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Abstract. Nominal logic is a first-order theory of names and binding
based on a primitive operation of swapping rather than substitution. Ur-
ban, Pitts, and Gabbay have developed a nominal unification algorithm
that unifies terms up to nominal equality. However, because of nominal
logic’s equivariance principle, atomic formulas can be provably equivalent
without being provably equal as terms, so resolution using nominal uni-
fication is sound but incomplete. For complete resolution, a more general
form of unification called equivariant unification, or “unification up to a
permutation” is required. Similarly, for rewrite rules expressed in nom-
inal logic, a more general form of matching called equivariant matching
is necessary.
In this paper, we study the complexity of the decision problem for equiv-
ariant unification and matching. We show that these problems are NP-
complete in general. However, when one of the terms is essentially first-
order, equivariant and nominal unification coincide. This shows that
equivariant unification can be performed efficiently in many interest-
ing common cases: for example, any purely first-order logic program or
rewrite system can be run efficiently on nominal terms.

1 Introduction

Nominal logic [13] is a first-order theory of names and binding formalizing
the novel Gabbay-Pitts approach to abstract syntax with binding inspired by
Fraenkel-Mostowski permutation models of set theory [6]. In nominal logic,
names are modeled as atoms a, b drawn from a countable set A. Atoms can
be tested for equality (‘a = b’) or freshness relative to other terms (‘a # t’),
bound in abstractions (‘〈a〉t’), and used in swaps acting on terms (‘(a b) · t’).
Nominal logic can serve as a foundation for specifying and reasoning about logics
and programming languages encoded using nominal terms and relations; we call
this approach to representing such languages nominal abstract syntax.

The state of the art of reasoning about languages with binding is higher-order
abstract syntax [12] (HOAS), in which object-language variables and binders are
encoded as meta-variables and λ-abstraction in a higher-order metalanguage.
For example, in HOAS, an object-term λX.F X would be translated to a meta-
language expression lam(λX.app F X), where app : exp → exp → exp and
lam : (exp → exp) → exp are constants. In contrast, in nominal abstract syntax,
variables and binders are translated to atoms a ∈ A and atom-abstractions
〈a〉t ∈ 〈A〉T ; abstractions are considered equal up to α-equivalence. For example,



an object-term λX.F X is translated to lam(〈x〉app(var(f), var(x))), where
x, f : A, var : A → exp, lam : 〈A〉exp → exp, and app is as before.

Nominal logic is of interest because it may be much easier to reason about
languages with binding using its first-order techniques than using higher-order
techniques. For example, unification up to equality in nominal logic is efficiently
decidable and unique most general unifiers (MGUs) exist [15], whereas unifi-
cation up to equality in higher-order logic is undecidable and MGUs may not
exist. However, higher-order unification is practically useful despite these theo-
retical drawbacks: Huet’s semi-unification algorithm [9] performs well in prac-
tice, and higher-order unification is decidable in linear time and has unique
MGUs for the broad special case of higher-order patterns [11]. A more serious
problem is that reasoning by induction about languages with constructors like
lam : (exp → exp) → exp is difficult because of the (underlined) negative occur-
rence of exp (see for example Hofmann [8] for a category-theoretic analysis of
this problem). In contrast, there is no such negative occurrence in the nominal
abstract syntax encoding lam : 〈A〉exp → exp, and induction principles can be
derived directly from nominal language specifications (see [6, 13]).

In this paper we consider a significant technical problem with automating
reasoning in nominal logic. The resolution principle [14] is an important tool in
automated deduction and logic programming. It states that given A ∨ P and
¬B ∨Q, where A,B are atomic and A ⇔ B, we can conclude P ∨Q. In first- or
higher-order logic, atomic formulas are equivalent precisely when they are equal
as first- or higher-order terms, respectively; moreover, we can decide whether
and how two atomic formulas A,B can be instantiated to be logically equivalent
simply by unifying them. Thus, resolution in these logics reduces to unification.

