
Noname manuscript No.
(will be inserted by the editor)

Formalizing adequacy:
a case study for higher-order abstract syntax

James Cheney · Michael Norrish ·
René Vestergaard

Received: date / Accepted: date

Abstract Adequacy is an important criterion for judging whether a formalization is

suitable for reasoning about the actual object of study. The issue is particularly subtle

in the expansive case of approaches to languages with name-binding. In prior work,

adequacy has been formalized only with respect to specific representation techniques.

In this article, we give a general formal definition based on model-theoretic isomor-

phisms or interpretations. We investigate and formalize an adequate interpretation of

untyped lambda-calculus within a higher-order metalanguage in Isabelle/HOL using

the Nominal Datatype Package. Formalization elucidates some subtle issues that have

been neglected in informal arguments concerning adequacy.

Keywords adequacy, isomorphism, interpretation, nominal abstract syntax, higher-

order abstract syntax

One can’t proceed from the informal to the formal by formal means.

—Alan Perlis

1 Introduction

The right choice of representation is often the key to success in formal or machine-

checked reasoning. A change in representation may make formal, machine-checked proof

much easier, but also introduces an additional burden of proof to legitimize reasoning

about an object via its representation. The representation must correctly capture the

J. Cheney
Laboratory for Foundations of Computer Science, University of Edinburgh, Scotland
E-mail: jcheney@inf.ed.ac.uk

Michael Norrish
Canberra Research Lab, NICTA, Australia
(also: Australian National University)
E-mail: Michael.Norrish@nicta.com.au

René Vestergaard
Research Center for Integrated Science, JAIST, Ishikawa, Japan
E-mail: vester@jaist.ac.jp

2

salient properties of the original object of interest. In the context of formal reason-

ing about languages with name-binding, this correspondence is sometimes called ade-

quacy. Reasoning about languages with name-binding, equivalence modulo consistent

renaming of bound names (α-equivalence), and capture-avoiding substitution directly

is challenging, and there has been extensive exploration of alternative representations.

The term “adequacy” was first used to refer to a desired correspondence between an

object language and its representation by Harper, Honsell and Plotkin in their seminal

work on the higher-order, dependently-typed Logical Framework (LF) [10]. However, as

Crary and Harper have pointed out, adequacy is just as important for other formalisms

for reasoning about abstract syntax with binding [6].

Adequacy for representations of languages with name-binding is challenging for

several reasons. First, a plethora of techniques for representing and reasoning about

name-binding and α-equivalence have been introduced, each with different advantages,

disadvantages, and caveats. Second, adequacy apparently cannot be proved once and

for all, even for a given representational technique. Instead, it seemingly needs to

be revisited whenever a new programming language calculus or logic is developed.

Third, adequacy proofs are tiresome and are often omitted or conducted on paper using

informal approaches to name-binding; thus, they share the well-known disadvantages of

paper-and-pencil syntactic proofs. Finally, there remains confusion about the meaning

of the term “adequacy” with respect to different representation techniques.

To date the term “adequacy” has mainly been used in the context of higher-order

abstract syntax techniques. However, none of this work has provided a clear, general

definition of adequacy that is applicable to any representation technique; rather, partic-

ular instances of correspondences between object-languages and higher-order abstract

syntax representations are typically called adequacy theorems. This has led to confusion

between researchers familiar with different techniques, since properties such as “com-

positional bijection” that are called adequacy theorems in (for example) LF [10–12,18]

are couched in terms of LF or higher-order abstract syntax and bear little superficial

resemblance to correctness properties established for other techniques [8,20,7,17].

Because adequacy proofs for higher-order abstract syntax (like most proofs involv-

ing informal reasoning about languages with name-binding) are seldom published in

full detail, some researchers (including the authors) have remained unpersuaded that

these informal proofs have uncovered and addressed all pertinent issues. Conversely,

some researchers [6] have criticized other techniques, suggesting that their correctness

may be in doubt because properties resembling LF adequacy theorems have not been

proved for them. As a matter of public record, such doubts have remained speculative

in nature and, to date, no concrete shortcomings have been identified or articulated.

