[]?) to the “factored” form (α1| . . . |αn)q, where q is a quantifier such

1 We use the compact notation for regular expression types introduced by Hosoya, Vouillon and
Pierce [14] in preference to the more verbose XQuery or XML Schema syntaxes.



as ?, +, or ∗ and each αi is an atomic type (i.e. a data type such as string or single
element type a[τ ]).

More precise type systems have been contemplated for XQuery-like languages, in-
cluding a precursor to XQuery designed by Fernandez, Siméon, and Wadler [8]. Most
recently, Colazzo et al. [5] have introduced a core XQuery language called µXQ, with
a regular expression-based type system that performs ”path correctness” analysis and
provides more precise types for iterations using techniques similar to those in [8], but
does not support subtyping. In µXQ, the above expression is assigned the more accurate
type b[]∗, c[]?; however, the example cannot be assigned the less precise type (b[]|c[])∗
since subtyping was not incorporated into the original formulation of µXQ.

Combining subtyping with accurate typing for iteration constructs is especially im-
portant for XML updates. We are developing a statically-typed update language called
FLUX 2 in which ideas from µXQ are essential for typechecking updates involving it-
eration. Using XQuery-style factoring for iteration in FLUX would make it impossible
to typecheck updates that modify data without modifying the overall schema of the
database—a very common case. For example, using XQuery-style factoring for itera-
tion in FLUX, we would not be able to verify statically that given a database of type
a[b[string]∗, c[]?], the result of an update that modifies some b elements and deletes
some c elements still has type a[b[string]∗, c[]?], rather than a[(b[string]|c[])∗].

One question left unresolved in previous work on both µXQ and FLUX is the rela-
tionship between declarative and algorithmic presentations of the type system (in the
terminology of [16, Ch. 15–16]). Declarative derivations permit arbitrary uses of the
subsumption rule:

Γ ` e : τ τ <: τ ′

Γ ` e : τ ′

whereas algorithmic derivations limit the use of this rule in order to ensure that type-
checking is syntax-directed and decidable. The declarative and algorithmic presenta-
tions of a system should agree. If they agree, then declarative typechecking is decidable
algorithmically; if they disagree, then the algorithmic system is incomplete, that is, it
rejects programs that should typecheck according to the declarative rules.

The XQuery standard avoided this issue by defining typechecking algorithmically,
that is, building subsumption into several rules and omitting a general subsumption rule.
Subtyping was omitted from µXQ, because it interferes with µXQ’s “path correctness”
component [5, Sec. 4.4] . Subtyping was considered in our initial work on FLUX [3],
but we were initially unable to establish that typechecking was decidable.

In this paper we develop the foundations of subtyping for XML query and update
languages. Our main contributions relative to previous work [5, 3] are definitions and
proofs of completeness of algorithmic typechecking (and hence decidability of declar-
ative typechecking) for µXQ and FLUX, extended with subtyping and type, query, and
update recursion. We follow the standard technique of proving that declarative deriva-
tions can always be normalized to algorithmic derivations [16, Ch. 16]. However, for
µXQ’s more precise iteration type discipline, completeness of algorithmic typechecking
does not follow directly by the obvious structural induction. Instead, we must establish
a stronger property based on the semantics of regular expression types.

2 “FunctionaL Updates for XML”; earlier called LUX (“Lightweight Updates for XML”) in [3]



The structure of the rest of the paper is as follows. Section 2 reviews regular ex-
pression types and subtyping. Section 3 introduces the core language µXQ, discusses
examples highlighting the difficulties involving subtyping in µXQ, and proves decid-
ability of declarative typechecking. We also review the FLUX core update language in
Section 4, discuss examples, and extend the proof of decidability of declarative type-
checking to FLUX. Sections 5–6 sketch related and future work and conclude. Space
limitations preclude a satisfying self-contained exposition of the µXQ and FLUX lan-
guages; the reader is encouraged to consult the earlier papers for further details [5, 3].

2 Regular Expression Types and Subtyping

For the purposes of this paper, XML values are trees built up out of booleans b ∈ Bool =
{true, false}, strings w ∈ Σ∗ over some alphabet Σ, and labels l,m, n ∈ Lab,
according to the following syntax:

v̄ ::= b | w | n[v] v ::= v̄, v | ()

Values include tree values v̄ ∈ Tree and forest values v ∈ Val . We write v, v′ for the
result of appending two forest values. This operation is associative with unit ().

We consider a regular expression type system with structural subtyping, similar to
those considered in several transformation and query languages for XML [14, 5, 8]. The
syntax of types and type environments is as follows.

Atomic types α ::= bool | string | n[τ ]
Sequence types τ ::= α | () | τ |τ ′ | τ, τ ′ | τ∗ | X
Type definitions τ0 ::= α | () | τ0|τ ′

0 | τ0, τ
′
0 | τ∗

0

Type signatures E ::= · | E, type X = τ0

We call types of the form α ∈ Atom atomic types (or sometimes tree or singular types),
and types τ ∈ Type of all other forms sequence types (or sometimes forest or plural
types). It should be obvious that a value of singular type must always be a sequence
of length one (that is, a tree); plural types may have values of any length. There exist
plural types with only values of length one, but which are not syntactically singular
(for example int|bool). As usual, the + and ? quantifiers can be defined as follows:
τ+ = τ, τ∗ and τ ? = τ |(). We abbreviate n[()] as n[].