This is not the case in nominal logic because atomic formulas may be logically
equivalent but not equal as nominal terms. This is because of nomial logic’s
equivariance principle, whic states that the validity of an atomic formula is
preserved by applying swaps uniformly to its arguments:

R(X̄) ⇒ R((a b) · X̄) .

Since usually R((a b) · X̄) 6= R(X̄), atomic formulas may differ as nominal terms
but still be logically equivalent. For example, if R′ is a binary relation, then
R′(a, b) ⇔ R′(c, a) for distinct atoms a, b, and c, because we can convert from
one to the other using the swaps (b a)(a c); but R′(a, b) and R′(c, a) are not
equal or even unifiable. Indeed, the following theorems of nominal logic:

∀a, b : A.R′(a, a) ⇒ R′(b, b)
∀a, b, c, d : A.a 6= b ∧ c 6= d ⇒ R′(a, b) ⇒ R′(c, d)

imply that there are essentially only four binary relations on atoms in nominal
logic, determined by their behavior on and off the diagonal of A × A (namely,
the total and empty relations, =, and #).

Rewriting rules defined in nominal logic are also subject to equivariance. For
example, nominal rewrite rules such as

sub(var(a), a, T ) → T sub(var(b), a, T ) → var(b)



define some cases for a substitution function. Here, T is a variable whereas
a, b ∈ A are distinct atom constants, so the two rules do not overlap (as they
would if a, b were variables that could be unified). To rewrite an expression like
sub(var(c), c, var(a)) to var(a), we must match

sub(var(a), a, T ) .? sub(var(c), c, var(a))

These terms do not nominally match because the atoms c and a clash. However,
by equivariance the first rule is still true if we apply the permutation (a c) to it,
yielding sub(var(c), c, (a c) ·T ) → (a c) ·T . This rule’s left-hand side does match
sub(var(c), c, var(a)) via substitution [T := v(c)], so we can rewrite the term to
T = (a c) · v(c) = v(a), as desired.

In order to obtain a complete resolution procedure, a new form of equivariant
unification that unifies “up to a permutation” is required. Similarly, for nominal
term rewriting rules involving atoms, an equivariant matching algorithm that
matches a term to a ground term “up to a permutation” is needed. The aim
of this paper is to study the complexity of the underlying decision problems
of determining whether an equivariant unification or matching problem has a
solution. In order to simplify matters, we consider only a special case, that for
equivariance over sequences of terms of sort A. Despite its apparent simplicity,
all the computational complexity resides in this case (though the details of the
reduction are beyond the scope of this paper).

Our main results are that equivariant matching and satisfaction are both
NP-complete. Thus, the situation is not as good as for first-order, nominal
or higher-order pattern unification, and in particular, equivariant unification
cannot be reduced to nominal or higher-order pattern unification unless P =
NP. However, in practice the situation may not be so bad. We identify an
important special case which is in P: If two terms have no variables in common
and one does not mention atoms or swaps, then equivariant unification reduces
to nominal unification. This result can be generalized to show that ordinary first-
order logic programs or rewrite rules can be applied to nominal terms efficiently
using nominal unification.

2 Fundamentals

We use the notation x for an n-tuple (or sequence, when n is not important)
(x1, . . . , xn) ∈ Xn of elements of a set X.

Fix a countable set A = {a1, a2, . . . , } of atoms. Recall that a (finitary) per-
mutation of A is a bijection π : A → A that moves at most finitely many
elements of A. The support of a permutation is the set of atoms it moves:
supp(π) = {a ∈ A | π(a) 6= a}; a permutation is finitary if and only if it
has finite support. The finitary permutation group over A, written FSym(A), is
the permutation group consisting of all finitary permutations of A. Henceforth
in this paper, all permutations are taken to be elements of FSym(A), and we
omit the adjective ‘finitary’.