Moreover, discussion of these problems has been inconclusive, in part because there is

no general, representation-independent definition of adequacy that is widely accepted.

We wish to distinguish two possible senses of the term “adequacy” which appear to

have been conflated. By informal adequacy we mean that the formalization of a math-

ematical object matches a person’s informal understanding of the object. Informal

mathematical concepts are sometimes ambiguous or subjective, so informal adequacy

is in general a subjective judgment. Informal adequacy is neither provable nor falsi-

fiable by formal means: we cannot formally prove a relationship between an informal

notion and a proposed formalization without introducing some new formalism whose

(informal) adequacy could also be disputed. Informal adequacy is a rhetorical claim,

outside the scope of mathematical reasoning.

3

Conversely, we use the term formal adequacy to describe a formalized relation-

ship between two candidate formalizations of an object language (e.g., isomorphism

with respect to a precisely defined mathematical structure). Formal adequacy cannot

guarantee informal adequacy. However, it is at least reassuring if we can prove that a

novel representation is equivalent to a well-understood, conventional one. Over time,

we may thereby establish that many distinct formal presentations of a single informal

(but important) object, such as the lambda-calculus, are all mutually equivalent [17].

The more formalizations that are equivalent, the more disconcerting it is if one is not;

even if only two candidate formalizations exist, the absence of a provable link connect-

ing them is cause for concern. Formal adequacy is not a matter of speculation but a

mathematical claim that is subject to proof or disproof: in principle, it can be analyzed

within a machine-checked logic. We will concentrate on formalizing adequacy in this

sense and henceforth, we will use the term “adequacy” only in the formal sense.

1.1 Prior work

In higher-order abstract syntax (HOAS), as supported in the LF [10] or higher-order

logic programming [14] paradigms, a representation is usually considered adequate with

respect to an object language (equipped with a suitable notion of substitution) provided

there exists a bijection from the object-language terms to meta-language terms of an ap-

propriate type that is compositional in the sense that the object-language substitution

maps to metalanguage substitution. Proving adequacy properties for higher-order rep-

resentations requires first establishing that meta-language terms have unique β-normal,

η-long canonical forms, and once this is done, showing that a given encoding function

is bijective and compositional. The necessary canonicalization properties for LF were

studied by Harper and Pfenning [12]. The literature contains many proof sketches and

some detailed proofs of ad hoc adequacy theorems [10–12,18] for various object lan-

guages. Gardner [9] investigated the problem of relating object-language terms and

logical derivations with their LF representations more systematically using indexed

isomorphisms. To our knowledge none of these adequacy proofs for higher-order ab-

stract syntax have been mechanically formalized (aside from the partial formalization

by Urban et al. [23]).

The most rigorous treatments of adequacy for HOAS are due to Harper and Pfen-

ning [12, Sec. 7] and Harper and Licata [11, Sec. 3]. Urban et al. [23] formalized much

of Harper and Pfenning’s development in Nominal Isabelle/HOL, including the sim-

ple adequacy results sketched in section 7 of that article. Our proof draws in part on

ideas in that work, but we define encodings via functions rather than relations, and

we investigate adequacy for judgments as well as the object language syntax. On the

other hand, we focus on a simply-typed HOAS language rather than full dependently-

typed LF. Harper and Licata [11] pursue an alternative approach to adequacy using

a system called Canonical LF in which every expression is maintained in β-normal,

η-long (or canonical) form. This is believed to ease reasoning about adequacy because

we no longer need to reason modulo βη-equivalence; instead, we can inspect the struc-

ture of canonical forms. However, this canonical-forms invariant is maintained using

an auxiliary notion, called hereditary substitution (introduced by Watkins et al. [24]).

As discussed further below, hereditary substitution cannot be formalized easily within

most proof assistants. To our knowledge, the key properties of Canonical LF have never

been mechanically checked because of this complication.