Our type language differs slightly from the standard approaches to regular expres-
sion types [14, 5]. In [14], it was shown that Kleene star can be translated away by
introducing type variables and definitions, modulo a syntactic restriction on top-level
occurrences of type variables in type definitions. We include Kleene star as a prim-
itive, and permit (mutually) recursive type declarations, but forbid any top-level oc-
currences type variables in definitions τ0. Therefore Kleene star is not definable in
terms of the other operations here; this is why we include it as a primitive. For ex-
ample, type X = nil[]|cons[a,X] and type Y = leaf []|node[Y, Y ] are allowed but
type X ′ = ()|a[], X ′ and type Y ′ = b[]|Y ′, Y ′ are not. The equation for X ′ defines
the regular tree language a[]∗, and would be permitted in XDuce, while that for Y ′

defines a context-free tree language that is not regular and is forbidden in XDuce.



An environment E is well-formed if all type variables appearing in definitions are
themselves declared in E. Given a well-formed environment E, we write E(X) for the
definition of X . A type τ denotes the set of values [[τ ]]E , defined as follows.

[[string]]E = Σ∗ [[bool]]E = Bool [[()]]E = {()}
[[n[τ ]]]E = {n[v] | v ∈ [[τ ]]E} [[X]]E = [[E(X)]] [[τ |τ ′]]E = [[τ ]]E ∪ [[τ ′]]E

[[τ, τ ′]]E = {v, v′ | v ∈ [[τ ]]E , v′ ∈ [[τ ′]]E}
[[τ∗]]E = {()} ∪ {v1, . . . , vn | v1 ∈ [[τ ]]E , . . . , vn ∈ [[τ ]]E}

Formally, [[τ ]]E is defined by a least fixed point construction which we gloss over.
Henceforth, we treat E as fixed and define [[τ ]] , [[τ ]]E . This semantics validates stan-
dard identities such as associativity of ’,’ ([[(τ1, τ2), τ3]] = [[τ1, (τ2, τ3)]]), unit laws
([[τ,()]] = [[τ ]] = [[(), τ ]]), and idempotence of ’*’ ([[(τ∗)∗]] = [[τ∗]]).

In addition, we define a binary subtyping relation on types. A type τ1 is a subtype
of τ2 (τ1 <: τ2), by definition, if [[τ1]] ⊆ [[τ2]]. Our types can be translated to XDuce
types, so subtyping reduces to XDuce subtyping; although this problem is EXPTIME-
complete in general, the algorithm of [14] is well-behaved in practice. Therefore, we
shall not give explicit inference rules for checking or deciding subtyping, but treat it as
a “black box”.

3 Query language

We review an XQuery-like core language based on µXQ [5]. In µXQ, we distinguish
between tree variables x̄ ∈ TVar , introduced by for, and forest variables, x ∈ Var ,
introduced by let. We write x̂ ∈ Var ∪ TVar for an arbitrary variable. The other
syntactic classes of our variant of µXQ include booleans, strings, and labels introduced
above, function names F ∈ FSym , expressions e ∈ Expr , and programs p ∈ Prog ; the
abstract syntax of expressions and programs is defined as follows:

e ::= () | e, e′ | n[e] | w | x | let x = e in e′ | F (e1, . . . , en)
| b | if c then e else e′ | x̄ | x̄/child | e :: n | for x̄ ∈ e return e′

p ::= query e : τ | declare function F (x1:τ1, . . . , xn:τn) : τ {e}; p

The distinguished variables x in let x = e in e′(x) and x̄ in for x̄ ∈ e return e′(x̄)
are bound in e′(x) and e′(x̄) respectively. Here and elsewhere, we employ common
conventions such as identifying expressions modulo α-renaming.

To simplify the presentation, we split µXQ’s projection operation x̄/child :: l into
two expressions: child projection (x̄/child) which returns the children of x̄, and node
name filtering (e :: n) which evaluates e to an arbitrary sequence and selects the nodes
labeled n. Thus, the ordinary child axis expression x̄/child :: n is syntactic sugar for
(x̄/child) :: n and the “wildcard” child axis is definable as x̄/child :: ∗ = x̄/child.
Built-in operations such as string equality may be provided as additional functions F .

Colazzo et al. [5] provided a denotational semantics of µXQ queries with the descen-
dant axis but without recursive functions. This semantics is sound with respect to the
typing rules in the next section and can be extended to handle recursive functions using
operational techniques (as in the XQuery standard). However, we omit the semantics
since it is not needed in the rest of the paper.