We write id for the identity permutation and write other permutations in
transposition notation (b1 c1) · · · (bn cn), where each bi, ci ∈ A. In this notation,
functional composition π ◦ π′ is just the concatenation of π, π′ as transposition
lists. Permutations are equal when they denote the same function; equivalently,
π = π′ when supp(π ◦ π′−1) = ∅. For example, (a b) = (c d)(b a)(d c). We write
π ·A a for the result of applying π to a. For example (a b) ·A a = b and (a b) ·A c = c
if c 6∈ {a, b}. Permutations act componentwise on sequences and sets of atoms:
π ·An (b1, . . . , bn) = (π ·A b1, . . . , π ·A bn), π ·P(A) B = {π ·A b | b ∈ B}. We omit
the subscript on ‘·’ when there is no ambiguity.

One convenient property of FSym(A) is that given a finite subset of A, we
can always find a disjoint finite subset of A (or a finite family of pairwise disjoint
subsets) of the same size, together with permutations translating between them.

Proposition 1. Suppose B ⊂ A is finite. Then there exists a permutation π ∈
FSym(A) such that π · B and B are disjoint. More generally, if I is a finite
index set, then there exists a family (τi ∈ FSym(A) | i ∈ I) such that every pair
of sets in {B} ∪ {τi ·B | i ∈ I} is disjoint.

Proof. The first part follows from Neumann’s Lemma for the group FSym(A)
(see for example [2], section 6.2 for a proof). The second part follows from the
first by (a slightly stronger) induction on the size of I. QED.

Definition 1. Two sequences a, b ∈ An are equivariant (written a ∼ b) if there
is a permutation π ∈ FSym(A) such that π · a = b.

Example 1. For example, (a, b) ∼ (b, c) as witnessed by (a b)(b c), (a, a) 6∼ (b, d),
and

(a, b, a, c, a, d) ∼ (c, d, c, b, c, a)

as witnessed by (a c)(c b)(b d).

Note that equivariance is obviously an equivalence relation; its equivalence
classes are orbits of FSym(A) acting on An, in group-theoretic terms. It is
important to note that equivariance is not a congruence with respect to pairing
(or in general, composition of sequences): for example, a ∼ b and a ∼ c but
(a, a) 6∼ (b, c).

Let V = {X, Y, . . .} be a countable set of variables. Terms s, t are either
atoms a ∈ A, or suspensions π ·X, where π ∈ FSym(A), and X ∈ V. The set of
all terms is T. The functions V : T → P(V) and A : T → P(A) calculate the sets
of variables and atoms appearing in a term respectively. When the suspended
permutation is id, the suspension id ·X is abbreviated to X. A term or sequence
of terms is ground if no variables occur in it.

A valuation is a function θ : V → A. Valuations are extended to terms
θT : T → A as follows:

θT(a) = a θT(π ·X) = π ·A θ(X)

Suspended permutations come into effect after a valuation has been applied. Val-
uations operate componentwise on n-tuples: θTn(s1, . . . , sn) = (θT(s1), . . . , θT(sn)).



We omit the subscript on θ when there is no possibility of confusion. We write
valuations using shorthand such as θ = [X := a, Y := b]. For example

θ(X, (a b) ·X, Y, (a c) · Y ) = (a, (a b) ·A a, b, (a c) ·A b) = (a, b, b, b) .

Definition 2. An equivariant satisfiability problem is a pair (s, t) ∈ Tn (writ-
ten s ∼? t) for which it is desired to find a valuation θ such that θ(s) ∼ θ(t).
An equivariant matching problem is an equivariant satisfiability problem with t
ground; then we write s .? t.

Example 2. The equivariance problem

(X, (a b) ·X, (a c) ·X) ∼? (b′, a′, c′)

has solution [X := a]. In fact, this is the only solution. On the other hand,

(a,X) ∼? (c, d)

has infinitely many solutions [X := b] for b 6= a, and neither of the following
have any solutions:

(a, b) ∼? (X, X) (X, (a b) ·X, Y, (a c) · Y ) ∼? (a, b, c, d)

Definition 3. A sequence a ∈ An is distinct if no atom is repeated in it. For
each n, fix a distinct sequence of length n (denoted An), An = (a1, . . . , an) for
distinct atoms ai ∈ A. A distinct matching problem is an equivariant matching
problem for which t = An.