4

There appears to be little agreement as to how to define adequacy for other repre-

sentations, possibly because of the absence of a clear and general definition of adequacy

for higher-order abstract syntax itself. There are some treatments of correctness prop-

erties for other techniques besides LF, notably Crole’s [7] development of adequacy

for the Hybrid system, Norrish and Vestergaard’s [17] formalization of isomorphisms

among nominal and de Bruijn representations of the untyped λ-calculus, and Urban’s

isomorphism between raw and nominal representations of the λ-calculus [21, Sec. 3].

Cheney and Urban [3, Sec. 5] also discuss adequacy in the context of nominal logic

programming. As far as we know, of these only Urban’s and Norrish and Vestergaard’s

work has been mechanically formalized.

1.2 Our approach

We argue that the purpose of adequacy is to legitimize reasoning about one (mathemat-

ical or formal) structure by reasoning about another. Standard model-theoretic notions

such as isomorphism or interpretation capture this notion in an abstract way [13]. In

this article, we consider a class of adequacy properties based on interpretations among

appropriate mathematical structures. This approach to adequacy generalizes that taken

in the LF setting, and provides a clear recipe for studying adequacy that is largely in-

dependent of syntactic idiosyncrasies of the object and meta-languages, such as the

treatment of variables, contexts, substitution and α-equivalence.

Our approach to formalizing adequacy for higher-order abstract syntax is based

on explicitly establishing a canonical-forms theorem and then reasoning about the

canonical forms, rather than maintaining canonical forms using hereditary substitution.

While hereditary substitution appears to simplify adequacy proofs on paper, it cannot

be defined as a primitive recursive function in (the current version of) Nominal Isabelle;

instead, we need to define it as a relation. We have explored this alternative, and found

that relational reasoning about substitution dramatically increases the amount of work

needed for each proof. Many inference steps that can be handled automatically by

equational simplification would have to be performed explicitly, one step at a time.

There may be a way around this, but in this article we chose to focus on the better-

understood approach based on ordinary substitution and canonicalization, and leave

formalizing Canonical LF and hereditary substitutions to future work.

Our approach to canonical forms also draws upon some prior work on canonical

forms and equivalence checking in the λ-calculus. Coquand introduced an algorithm

for testing βη-convertibility, along with a proof technique based on Kripke logical

relations [4]. Crary [5] and Harper and Pfenning [12] give type-directed variants of

Coquand’s algorithm for testing convertibility in simple type theory and LF respec-

tively. Canonical forms can then be extracted from algorithmic equivalence derivations.

Correctness proofs for the type-directed algorithms have been formalized by Narboux

and Urban [16] and Urban et al. [23] respectively. For our purposes, however, it is

more convenient to prove soundness and completeness of a canonicalization algorithm

directly (see Appendix A).

Verifying adequacy does not seem inherently difficult, but is tedious and must

currently be redone for each new representation. Instead of doing this on a case-by-

case basis, we are investigating fundamental principles for systematically reasoning

about adequacy. For the moment, the extant case studies can only suggest certain

general principles. We leave their further investigation and codification to future work.

5

1.3 Summary

The contributions of this article are as follows:

1. We propose a clear, general, and formal characterization of adequacy as the ex-

istence of a model-theoretic interpretation [13] of the object-language within the

meta-language. This definition is independent of inessential details of particular

representation techniques and, in principle, applicable to any combination of object-

language, representation technique, and formal framework.

2. We formalize an adequate interpretation of the untyped λ-calculus with reduc-

tion using a higher-order metalanguage, within Isabelle/HOL and the Nominal

Datatype Package [21]. In doing so, we also prove the properties that are typi-

cally called “adequacy theorems” for such systems. To our knowledge, this is the

first mechanized formalization and proof of such results for a higher-order abstract

syntax representation.

This work extends the existing body of evidence that these and many other formalisms

correctly capture the “real” λ-calculus (see Norrish and Vestergaard [17] for a more

complete discussion of such results). Our formalization also includes re-usable results

such as the canonicalization theorem, and elucidates the patterns of reasoning that

arise in adequacy proofs. This constitutes a library of useful results and a model proof

of adequacy that may be extended or adapted to study adequacy for other languages,

or as a starting point for improving support for automating such proofs.