Γ ` e : τ

x̄:α ∈ Γ
Γ ` x̄ : α

x:τ ∈ Γ
Γ ` x : τ

w ∈ Σ∗

Γ ` w : string
b ∈ Bool

Γ ` b : bool

Γ ` () : ()
Γ ` e : τ

Γ ` n[e] : n[τ ]

Γ ` e : τ Γ ` e′ : τ ′

Γ ` e, e′ : τ, τ ′
Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

Γ ` c : bool Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` if c then e1 else e2 : τ1|τ2

x̄:n[τ ] ∈ Γ

Γ ` x̄/child : τ

Γ ` e : τ τ :: n ⇒ τ ′

Γ ` e :: n : τ ′

Γ ` e1 : τ1 Γ ` x̄ in τ1 → e2 : τ2

Γ ` for x̄ ∈ e1 return e2 : τ2

F (τ) : τ0 ∈ ∆ Γ ` ei : τi

Γ ` F (e) : τ0

Γ ` e : τ τ <: τ ′

Γ ` e : τ ′

Γ ` p prog

Γ ` e : τ
Γ ` query e : τ prog

F not declared in p F (τ) : τ0 ∈ ∆ Γ, x : τ ` e : τ0 Γ ` p prog

Γ ` declare function F (τ) : τ0 {e}; p prog

Fig. 1. Query and program well-formedness rules
τ :: n ⇒ τ ′

n[τ ] :: n ⇒ n[τ ]

E(X) :: n ⇒ τ

X :: n ⇒ τ

α 6= n[τ ]

α :: n ⇒ ()

() :: n ⇒ ()

τ1 :: n ⇒ τ2

τ∗
1 :: n ⇒ τ∗

2

τ1 :: n ⇒ τ ′
1 τ2 :: n ⇒ τ ′

2

τ1, τ2 :: n ⇒ τ ′
1, τ

′
2

τ1 :: n ⇒ τ ′
1 τ2 :: n ⇒ τ ′

2

τ1|τ2 :: n ⇒ τ ′
1|τ ′

2

Γ ` x̄ in τ → e : τ ′

Γ ` x̄ in ()→ e : ()

Γ ` x̄ in E(X) → e : τ

Γ ` x̄ in X → e : τ

Γ, x̄:α ` e : τ

Γ ` x̄ in α → e : τ

Γ ` x̄ in τ1 → e : τ2

Γ ` x̄ in τ∗
1 → e : τ∗

2

Γ ` x̄ in τ1 → e : τ ′
1 Γ ` x̄ in τ2 → e : τ ′

2

Γ ` x̄ in τ1, τ2 → e : τ ′
1, τ

′
2

Γ ` x̄ in τ1 → e : τ ′
1 Γ ` x̄ in τ2 → e : τ ′

2

Γ ` x̄ in τ1|τ2 → e : τ ′
1|τ ′

2

Fig. 2. Auxiliary judgments

3.1 Type system

Our type system for queries is essentially that introduced for µXQ by [5], excluding the
path correctness component. We consider typing environments Γ and global declaration
environments ∆, defined as follows:

Γ ::= · | Γ, x:τ | Γ, x̄:α ∆ ::= · | ∆, F (τ) : τ0

Note that in Γ , tree variables may only be bound to atomic types. As usual, we assume
that variables in type environments are distinct; this convention implicitly constrains
all inference rules. We also write Γ <: Γ ′ to indicate that dom(Γ ) = dom(Γ ′) and
Γ ′(x̂) <: Γ (x̂) for all x̂ ∈ dom(Γ ).

The main typing judgment for queries is Γ ` e : τ ; we also define a program well-
formedness judgment Γ ` p prog which typechecks the bodies of functions. Following



[5], there are two auxiliary judgments, Γ ` x̄ in τ → s : τ ′, used for typechecking
for-expressions, and τ :: n ⇒ τ ′, used for typechecking label matching expressions
e :: n. The rules for these judgments are shown in Figures 1 and 2.

We consider the typing rules to be implicitly parameterized by a fixed global dec-
laration environment ∆. Functions in XQuery have global scope so we assume that
the declarations for all the functions declared in the program have already been added
to ∆ by a preprocessing pass. Additional declarations for built-in functions might be
included in ∆ as well.

The rules involving type variables in Figure 2 look up the variable’s definition in E.
These judgments only inspect the top-level of a type; they do not inspect the contents
of element types n[τ ]. Since type definitions τ0 have no top-level type variables, both
judgments are terminating. (This was argued in detail by Colazzo et al. [5, Lem. 4.6].)

3.2 Examples

We first revisit the example in the introduction in order to illustrate the operation of the
rules. Recall that x̄/∗ is translated to x̄/child in our core language.

Γ ` x̄/child : b[]∗, c[]?
D

Γ ` ȳ in b[]∗, c[]? → ȳ : b[]∗, c[]?

Γ ` for ȳ ∈ x̄/child return ȳ : b[]∗, c[]?

where we define Γ = x̄:a[b[]∗, c[]?] and subderivation D is

D =

Γ, ȳ:b[] ` ȳ : b[]

Γ ` ȳ in b[] → ȳ : b[]

Γ ` ȳ in b[]∗ → ȳ : b[]∗

x̄:a[b[]∗, c[]], ȳ:c[] ` ȳ : c[]

Γ ` ȳ in c[] → ȳ : c[]

Γ ` ȳ in c[]? → ȳ : c[]?

Γ ` ȳ in b[]∗, c[]? → ȳ : b[]∗, c[]?

Note that this derivation does not use subsumption anywhere. Suppose we wished to
show that the expression has type b[]∗, (c[]?|d[]∗), a supertype of the above type. There
are several ways to do this. We could simply use subsumption at the end of the deriva-
tion. Alternatively, we could have used subsumption in one of the subderivations such
as Γ, ȳ:c[]? ` ȳ : c[]?, to conclude, for example, that Γ, ȳ:c[]? ` ȳ : c[]?|d[]∗. This is
valid since c[]? <: c[]?|d[]∗.