Note that a is distinct if and only if i 7→ ai is injective. The fixed distinct
sequences An are concrete representatives of the equivariance classes of distinct
n-tuples, so a ∼ An precisely when a is distinct. Though distinct matching is a
very restricted case of equivariant matching, it is still NP-complete, as we shall
show in the next section.

Remark 1 (Atoms as Constants vs. Variables). Note that, following Urban, Pitts,
and Gabbay, our term language treats atoms as constants (AAC): we use con-
crete atom symbols as individual terms a and in permutations π. They are not
subject to replacement by valuation, only to swapping. In contrast, Pitts’ nomi-
nal logic treats atoms as variables (AAV): in fact, theories with atom constants
are inconsistent because any atom is fresh for any constant, but no atom is
fresh for itself. Atom constants simplify many matters; for example, nominal
unification is much easier when only atom constants can appear in swaps or ab-
stractions. Formalizing equivariant unification is much more complex in an AAV
setting as well: for example, valuations cannot be defined as ground substitutions
since there are no ground atom constants in AAV. The AAC approach can be
simulated within AAV, so nominal and equivariant unification for AAV must be
at least as hard as for AAC. We leave the study of these problems in AAV for
future work.



3 Complexity

We define the following decision problems:

EV = {a ∼ b | a, b ground}
DMat = {s .? An | ∃θ.θ(s) ∼ An}

EVMat = {s .? b | b ground,∃θ.θ(s) ∼ t}
EVSat = {s ∼? t | ∃θ.θ(s) ∼ θ(t)}

EVSat∗ = {S | ∃θ.∀(s ∼? t) ∈ S.θ(s) ∼ θ(t)}

Note that DMat ≤ EVMat ≤ EVSat ≤ EVSat∗ by inclusion reductions. We
now establish that EV is in P, and the rest of the problems are in NP.

For a ground sequence a, let Ea = {(i, j) | ai = aj}. That is, Ea is an
equivalence relation whose equivalence classes are the indices of equal elements
of a.

Proposition 2. For ground sequences a, b of equal length, a ∼ b if any only if
Ea = Eb.

Proof. If a ∼ b, assume π · a = b and suppose (i, j) ∈ Ea. Then ai = aj . So
bi = π · ai = π · aj = bj . Hence (i, j) ∈ Eb and so Ea ⊆ Eb. A symmetric
argument shows Eb ⊆ Ea, so the two sets are equal.

If Ea = Eb = E, note that the functions f : i 7→ ai and g : i 7→ bi are both
constant on equivalence classes of E. Hence, the functions fE : [i]E 7→ ai and
gE : [i]E 7→ bi are well-defined. Moreover, both are injective, since if ai = aj

then [i]E = [j]E and similarly for b; consequently the functions (considered on
range A(a) and A(b) respectively) are invertible. Then the function g ◦ f−1

E :
A(a) → A(b) is also invertible. Any bijection between finite sets B,C ⊆ A can
be extended to a permutation π : A → A, so by choosing such an extension we
have π · ai = gE ◦ f−1

E (ai) = gE([i]E) = bi for each i (1 ≤ i ≤ n), so π · a = b.
QED.

The relations Ea, Eb can obviously be represented as graphs which can be
constructed from a, b and compared in polynomial time.

Corollary 1. EV is in P.

Furthermore, the remaining four problems obviously have polynomial-time check-
able certificates, namely minimal witnessing valuations θ.

Corollary 2. EVSat∗, EVSat, EVMat, and DMat are in NP.

In the rest of this section we prove

Theorem 1. The problem DMat is NP-complete.

Proof. Having already shown DMat ∈ NP, we show NP-hardness only. We
reduce from the NP-complete problem Graph 3-Colorability, that is, de-
termining whether a graph’s vertices can be colored with one of three colors so
that no neighboring vertices are the same color.