We employ a metalanguage called λHO, a simply-typed λ-calculus that supports

higher-order abstract syntax, and a logic called λHO
⇒ (based on uniform, focused proof

search in higher-order logic programming [15]) that can be used to define relations

on higher-order representations (Section 2). We next introduce an object language,

the (standard) untyped λ-calculus with β-reduction, and review its representation in

λHO. Section 3 presents our approach to adequacy using concepts from model theory,

specifically interpretations. In Section 4, we show the central canonical-forms property

for λHO, establishing that βη-equivalence classes are represented by unique canonical

forms. We establish the main adequacy result in Section 5. In Section 5.1, we define

the encoding function mapping object language terms to λHO terms, and establish the

critical injectivity, surjectivity and compositionality properties of the encoding. Finally,

in Section 5.2 we show that the encoding function preserves and reflects reduction.

This is the most subtle aspect of the development and, to the best of our knowledge,

comparable results have not previously been formalized within a machine-checked logic.

Every mathematical statement in this article except for Theorem 1 (a standard

result of model theory, and not central to our development) has been formalized and

proved using Nominal Isabelle. We follow the usual informal conventions concerning

α-equivalence, but these are treated rigorously in the Nominal Isabelle formalization.

In particular, to aid readability we have suppressed explicit mention of freshness and

context-validity side-conditions whenever convenient. The full statements and proofs

can be found in the formalization, which is available upon request.

2 Background

We take as our meta-language a simply-typed λ-calculus with constants, called λHO.

The syntactic classes include expressions M,N , types τ , and contexts Γ generated by

6

FV (x) = {x}
FV (M N) = FV (M) ∪ FV (N)

FV (Λx.M) = FV (M)− {x}

x{N/x} = N

y{N/x} = y (x 6= y)

(M1 M2){N/x} = M1{N/x} M2{N/x}
(Λy.M){N/x} = Λy.(M{N/x}) (y 6= x, y 6∈ FV (N))

x : τ ∈ Γ
Γ ` x : τ

c : τ ∈ Σ
Γ ` c : τ

Γ `M : τ1 → τ2 Γ ` N : τ1
Γ `M N : τ2

Γ, x : τ1 `M : τ2

Γ ` Λx.M : τ1 → τ2

Fig. 1 The meta-language λHO: a simply-typed λ-calculus with constants

the following grammar:

M,N ::= c | x |M N | Λx.N τ ::= a | τ → τ ′ Γ ::= • | Γ, x:τ

where x denotes one of a fixed infinite set of variables, c denotes one of a fixed set of

constants, and a denotes one of a set of base types. To minimize confusion, we write

Λx.M for meta-language λ-abstraction.

The (standard) definitions of the free variables function FV (−), well-formedness

judgment Γ `M : τ , and substitution operation M{N/x} are shown in Figure 1. The

typing judgment Γ ` M : τ is implicitly parameterized by a signature Σ consisting

of bindings c : τ of constants to their types, such that for each c there is at most one

τ such that c : τ ∈ Σ. Similarly, we restrict attention to contexts Γ that bind each

variable at most once.

The typing judgment satisfies standard weakening and substitution properties:

Proposition 1 (Properties of typing)

1. (Weakening) If Γ ⊆ Γ ′ and Γ `M : τ then Γ ′ `M : τ .

2. (Substitution) If Γ, x:τ ′ `M : τ and Γ ` N : τ ′ then Γ `M{N/x} : τ .

2.1 Definitional equivalence

Meta-language expressions are considered equivalent modulo β and η-conversion. To

be precise, we use a typed definitional equivalence judgment Γ `M = N : τ (Figure 2)

to identify when two expressions are βη-convertible in a given context. Definitional

equivalence is only derivable for well-typed terms, and satisfies weakening, substitution,

and other standard properties:

Proposition 2 (Properties of definitional equivalence)

1. (Validity) If Γ `M = N : τ then Γ `M : τ and Γ ` N : τ .

2. (Reflexivity) If Γ `M : τ then Γ `M = M : τ .

3. (Weakening) If Γ ⊆ Γ ′ and Γ `M = N : τ then Γ ′ `M = N : τ .