Suppose, instead, that we actually wanted to show that the above expression has
type (b[d[]∗]|c[]?)∗, also a supertype of the derived type. There are again several ways
of doing this. Besides using subsumption at the end of the derivation, we could use it
on Γ ` x̄/child : b[]∗, c[]? to obtain Γ ` x̄/child : (b[d[]∗]|c[]?)∗. To complete the
derivation, we would then need to replace derivation D with D′:

D′ =
Γ, ȳ:b[d[]∗] ` ȳ : b[d[]∗]

Γ ` ȳ in b[d[]∗] → ȳ : b[d[]∗]

Γ, ȳ:c[] ` ȳ : c[]

Γ ` ȳ in c[] → ȳ : c[]

Γ ` ȳ in c[]? → ȳ : c[]?

Γ ` ȳ in b[d[]∗]|c[]? → ȳ : b[d[]∗]|c[]?

Γ ` ȳ in (b[d[]∗]|c[]?)∗ → ȳ : (b[d[]∗]|c[]?)∗



Not only doesD′ have different structure thanD, but it also requires subderivations that
were not syntactically present in D.

The above example illustrates why eliminating uses of subsumption is tricky. If sub-
sumption is used to weaken the type of the first argument of a for-expression according
to τ ′

1 <: τ1, then we need to know that we can transform the corresponding derivation
D of Γ ` x̄ in τ1 → e : τ2 to a derivation of D′ of Γ ` x̄ in τ ′

1 → e : τ ′
2 for some

τ ′
2 <: τ2. But the derivations D and D′ may bear little resemblance to one another.

Now we consider a typechecking a recursive query. Suppose we have3 typeTree =
tree[leaf [string]|node[Tree∗]] and function definition

declare function leaves(x : Tree) : leaf [string]∗ {
x/leaf , for z̄ ∈ x/node/tree return leaves(z̄)

};

This uses a construct e/n that is not in core µXQ, but we can expand e/n to for ȳ ∈
e return ȳ/child :: n; thus, we can derive a rule

Γ ` e : l[τ ] τ :: n ⇒ τ ′

Γ ` e/n : τ ′ ⇐⇒
Γ ` e : l[τ ]

Γ, ȳ:l[τ ] ` ȳ/child : τ τ :: n ⇒ τ ′

Γ, ȳ:l[τ ] ` ȳ/child :: n : τ ′

Γ ` ȳ in l[τ ] → ȳ/child :: n : τ ′

Γ ` for ȳ ∈ e return ȳ/child :: n : τ ′

Using this derived rule and the fact that x : Tree and the definition of Tree , we can
see that x/leaf : leaf [string] and x/node : node[Tree∗], and so x/node/tree :
tree[leaf [string]|node[Tree∗]]∗. So the body of the for-loop can be typechecked
with z̄ : tree[leaf [string]|node[Tree∗]]. To check the function call leaves(z̄), we
need subsumption to see that tree[leaf [string]|node[Tree∗]] <: Tree . It follows that
leaves(z̄) : leaf [string]∗, so the for-loop has type (leaf [string]∗)∗. Again using
subsumption, we can conclude that

x/leaf , leaves(x/node/tree) : leaf [string], (leaf [string]∗)∗ <: leaf [string]∗ .

Notice that although we could have used subsumption in several more places, we really
needed it in only two places: when typechecking a function call, and when checking the
result of a function against its declared type.

3.3 Algorithmic Completeness and Decidability

The standard approach (see e.g. Pierce [16, Ch. 16]) to deciding declarative typecheck-
ing is to define algorithmic judgments that are syntax-directed and decidable, and then
show that the algorithmic system is complete relative to the declarative system.

Definition 1 (Algorithmic derivations). The algorithmic typechecking judgments Γ Ì

e : τ and Γ Ì x̄ in τ0 → e : τ are defined by taking the rules of Figures 1 and 2,
removing the subsumption rule, and replacing the function application rule with

F (τ) : τ ∈ Γ Γ Ì ei : τ ′
i τ ′

i <: τi

Γ Ì F (e) : τ

3 We use a somewhat artificial definition of Tree here to simplify the example.



It is straightforward to show that algorithmic derivability is decidable and sound
with respect to the declarative system:

Lemma 1 (Decidability). For any x̄, e, n, there exist computable partial functions fn,
ge, hx̄,y such that for any Γ, τ0, we have:

1. fn(τ0) is the unique τ such that τ0 :: n ⇒ τ .
2. gx(Γ ) is the unique τ such that Γ Ì e : τ , when it exists.
3. hx̄,e(Γ, τ0) is the unique τ such that Γ Ì x̄ in τ0 → e : τ , when it exists.

Theorem 1 (Algorithmic Soundness). (1) If Γ Ì e : τ is derivable then Γ ` e : τ
is derivable. (2) If Γ Ì x̄ in τ0 → e : τ is derivable then Γ ` x̄ in τ0 → e : τ is
derivable.