Let a (directed) graph G = (V,E) with n vertices and m edges be given. We
assume without loss of generality that V = {1, . . . , n} and E = {e1, . . . , em}.
We write es, et for the source and target of the edge e ∈ E. Let C = {r, g, b} be
a three-element subset of A. We define a 3-coloring as an n-tuple c ∈ Cn such
that ces 6= cet whenever e ∈ E.

Define πC = (r g)(g b), a cyclic permutation on A with support C. Choose
(by Lemma 1) n + m permutations τ1, . . . , τn, σ1, . . . , σm so that if Ti = τi · C
for each i ∈ {1, . . . , n}, and Sj = σj ·C for each j ∈ {1, . . . ,m}, then the sets C,
{Ti | 1 ≤ i ≤ n}, and {Sj | 1 ≤ j ≤ m} are mutually disjoint.

Let X1, . . . , Xn ∈ V be n distinct variables.
Idea of the proof. We will construct an instance of DMat such that for

any solution θ, c = (θ(X1), . . . , θ(Xn) is a 3-coloring. To do this, we need to
force all of the Xi to be elements of C and for each edge e force Xes and Xet to
be different.

Observe X 6= πC ·X if and only if X ∈ supp(πC) = C. So it is easy to encode
a single set constraint X ∈ C as a DMat problem

(X, πC ·X) .? A2 .

However, for two variables this does not quite work:

(X1, πC ·X1, X2, πC ·X2) .? A4

forces X1, X2 ∈ C but also forces X1 6= X2, πC · X1 6= X2, etc. This is too
strong. To prevent interference between subproblems, we isolate them using the
permutations τ1, τ2:

(τ1 ·X1, τ1 ◦ πC ·X1, τ2 ·X2, τ2 ◦ πC ·X2) .? A4

First note that τ1 · X1 6= τ1 ◦ πC · X1 implies X1 6= πC · X1 so X1 ∈ C and
similarly X2 ∈ C, as before. On the other hand, if X1, X2 are in C, then all four
components are different, since the first two lie in T1 and the last two in T2, and
the two sets are disjoint. It is not hard to show by induction that

s = (τ1 ·X1, τ1 ◦ πC ·X1, . . . , τn ·Xn, τn ◦ πC ·Xn) .? A2n

is in DMat if and only if X1, . . . , Xn ∈ C.
Now we need to enforce that whenever e ∈ E, we have Xes 6= Xet . For a

single edge, the following problem suffices:

(Xes , Xet) .? A2

However, as was the case earlier, problems cannot always be combined correctly
because they might interfere. For example, for two edges (1, 2), (1, 3), the problem

(X1, X2, X1, X3) .? A4

is unsatisfiable because the value of X1 is repeated in any valuation, but [X1 :=
r, X2 := g,X3 := b] is a 3-coloring. To get around this problem, we use the
permutations σi to isolate the constraints for each edge ei. For example,

(σ1 ·X1, σ1 ·X2, σ2 ·X1, σ2 ·X3) .? A4



ensures X1 6= X2 and X1 6= X3. Also, if X1, X2, X3 ∈ C then the first two
components are in S1 and the second two in S2, and S1 ∩ S2 = ∅. So more
generally, the problem

t = (σ1 ·Xes
1
, σ1 ·Xet

1
, . . . , σm ·Xes

m
, σm ·Xet

m
) .? A2m

enforces the coloring property for each edge and permits all valid colorings.
Define u to be the 2n+2m-tuple resulting from concatenating the sequences

s and t. Then u .? A2n+2m is the DMat problem corresponding to the instance
G of Graph 3-Colorability.

Correctness of the reduction. So far we have only described the construc-
tion and the intuition behind it. It is easy to see that the size of u is O(m + n),
since πC , τi, and σj each have representations consisting of at most three trans-
positions. We now show carefully that the reduction is correct, that is, G has
a 3-coloring c ∈ Cn if and only if u has a distinct valuation θ. The backward
direction is easy, since (as outlined above) it is easy to show that any solution θ
making s and t distinct corresponds to a 3-coloring ci = θ(Xi).