4. (Substitution) If Γ, x:τ ′ ` M = M ′ : τ and Γ ` N : τ ′ then Γ ` M{N/x} =

M ′{N/x} : τ .

5. (Functionality) If Γ, x:τ ′ `M = M ′ : τ and Γ ` N = N ′ : τ ′ then Γ `M{N/x} =

M ′{N ′/x} : τ .

7

x : τ ∈ Γ
Γ ` x = x : τ

(=var)
c : τ ∈ Σ

Γ ` c = c : τ
(=cst)

Γ `M1 = N1 : τ1 → τ2 Γ `M2 = N2 : τ1
Γ `M1 M2 = N1 N2 : τ2

(=app)
Γ, x : τ1 `M = N : τ2

Γ ` Λx.M = Λx.N : τ1 → τ2
(=lam)

Γ `M : τ → τ ′ x /∈ FV (Γ,M)

Γ ` Λx.M x = M : τ → τ ′
(=η)

Γ, x:τ ′ `M : τ Γ ` N : τ ′

Γ ` (Λx.M) N = M{N/x} : τ
(=β)

Γ ` N = M : τ
Γ `M = N : τ

(=sym)
Γ `M = N : τ Γ ` N = K : τ

Γ `M = K : τ
(=trans)

Fig. 2 Definitional equivalence for λHO

2.2 A higher-order meta-logic

Besides the meta-language itself, we employ a simple logic that can be used to define

relations over meta-language terms. We introduce a type constant o standing for the

type of propositions. Propositions φ, ψ are expressions of the following forms:

φ, ψ ::= A | φ ⊃ ψ | Πx:τ.φ

Here, A is an object-language term that is being used as an atomic formula, and we

use the notation φ ⊃ ψ for implication and Πx:τ.φ for universal quantification in λHO
⇒ .

To simplify matters, we will not consider λ-abstraction or βη-conversion at the level

of propositions.

We introduce a simple meta-logic that can be used to define relations over λHO

terms. The well-formed formulas in a context Γ are defined in Figure 3. We consider

theories Φ to be sets of formulas. The judgments are Γ ;Φ =⇒ φ, which says that

φ is derivable in context Γ using theory Φ, and Γ ;Φ | φ −→ A, which says that

atomic formula A is immediately derivable from φ in context Γ under assumptions

Φ. The rules for derivability are given in Figure 4. This system allows relations to be

defined as simple higher-order logic programs. It is based on systems for uniform and

focused proofs that have been investigated for higher-order logic programming [15].

Essentially, the idea is that we start with a cut-free, Gentzen-style sequent calculus.

We then require right-rules to be applied first whenever the conclusion is non-atomic.

When the conclusion is atomic, we select a hypothesis φ ∈ Φ and proceed by applying

left-rules to the focused formula φ to break it down into subgoals.

We have chosen to take the cut-free, uniform, focused proof search system as prim-

itive rather than devote additional effort to formalizing cut-elimination and proof nor-

malization results. These results are interesting and appear nontrivial to formalize, but

they are generally well-understood and this issue seems orthogonal to the goals of this

article. LF signatures can also be viewed as a form of higher-order logic programs, and

this meta-logic is also closely related to canonical derivations in LF, so we believe that

adequacy proofs based on this system could be adapted to handle LF as well.

Proposition 3 (Properties of well-formed formulas)

1. If Γ ⊆ Γ ′ and Γ ` φ prop then Γ ′ ` φ prop.

2. If Γ ;Φ =⇒ A and Γ ` A = A′ : o then Γ ;Φ =⇒ A′.
3. If Γ ;Φ | φ −→ A and Γ ` A = A′ : o then Γ ;Φ | φ −→ A′.

We can also establish that λHO
⇒ is closed under definitional equivalence of formulas

and theories (suitably defined), but we do not need this result in the rest of the article.