The main result of this section is the corresponding completeness property (The-
orem 2 below). A typical proof of completeness involves showing by induction that
occurrences of the subsumption rule can be “permuted” downwards in the proof past
other rules, except for function applications where subtyping checks are performed.
Completeness for µXQ requires strengthening this induction hypothesis. To see why,
consider the rules:

∗
Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

∗
Γ ` e1 : τ1 Γ ` x̄ in τ1 → e2 : τ2

Γ ` for x̄ ∈ e1 return e2 : τ2

∗
Γ ` e : τ τ :: n ⇒ τ ′

Γ ` e :: n : τ ′

If the subderivation labeled ∗ in the above rules follows by subsumption, however, we
cannot do anything to get rid of the subsumption rule using the induction hypotheses
provided by Theorem 2. Instead we need an additional lemma that ensures that the
judgments are all downward monotonic. Downward monotonicity means, informally,
that if we replace the “input” types (including those in Γ ) in a derivable judgment with
subtypes, then the judgment remains derivable with a smaller “output” type.

The downward monotonicity property (Lemma 3 below) is almost easy to prove
by direct structural induction (simultaneously on all judgments). The cases involving
expression-directed typechecking rules are all straightforward inductive steps; however,
for the cases involving type-directed judgments, the induction steps do not go through.
The difficulty is illustrated by the following cases. For derivations of the form

τ1 :: n ⇒ τ2

τ∗
1 :: n ⇒ τ∗

2

Γ ` x̄ in τ1 → e : τ2

Γ ` x̄ in τ∗
1 → e : τ∗

2

we are stuck: knowing that τ ′
1 <: τ∗

1 does not necessarily tell us anything about a
subtyping relationship between τ ′

1 and τ1. For example, if τ ′
1 = aa and τ1 = a, then

we have aa <: a∗ but not aa <: a. Instead, we need to proceed by an analysis of the
semantics of regular expression types and subtyping.

We briefly sketch the argument, which involves an excursion into the theory of
regular languages over partially ordered alphabets. Here, the “alphabet” is the set of
atomic types and the regular sets are the sets of sequences of atomic types that are
subtypes of a type τ . The homomorphic extension of a (possibly partial) function h :
Atom ⇀ Type on atomic types is defined as

ĥ(()) = () ĥ(α) = h(α) ĥ(τ∗) = ĥ(τ)∗

ĥ(τ1, τ2) = ĥ(τ1), ĥ(τ2) ĥ(τ1|τ2) = ĥ(τ1)|ĥ(τ2) ĥ(X) = ĥ(E(X))



(Note again that this definition is well-founded, since top-level type variables cannot be
expanded indefinitely.) If h is partial, then ĥ is defined only on types whose atoms are
in dom(h). We can then show the following general property of partial homomorphic
extensions. Detailed proofs are in a companion technical report [4].

Lemma 2. If h : Atom ⇀ Type is downward monotonic, then its homomorphic exten-
sion ĥ : Type ⇀ Type is downward monotonic.

Lemma 3 (Downward monotonicity). (1) If τ1 :: n ⇒ τ2 and τ ′
1 <: τ1 then τ ′

1 :: n ⇒
τ ′
2 for some τ ′

2 <: τ2. (2) If Γ Ì e : τ and Γ ′ <: Γ then Γ ′ Ì e : τ ′ for some τ ′ <: τ .
(3) If Γ Ì x̄ in τ1 → e : τ2 and Γ ′ <: Γ and τ ′

1 <: τ1 then Γ ′ Ì x̄ in τ ′
1 → e : τ ′

2 for
some τ ′

2 <: τ2.

Proof (Sketch). We work in terms of the partial functions fn, ge, and hx̄,e from Theo-
rem 1. The lemma follows from the downward monotonicity of fn, ge, and hx̄,e in their
type and context arguments. For (1), we show that fn = F̂n where Fn(α) = n[τ ] if
α = n[τ ], Fn(α) = () otherwise; observe that Fn is total and monotone. For parts (2)
and (3), we strengthen the induction hypothesis by showing that ge is downward mono-
tonic and that hx̄,e(Γ,−) = ĝe(Γ, x:(−)) by simultaneous induction on the structure of
algorithmic derivations. The downward monotonicity of hx̄,e(Γ,−) (which is needed
in part (2)) follows again from Lemma 3.

Theorem 2 (Algorithmic Completeness). (1) If Γ ` e : τ then there exists τ ′ <: τ
such that Γ Ì e : τ ′. (2) If Γ ` x̄ in τ1 → e : τ2 then there exists τ ′

2 <: τ2 such that
Γ Ì x̄ in τ1 → e : τ ′

2.

Proof. Induction on the structure of derivations, appealing to Lemma 3 as necessary.

4 Update language

We now introduce the core FLUX update language, which extends the syntax of queries
with statements s ∈ Stmt , procedure names P ∈ PSym , tests φ ∈ Test , directions
d ∈ Dir , and two new cases for programs:

s ::= skip | s; s′ | if e then s else s′ | let x = e in s | P (e)
| insert e | delete | rename n | snapshot x in s | φ?s | d[s]

φ ::= n | ∗ | bool | string d ::= left | right | children | iter
p ::= · · · | update s : τ ⇒ τ ′ | declare procedure P (x : τ) : τ ⇒ τ ′ {s}; p

FLUX is based on a novel functional, local approach to updates which carefully con-
trols side-effects; it is based on ideas from a database update language called CPL+
introduced by Liefke and Davidson [15]. Each update statement operates on a part of
the mutable store (or database) that is “in focus”. This locality helps ensure that updates
are deterministic and relatively easy to typecheck.