The difficulty is showing that u is not over-constrained: that is, if c is a
3-coloring then the valuation θ(Xi) = ci makes u distinct. Suppose c is a 3-
coloring and θ(Xi) = ci. We need to show that i 6= j implies θ(ui) 6= θ(uj) for
each i, j ∈ {1, . . . , |u|}. Assume i, j ∈ {1, . . . , |u|} and i 6= j. Suppose without
loss of generality that i < j. There are three cases.

If i is even or j > i + 1, then ui = ρ · Xk and uj = ρ′ · Xk′ for some
permutations ρ, ρ′ and Xk, Xk′ , and ρ · C and ρ′ · C are distinct, so

θ(ui) = ρ · ck 6= ρ′ · ck′ = θ(uj)

If i is odd and i + 1 = j and j ≤ 2n, then j is even; set k = j/2. Then
ui = τk ·Xk, uj = τk ◦ πC ·Xk, and we have

θ(ui) = τk · ck 6= τk ◦ πC · ck = θ(uj)

since πC · ck 6= ck.
If i is odd and j = i + 1 and 2n + 1 ≤ i, then j and j − 2n are even; set

k = (j − 2n)/2. Then ui = σk ·Xes
k
, uj = σk ·Xet

k
, and

θ(ui) = σk · ces
k
6= σk · cet

k
= θ(uj)

where ces
k
6= cet

k
since c is a 3-coloring. So, in any case, θ(ui) 6= θ(uj). QED.

Corollary 3. EVMat, EVSat and EVSat∗ are NP-complete.

4 A tractable special case

There are several special cases of equivariant satisfiability or matching that are
tractable. We present a one such special case, a simple syntactic restriction that
guarantees that equivariant satisfiability can be reduced to nominal unification.
We describe some additional special cases at the end of this section.



Before defining nominal unification, we first need to extend permutation ac-
tion to terms and define substitutions and renamings. Permutations act on terms
as follows:

π ·T (a) = π ·A a π ·T (π′ ·X) = (π ◦ π′) ·X

and act componentwise on sequences of terms. A substitution is a function σ :
V → T from variables to terms, extended as follows to σT : T → T:

σT(a) = a σT(π ·X) = π ·T σ(X)

and extended componentwise to σTn : Tn → Tn. Note that substitutions may
activate delayed permutation actions:

((a b) ·X, (a c) · Y )[X := a, Y := (b c) · Z] = (b, (a c)(b c) · Z) .

Moreover, note that π · (σ(x)) = σ(π · x), for x a term or sequence.
A term s (or sequence s) is a renaming of another term t (sequence t) if

s = ρ(t) (or s = ρ(t)) for some invertible substitution ρ. Note that invertible
substitutions may involve swapping: for example, [X := π · Y, Y := X] has
inverse [X := Y, Y := π−1 · X]. Two terms s, t (or sequences s, t) unify if
there is an idempotent substitution σ such that σ(s) = σ(t) (or σ(s) = σ(t)).
For example, (a b) · X unifies with (b c) · X with substitution [X := d], for
any d /∈ {a, b, c}. The algorithm of Urban et al. decides a more general case of
nominal unification, and finds unique MGUs (up to renaming) when they exist.
Although their algorithm is not polynomial time as presented, a polynomial-time
algorithm can be obtained by modifying the quadratic unification algorithm of
Martelli and Montanari [10]; further improvements may be possible.

We say s is pure if no atoms appear in s: that is, s is a list of variables with
suspended permutation id. We say s is semi-pure if it is a renaming of a pure s′.
For example, (X, Y,X) is pure and ((a b) ·X, Y, (c a)(c b)(c a) ·X) is semi-pure.
We say s, t are variable-disjoint when V (s) ∩ V (t) = ∅.