8

Γ ` A : o
Γ ` A prop

Γ ` φ prop Γ ` ψ prop

Γ ` φ ⊃ ψ prop

Γ, x:τ ` φ prop

Γ ` Πx:τ.φ prop

Fig. 3 Well-formed formulas of the meta-logic λHO
⇒

φ ∈ Φ Γ ;Φ | φ −→ A

Γ ;Φ =⇒ A
(sel)

Γ ` A = A′ : o

Γ ;Φ | A′ −→ A
(hyp)

Γ ;Φ, φ =⇒ ψ

Γ ;Φ =⇒ φ ⊃ ψ
(⊃R)

Γ ;Φ =⇒ φ Γ ;Φ | ψ −→ A

Γ ;Φ | φ ⊃ ψ −→ A
(⊃L)

Γ, x:τ ;Φ =⇒ φ

Γ ;Φ =⇒ Πx:τ.φ
(ΠR)

Γ `M : τ Γ ;Φ | φ{M/x} −→ A

Γ ;Φ | Πx:τ.φ −→ A
(ΠL)

Fig. 4 Derivability in the meta-logic λHO
⇒

fv(x) = {x}
fv(t u) = fv(t) ∪ fv(u)
fv(λx.t) = fv(t)− {x}

x[u/x] = u

y[u/x] = y (x 6= y)

(t1 t2)[u/x] = t1[u/x] t2[u/x]

(λy.t)[u/x] = λy.(t[u/x]) (y 6= x, y 6∈ fv(u))

t −→β t
′

t u −→β t
′ u

u −→β u
′

t u −→β t u
′

t −→β u

λx.t −→β λx.u (λx.t) u −→β t[u/x]

Fig. 5 The object-language L: Untyped λ-calculus with β-reduction

2.3 The object language, and its representation

We take the untyped λ-calculus with β-reduction as our object language. We consider

terms t, u generated by the grammar:

t ::= x | t u | λx.t

We assume familiarity with the (standard) definitions of the free variables function

fv(−), the substitution operation t[u/x], and the β-reduction relation shown in Fig-

ure 5. We write L for the set of closed untyped λ-terms.

In Figure 6, we show the representation of the object language in λHO, defined using

a signature ΣL defining constants for λ-abstraction and application, and a theory ΦL
axiomatizing β-reduction on meta-language terms. This representation is essentially

the standard higher-order representation of this object language afforded by LF or

λProlog; it differs from typical presentations in these systems only in syntactic details.

For example, we write the rule for β-reduction under a λ-abstraction as:

ΠM,N : exp → exp.(Πx : exp.M x 99Kβ N x) ⊃ lam M 99Kβ lam N

and the same rule would be written in Twelf or λProlog concrete syntax as:

% Twelf

red_lam : red (lam M) (lam N) <- {x} red (M x) (N x).

% lambdaProlog

red (lam M) (lam N) :- pi x. red (M x) (N x).

9

Type constants: exp
Term constants: lam, app, 99Kβ

ΣL = {lam : (exp → exp) → exp, app : exp → exp → exp, 99Kβ : exp → exp → o}

ΦL =

8>>><>>>:
(red app1) = ΠM,N,P : exp.M 99Kβ P ⊃ app M N 99Kβ app P N,

(red app2) = ΠM,N,P : exp.N 99Kβ P ⊃ app M N 99Kβ app M P,

(red lam) = ΠM,N : exp → exp.(Πx : exp.M x 99Kβ N x) ⊃ lam M 99Kβ lam N,

(red beta) = ΠM : exp → exp.ΠN : exp.app (lam M) N 99Kβ M N

9>>>=>>>;
Fig. 6 Signature and theory representing the object language

2.4 Formalization in Nominal Isabelle

In this article, we prefer to focus on the high-level structure of the proof, which we

believe could in principle be redone in any sufficiently rich mechanized logic, and leave

out most of the details of formalization that are specific to Nominal Isabelle. The

translation from the informal mathematical notation used in the article and the for-

malization is straightforward, using the same principles illustrated in Urban [21] and

Urban et al. [23]. In particular, we make free use of “nominal primitive recursion”

and “strong induction principles” (described comprehensively in [20–22]) for nominal

datatypes and inductive definitions without further comment, except to emphasize

when such principles are especially useful (for example in avoiding variable capture).

The reader interested in understanding the nuts and bolts of formalizing adequacy in

Nominal Isabelle is invited to consult the formalization and related articles.