Updates include standard constructs such as the no-op skip, sequential composi-
tion, conditionals, and let-binding. Atomic updates directly modify the focused part of



σ; v ` s ⇒U v′

σ ` e ⇒ v

σ;() ` insert e ⇒U v

σ[x := v]; v ` s ⇒U v′

σ; v ` snapshot x in s ⇒U v′
σ; v ` s ⇒U v′

σ; n[v] ` children[s] ⇒U n[v′]

σ;() ` s ⇒U v′

σ; v ` left[s] ⇒U v′, v

σ; t1 ` S ⇒U v′
1 σ; v2 ` iter[s] ⇒U v′

2

σ; t1, v2 ` iter[s] ⇒U v′
1, v

′
2 σ;() ` iter[s] ⇒U ()

Fig. 3. Operational semantics of selected updates

the tree. The atomic update operations include insertion insert e, which inserts a value
into an empty input; deletion delete, which deletes the focused input; and rename n,
which renames the focused input provided it is a single tree.

Tests are operations φ?s that perform s if the type of the input focus matches the
type test φ, otherwise do nothing. The node label test n matches tree type n[τ ]; the
wildcard test ∗ matches tree types m[τ ] for any m; and tests bool and string match
the respective base types. The ? operator binds tightly; for example, φ?s; s′ = (φ?s); s′.

The navigation updates d[s] move the focus to another (smaller) part of the tree, and
perform s on the new focus. The left and right directions focus on the empty se-
quence “before” or “after” the current focus, which may be a sequence. The children
direction focuses on the child sequence of a tree. The iter direction focuses on each
singular value in a sequence.

The snapshot operation snapshot x in s binds x to the input focus value and
then applies an update s. Note that snapshot is the only way to read from the mutable
store, and that the value of x is immutable, so no aliasing ensues.

We lack space to formalize the full semantics of updates. Figure 3 shows some
illustrative operational semantics rules, defining the judgment σ; v ` s ⇒U v′ whose
informal meaning is “given immutable environment σ, s updates mutable store v to
v′”. Here, σ is an environment mapping (tree) variables to (tree) values. The remaining
rules, along with additional explanation and examples, may be found in [3].

We distinguish between singular (unary) updates which apply only when the con-
text is a tree value and plural (multi-ary) updates which apply to a sequence. Tests φ?s
are always singular. The children operator applies a plural update to all of the chil-
dren of a single node; the iter operator applies a singular update to all of the elements
of a sequence. Other updates can be either singular or plural in different situations. Our
type system tracks multiplicity as well as input and output types in order to ensure that
updates are well-behaved.

4.1 Type system

In typechecking updates, we extend the global declaration context ∆ with procedure
declarations:

∆ ::= · · · | ∆, P (τ) : τ1 ⇒ τ2

There are two typing judgments for updates: singular well-formedness Γ `1 {α} s {τ ′}
(that is, in type environment Γ , update s maps tree type α to type τ ′), and plural well-



Γ `a {τ} s {τ ′}

Γ `a {τ} skip {τ}
Γ `a {τ} s {τ ′} Γ `a {τ ′} s′ {τ ′′}

Γ `a {τ} s; s′ {τ ′′}
Γ ` e : τ Γ, x:τ `a {τ1} s {τ2}
Γ `a {τ1} let x = e in s {τ2}

Γ ` e : bool Γ `a {τ} s {τ1} Γ `a {τ} s′ {τ2}
Γ `a {τ} if e then s else s′ {τ1|τ2}

Γ, x:τ `a {τ} s {τ ′}
Γ `a {τ} snapshot x in s {τ ′}

Γ ` e : τ
Γ ∗̀ {()} insert e {τ} Γ `a {τ} delete {()} Γ `1 {n′[τ ]} rename n {n[τ ]}
α <: φ Γ `1 {α} s {τ}