Theorem 2. If s is semi-pure and s, t are variable-disjoint, then s ∼? t can be
decided in polynomial time.

Proof. We show this in two steps. First, assuming s is pure, we show that decid-
ing s ∼? t reduces to nominal unification. Second, we show that if s is semi-pure
and s′ is a pure renaming of s, then s ∼? t is satisfiable if and only if s′ ∼? t is.

For the first part, if s and t have a nominal unifier, note that any unifier
has a ground instance, any instance of a unifier is also a unifier, and any ground
substitution is a valuation. So we can find a valuation θ such that θ(s) = θ(t);
hence, id · θ(s) = θ(t) so θ(s) ∼ θ(t). Conversely, suppose that π · θ(s) = θ(t).
Let θ′ be defined as follows:

θ′(X) =
{

π · θ(X) : X ∈ V (s)
θ(X) : otherwise

Since s, t are variable-disjoint, θ′ agrees with θ on V (t) so θ(t) = θ′(t). Also,
since s is pure, we know s = (X1, . . . , Xn) for {X1, . . . , Xn} = V (s) (where some



of the Xi may be repeated). Hence

θ′(s) = (θ′(X1), . . . , θ′(Xn)) = (π · θ(X1), . . . , π · θ(Xn))
= π · θ(s) = θ(t) = θ′(t)

So θ′(s) = θ′(t) and θ′ is a nominal unifier of s, t. The existence of a nominal
unifier can be decided in polynomial time by nominal unification.

For the second part, note that since s is semi-pure, there exists a pure s′

and invertible ρ such that ρ(s) = s′. Since s, t are variable-disjoint, we may
choose s′, ρ such that s′, t are also variable-disjoint and ρ fixes all the variables
V (t) of t. Since ρ(X) = X whenever X ∈ V (t), we also have ρ(t) = t. We will
show that s′ ∼? t is satisfiable if and only if s ∼? t is; since the former can be
decided efficiently, so can the latter. Assume s′ ∼? t is satisfiable, and suppose
π · θ(s′) = θ(t). Let θ′ = θ ◦ ρ. Then

π · θ′(s) = π · θ ◦ ρ(s) = π · θ(s′) = θ(t) = θ ◦ ρ(t) = θ′(t)

so s ∼? t has a solution. A symmetric argument (using the equation ρ−1(s′) = s)
shows that if s ∼? t has a solution then so does s′ ∼? t. QED.

Remark 2. Theorem 2 can be generalized to unification over full nominal terms,
in which case pure terms are simply first-order terms with no atoms, abstractions,
or swaps. Suppose we have a purely first-order logic program P (i.e., a set of first-
order Horn clauses). Since the variables of program clauses are always freshened
prior to attempting resolution, resolution behaves the same using equivariant
unification as nominal unification, so for atomic A, P ` A can be derived using
equivariant unification if any only if P ` A can also be derived using nominal
unification. Similarly, suppose we have a purely first-order term rewriting system
R. Then s →R t using equivariant matching if and only if s →R t using nominal
matching. These results can be generalized to permit program clauses with semi-
pure heads and unrestricted bodies, and rewriting rules with semi-pure left-hand
sides and arbitrary right-hand sides. So broad classes of nominal logic programs
and rewrite systems (including all first-order logic programs and rewrite systems)
can be executed efficiently without sacrificing completeness.

Remark 3. There are other tractable special cases, but they depend on aspects
of nominal logic beyond the scope of this paper. First, equivariant matching is
tractable when both terms are free of swaps but may contain abstractions and
atoms. The algorithm for this case is a straightforward generalization of nominal
matching, based on the insight that 〈a〉X .? 〈b〉b precisely when X = a and
〈a〉X .? 〈b〉c (where b 6= c) precisely when a # X. Another well-behaved case is
when the two terms are variable-disjoint and one term has empty support ; this
means that no atom a occurs outside the scope of an abstraction of a in s, and
that every atom a appearing in s is fresh for every variable not enclosed by an
abstraction of a in s. For example, (Y, 〈b〉X) has empty support assuming b # Y ,
whereas (a, 〈b〉X) does not since a appears unbound. In this case, equivariant
unification reduces to nominal unification. Note that this is a generalization of
Theorem 2 since pure terms have empty support. Many interesting nominal logic
programs can be expressed using head clauses with empty syntactic support.