3 Adequacy and interpretations

Adequacy formalizes an intuition that the object language and reduction relation are

correctly represented by the higher-order signature and theory. What does this mean

exactly? Much work on adequacy for LF asserts that adequacy means showing that

the object language is isomorphic to its representation. However, this guideline does

not explain why the isomorphism is needed or identify which mathematical structure

the isomorphism should preserve. If, as we argued earlier, the purpose of adequacy is

to legitimize reasoning about the object language that is actually performed on the

meta-level representation, then adequacy should ensure that properties of the object-

language correspond to properties of the meta-language.

For concreteness, we use the language of first-order logic and model theory [13]

to talk about the object language, meta-language and their properties; other logics

could also be considered. We recapitulate some standard elements of first-order model

theory [13]. A first-order structure A over a relational signature Ω = {R1 : k1, . . . , Rn :

kn} consists of a carrier set A together with an k-ary relation RA ⊆ Ak for each k-

ary relation symbol R : k ∈ Ω. In what follows, we often abuse notation by writing

A for both a structure and its carrier set. Two first-order structures over a common

signature are elementarily equivalent if they satisfy the same first-order sentences.

An isomorphism of first-order structures A, B over the same signature Ω is a bijection

h : A → B such that for RA(a1, . . . , an) ⇐⇒ RB(h(a1), . . . , h(an)) for each R : n ∈ Ω
and a1, . . . , an ∈ A.

10

It is a standard result that isomorphic structures are elementarily equivalent [13];

hence, their properties transfer in both directions via the identity translation. However,

elementarily equivalence does not imply isomorphism; for example, Q and R satisfy the

same sentences over <. We argue that the essence of adequacy is the ability to translate

properties of the object language to equivalent properties of the meta-language. Thus,

existence of an isomorphism is a sufficient, but not necessary criterion for adequacy.

Moreover, it is often inconvenient to work with isomorphisms of structures over a com-

mon signature, because doing so requires constructing a subset type and quotienting

with respect to definitional equivalence. Working with equivalence classes and quotient

constructions is often painful in a mechanical formalization (including in Nominal Is-

abelle). Hence, we prefer to work with a more general notion called interpretation (see

for example Hodges [13]). Intuitively, an interpretation is a relationship that shows that

a structure of interest is isomorphic to a (definable) part of another structure, possi-

bly modulo some (definable) equivalence relation. This implies, in particular, that any

logically definable property of the object structure can be translated to an equivalent

definable property of the representing structure.

We introduce a slightly different definition of interpretation than the standard one

in model theory [13]. Since we are working in Isabelle/HOL, we will define interpre-

tations in terms of HOL formulas and functions. We say that a HOL formula over

structure A with signature Ω is one whose (free and bound) variables range over ele-

ments of A and whose atomic formulas are among those in Ω.

Definition 1 (Interpretation) Let A and B be first-order structures over relational

signatures Ω and Ω′ respectively. We say that A is interpretable in B if there exists:

1. A subset pAq : B → bool of B.

2. A binary relation ≡A: B × B → bool that is an equivalence relation on pAq.

3. For every n-ary relation symbol R : n ∈ Ω, a definable n-ary predicate pRq : Bn →
bool over Ω′.

4. A function p−q : A → pAq such that

(a) (Injectivity) For any a, a′ ∈ A, if paq ≡A pa′q then a = a′.
(b) (Surjectivity) If b ∈ pAq then there exists a ∈ A such that paq ≡A b.

(c) (Preservation and Reflection) If R ∈ Ω then (a1, . . . , an) ∈ R holds if and only

if (pa1q, . . . , panq) ∈ pRq

If structure A over signature Ω is interpretable in structure B over signature Ω′

via p−q, we define the interpretation pPq of an Ω-formula P in B as:

p>q = > p⊥q = ⊥
pP ∧Qq = pPq ∧ pQq pP ∨Qq = pPq ∨ pQq

pP ⇒ Qq = pPq ⇒ pQq R(x1, . . . , xn) = pRq(x1, . . . , xn)

p∀x:A.Pq = ∀x:pAq. pPq (= ∀x:B.x ∈ pAq ⇒ pPq)

p∃x:A.Pq = ∃x:pAq. pPq (= ∃x:B.x ∈ pAq ∧ pPq)

Note in particular that this definition covers all cases since constants or function sym-

bols of type A cannot be mentioned in P , and that pPq is a Ω′-formula. The key

metatheorem about interpretability is that the preservation and reflection properties

can be lifted to arbitrary (higher-order) formulas over Ω.