Γ `1 {α} φ?s {τ}
α 6<: φ

Γ `1 {α} φ?s {α}
Γ ∗̀ {τ} s {τ ′}

Γ `1 {n[τ ]} children[s] {n[τ ′]}
Γ ∗̀ {()} s {τ ′}

Γ `a {τ} left[s] {τ ′, τ}
Γ ∗̀ {()} s {τ ′}

Γ `a {τ} right[s] {τ, τ ′}
Γ ìter {τ} s {τ ′}

Γ ∗̀ {τ} iter[s] {τ ′}
Γ `a {τ1} s {τ ′

2} τ ′
2 <: τ2

Γ `a {τ1} s {τ2}
P (τ) : σ ⇒ σ2 ∈ ∆ σ1 <: σ Γ ` e : τ

Γ `a {σ1} P (e) {σ2}

Γ ìter {τ} s {τ ′}

Γ ìter {()} s {()}
Γ `1 {α} s {τ}

Γ ìter {α} s {τ}
Γ ìter {E(X)} s {τ}

Γ ìter {X} s {τ}
Γ ìter {τ1} s {τ2}
Γ ìter {τ∗

1 } s {τ∗
2 }

Γ ìter {τ1} s {τ ′
1} Γ ìter {τ2} s {τ ′

2}
Γ ìter {τ1, τ2} s {τ ′

1, τ
′
2}

Γ ìter {τ1} s {τ ′
1} Γ ìter {τ2} s {τ ′

2}
Γ ìter {τ1|τ2} s {τ ′

1|τ ′
2}

Γ ` p prog

Γ ∗̀ {τ1} s {τ2}
Γ ` update s : τ1 ⇒ τ2 prog

P not declared in p
P (τ) : σ1 ⇒ σ2 ∈ ∆ Γ, x:τ ∗̀ {σ1} s {σ2} Γ ` p prog

Γ ` declare procedure P (x : τ) : τ1 ⇒ τ2 {s}; p prog

Fig. 4. Update and additional program well-formedness rules

formedness Γ ∗̀ {τ} s {τ ′} (that is, in type environment Γ , update s maps type τ to
type τ ′). Several of the rules are parameterized by a multiplicity a ∈ {1, ∗}. In addition,
there is an auxiliary judgment Γ ìter {τ} s {τ ′} for typechecking iterations. The rules
for update well-formedness are shown in Figure 4. We also need an auxiliary subtyping
relation involving atomic types and tests: we say that α <: φ if [[α]] ⊆ [[φ]]. This is
characterized by the rules:

bool <: bool string <: string n[τ ] <: n n[τ ] <: ∗

Remark 1. In most other XML update proposals (including XQuery! [12] and the draft
XQuery Update Facility [2]), side-effecting update operations are treated as expressions
that return (). Thus, we could perhaps typecheck such updates as expressions of type
(). This would work fine as long as the values reachable from the free variables in Γ
never change; however, the updates available in these languages can and do change the



...
ìter {a[b[]∗, c[]]} a?children[s] {a[(b[], c[])∗, c[]]} ìter {d[]} a?children[s] {d[]}

ìter {a[b[]∗, c[]], d[]} a?children[s] {a[(b[], c[])∗, c[]], d[]}
∗̀ {a[b[]∗, c[]], d[]} iter [a?children[s]] {a[(b[], c[])∗, c[]], d[]}

Fig. 5. Example partial update derivation, where s = iter [b?right insert c[]]

values of variables. Thus, to make this approach sound Γ may need to be updated to
take these changes into account, perhaps using a judgment Γ ` e : () | Γ ′, where
Γ ′ is the updated type environment reflecting the types of the variables after evaluating
side-effects in e. This approach quickly becomes difficult to manage, especially if it
is possible for different variables to “alias”, or refer to overlapping parts of the data
accessible from Γ , and adding side-effecting functions further complicates matters.

This is not the approach to update typechecking that is taken in FLUX. Updates are
syntactically distinct from queries, and a FLUX update typechecking judgment such as
Γ `a {τ} s {τ ′} assigns an update much richer type information that describes the
type of part of the database before and after running s. The values of variables bound
in Γ are immutable in the variable’s scope, so their types do not need to be updated.
Similarly, procedures must be annotated with expected input and output types. We do
not believe that these annotations are burdensome in a database setting since a typical
update procedure would be expected to preserve the (usually fixed) type of the database.

4.2 Examples

The interesting typing rules are those involving iter, tests, and children, left/right,
and insert/rename/delete. The following example should help illustrate how the
rules work for these constructs. Consider the high-level update:

insert after a/b value c[]

which can be translated to the following core FLUX statement:

iter [a?children [iter [b? right insert c[]]]]

Intuitively, this update inserts a c after every b under a top-level a. Now consider the
input type a[b[]∗, c[]], d[]. Clearly, the output type should be a[(b[], c[])∗, c[]], d[]. To see
how FLUX can assign this type to the update, consider the derivation shown in Figure 5.

As a second example, consider the procedure declaration

declare procedure leafupd(x:string) : Tree ⇒ Tree {
iter[children[iter[leaf ?children[delete; insert x];

node?children[iter[leafupd(x)]]]]]
};

This procedure updates all leaves of a tree to x. As with the recursive query discussed in
Section 3.2, this procedure requires subtyping to typecheck the recursive call. We also



leafupd(string) : Tree ⇒ Tree ∈ ∆ tree[...] <: Tree x:string ` x : string

x:string `1 {tree[leaf [string]|node[Tree∗]]} leafupd(x) {Tree}
x:string ìter {tree[leaf [string]|node[Tree∗]]} leafupd(x) {Tree}

x:string ìter {Tree} leafupd(x) {Tree}
x:string ìter {Tree∗} leafupd(x) {Tree∗}

x:string ∗̀ {Tree∗} iter[leafupd(x)] {Tree∗}
x:string `1 {node[Tree∗]} children[iter[leafupd(x)]] {node[Tree∗]}

x:string `1 {node[Tree∗]} node?children[iter[leafupd(x)]] {node[Tree∗]}

Fig. 6. Partial derivation for body of leafupd

need subtyping to check that the return type of the expression matches the declaration.
A partial typing derivation for part of the body of the procedure involving a recursive
call is shown in Figure 6.