5 Related and future work

Permutations of variables arise in natural ways in first-order and higher-order
pattern unification. In first-order unification, any two MGUs for a given problem
are equivalent up to permuting their free variables. In higher-order unification,
the cases that cause problems involve free variables applied to arbitrary lists of
bound and free variables, and this case is avoided by the higher-order pattern
restriction that free variables are only applied to lists of distinct bound vari-
ables [11]. Consequently, whenever two subterms X x1 · · · xn, Y y1 · · · ym are
to be unified (where X, Y are free and x̄, ȳ are bound variables), there is always
a partial permutation relating the variables x̄ and ȳ. Then all the nondeterminis-
tic choices in Huet’s full higher-order semi-unification algorithm can be avoided;
unification can be performed efficiently, and MGUs are unique when they exist.

An alternative view of equivariant satisfiability to the one taken in this pa-
per is as the search for a solution for the equation P · s(X̄) = t(X̄) (over a
permutation variable P and atom variables X̄). In light of this fact, prior work
on satisfiability for equations over groups may be relevant to equivariant uni-
fication. Many mathematicians from Frobenius onward have studied the prob-
lem of solving (and counting the solutions to) specific group equations such as
Pn = id [5]. Albert and Lawrence studied elementary unification in varieties of
nilpotent groups [1]. They showed that MGUs may not exist in that setting, but
are unique when they do, and described a polynomial time algorithm that com-
putes a MGU or determines that none exists for a specific problem. Goldmann
and Russell [7] showed that for finite groups, solving systems of equations (pos-
sibly involving constants) is polynomial time if the group is Abelian, otherwise
NP-complete. They also showed that solving a single group equation is NP-
complete if the group is non-solvable and in P if it is nilpotent; the complexity
of solvable but non-nilpotent groups is not settled. Engebretsen et al. [4] showed
that approximating the number of solutions to a single group equation to within
|G| − ε is NP-hard for any ε > 0.

Our first proof of NP-completeness for equivariant satisfiability reduced from
Goldmann and Russell’s single-equation group satisfiability problem for non-
solvable groups (since full finite symmetric groups are not solvable). That ap-
proach required several intermediate reductions and showed only to the weaker
result that EVSat is NP-complete, leaving the complexity of equivariant match-
ing unresolved. Except for Goldmann and Russell’s work, we have not found any
of the above research on unification and satisfaction for group equations to be
applicable to equivariant unification.

There are two immediate directions for future work. First, we are developing
practical algorithms for equivariant matching and unification for use in reso-
lution and term rewriting in αProlog, a logic programming language based on
nominal logic [3]. Second, in this paper we asserted without proof that equiv-
ariant unification is necessary and sufficient for complete nominal resolution.
Though this seems clear, it requires proof. We plan to present practical equivari-
ant unification and matching algorithms and prove that equivariant unification
is sound and complete for nominal resolution in future work.



6 Conclusions

Equivariant satisfiability and matching, or deciding whether two terms involv-
ing swapping can be made equal “up to a permutation”, are important decision
problems for automated reasoning, logic programming, and term rewriting in
nominal logic. We have shown that both are NP-complete. We have also found
an interesting tractable special case, for which nominal unification suffices. Con-
sequently, first-order logic programs and term rewriting systems can be run effi-
ciently on nominal terms. Only those programs or rewrite systems that actually
use the novel features of nominal logic need pay for them.
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Computer Science Logic and 8th Kurt Gödel Colloquium (CSL’03 & KGC), volume
2803 of Lecture Notes in Computer Science, pages 513–527, Vienna, Austria, 2003.
Springer-Verlag.