4.3 Algorithmic Completeness and Decidability

To prove update typechecking decidable, we must again carefully control the use of
subsumption. The appropriate algorithmic typechecking judgment is defined as follows:

Definition 2 (Algorithmic derivations for updates). The algorithmic typechecking
judgments Γ Ìa {τ} s {τ ′} and Γ Ì

iter {τ} s {τ ′} are obtained by taking the rules in
Figure 4, removing the subsumption rule, and replacing the procedure call rule with

P (σ) : σ ⇒ σ′ ∈ ∆ τ <: σ Γ Ì e : τ τ <: σ

Γ Ìa {τ} P (e) {σ′}

Moreover, all subderivations of expression judgments in an algorithmic derivation of
an update judgment must be algorithmic.

The proof of completeness of algorithmic update typechecking has the same struc-
ture as that for queries. Again, proof details are in the technical report [4].

Lemma 4 (Decidabilty for updates). Let a, s be given. Then there exist computable
functions ja,s and ks such that:

1. ja,s(Γ, τ1) is the unique τ2 such that Γ Ìa {τ1} s {τ2}, if it exists.
2. ks(Γ, τ1) is the unique τ2 such that Γ Ì

iter {τ1} s {τ2}, if it exists.

Theorem 3 (Algorithmic soundness for updates). (1) If Γ Ì∗ {τ} s {τ ′} is derivable
then Γ ∗̀ {τ} s {τ ′} is derivable. (2) If Γ Ì

iter {τ} e {τ ′} is derivable then Γ ìter

{τ} e {τ ′} is derivable.

Lemma 5 (Downward monotonicity for updates). (1) If Γ Ìa {τ1} s {τ2} and Γ ′ <:
Γ and τ ′

1 <: τ1 then Γ ′ Ìa {τ ′
1} s {τ ′

2} for some τ ′
2 <: τ2. (2) If Γ Ì

iter {τ1} s {τ2}
and Γ ′ <: Γ and τ ′

1 <: τ1 then Γ ′ Ì
iter {τ ′

1} s {τ ′
2} for some τ ′

2 <: τ2.

Theorem 4 (Algorithmic completeness for updates). (1) If Γ `a {τ1} s {τ2} then
there exists τ ′

2 <: τ2 such that Γ Ìa {τ1} s {τ ′
2}. (2) If Γ ìter {τ1} s {τ2} then there

exists τ ′
2 <: τ2 such that Γ Ì

iter {τ1} s {τ ′
2}.



5 Related and future work

This work is directly motivated by our interest in using regular expression types for
XML updates, using richer typing rules for iteration as found in µXQ [5]. Fernandez,
Siméon and Wadler [8] earlier considered an XML query language with more precise
typechecking for iteration, but this proposal required additional type annotations; we
only require annotations on function or procedure declarations.

For brevity, the core languages in this paper omitted many features of full XQuery,
such as the descendant, attribute, parent and sibling axes. The attribute axis is straight-
forward since attributes always have text content. In µXQ, the descendant axis was sup-
ported by assigning x̄/descendant-or-self the type formed by taking the union
of all (finitely many) tree types that are reachable from the type of x̄. XQuery handles
other axes by discarding type information. Our algorithmic completeness proof still
appears to work if these axes are added with XQuery- or µXQ-style typing rules.

FLUX’s functional, local approach to updates draws on ideas first explored in the
CPL+ database update language by Liefke and Davidson [15] (unfortunately this work
is not well-known even in the database community). This approach is fundamentally
different from the other XML update language proposals of which we are aware (such
as XQuery! [11] and the draft W3C XQuery Update Facility [2]). Most such proposals
contemplate adding unrestricted side-effecting update operations as additional XQuery
expressions, which would undermine many of XQuery’s advantages as a purely func-
tional language, such as clear semantics and equational optimization laws. Moreover,
to the best of our knowledge, static typechecking and subtyping have not even been
considered for these languages and seem likely to encounter difficulties for reasons we
outlined in Section 4.1 and discussed in more depth in [3].

On the other hand, XQuery! and related proposals are clearly more expressive
than FLUX, and have been incorporated into mature XQuery implementations such as
Galax [7]. Although we currently have a prototype that implements the core typecheck-
ing algorithm described here as well as the operational semantics described in [3], fur-
ther work is needed to develop a robust implementation inside an XML database system
and evaluate scalability, optimization, and high-level update language design issues.

6 Conclusions

Static typechecking is important in a database setting because type (or “schema”) in-
formation is useful for optimizing queries and avoiding expensive run-time checks or
re-validation. The XQuery standard, like other XML programming languages, employs
regular expression types and subtyping. However, its approach to typechecking iteration
constructs is imprecise, due to the use of “factoring” which discards information about
the order of elements in the result of an iteration operation such as a for-loop. While
this imprecision may not be harmful for typical queries, it is disastrous for typechecking
updates that are supposed to preserve the type of the database.

In this paper we have considered more precise typing disciplines for XQuery-style
iterative queries and updates in the core languages µXQ and FLUX respectively. In order
to ensure that these type systems are well-behaved and that typechecking is decidable, it



is important to prove the completeness of an algorithmic presentation of typechecking
in which the use of subtyping rules is limited so that typechecking remains syntax-
directed. We have shown how to do so for the core µXQ and FLUX languages, and be-
lieve the proof technique will extend to handle other features not included in the paper.
These results provide a solid foundation for subtyping in XML queries and updates.
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