Theorem 1 (Interpretability* (Thm. 4.3.1 of [13])) Suppose A is interpretable

in B. Let P be a formula over Ω whose variables are all of type A. Then

P (a1, . . . , an) ⇐⇒ pPq(pa1q, . . . , panq)

11

We mark this theorem with an asterisk because we have not formalized it within

Isabelle/HOL (unlike the other results in the article). Indeed, the Interpretability The-

orem is a metatheoretic property about Isabelle/HOL formulas that cannot easily be

stated and proved within Isabelle/HOL. However, the real point of this meta-theorem

is that the ingredients of the definition of interpretation provide what is needed to

prove any particular formula P equivalent to pPq; in principle, this proof could be

performed automatically for a given Isabelle/HOL formula P .

We will prove in Section 5 that:

Theorem 2 (Adequacy) The structure L over signature {−→β : 2}, defined in Fig-

ure 6, consisting of the set of closed untyped λ-terms with β-reduction, is interpretable

as the set of closed λHO terms of type exp modulo definitional equivalence, with β-

reduction defined via the λHO
⇒ theory ΦL.

Note that this statement is different from the usual statement of adequacy theorems

in LF (see for example [10–12,18]): we restrict attention to closed terms and we do

not mention syntactic properties such as compositionality or substitution-preservation

explicitly. We have done so in order to provide a notion of adequacy that is clean,

high-level, and independent of syntactic details (e.g. variables). The adequacy theorem

above therefore only tells us that first-order properties of closed object language terms

can be translated to equivalent properties of closed meta-language terms.

In fact, our results require showing analogous results for open terms, amounting to

proving the existence of an indexed interpretation, analogous to the indexed isomor-

phisms used by Gardner [9]. It should be possible to extend Theorem 1 to a richer logic

and thereby broaden the class of properties that can be transferred between object and

meta-language. However, we prefer to focus on the familiar first-order setting.

We first present the components of the interpretation and sketch the proofs of parts

(1–3) of the definition of interpretation at a high level. These have also been formalized,

but we prefer not to burden the exposition with the relatively mundane details.

The interpretation of closed object language terms is the set of well-formed terms

of type exp in the empty context (with respect to ΣL):

pLq , {M | • `M : exp}

Likewise, the equivalence relation is definitional equivalence in the empty context (again

with respect to ΣL):

(≡L) , {(M,N) | • `M = N : exp}

This is easily seen to be an equivalence relation on pLq, by properties already estab-

lished. Similarly, we will interpret the β-reduction relation −→β on closed terms as

follows:

(−→L
β) , {(M,N) | •;ΦL =⇒ M 99Kβ N}

The encoding function on elements of L is defined by primitive recursion over the

nominal datatype of object λ-terms:

pxq = x pt uq = app ptq puq pλx.tq = lam (Λx.ptq)

This function is defined for all object-language terms, open or closed. See Lemma 6 for

the proof that the encoding function maps closed object terms to well-formed closed

λHO terms.

In order to prove the injectivity, surjectivity, preservation and reflection properties,

we will need to establish that λHO terms have unique canonical forms. We therefore

turn to this next before finishing the proof of adequacy in Section 5.

12

x : τ ∈ Γ
Γ ` x ↓ τ

c : τ ∈ Σ
Γ ` c ↓ τ

Γ `M ↓ τ1 → τ2 Γ ` N ⇑ τ1
Γ `M N ↓ τ2

Γ `M ↓ τ
Γ `M ⇑ τ

Γ, x : τ1 `M ⇑ τ2
Γ ` λx.M ⇑ τ1 → τ2

Fig. 7 Canonical and atomic forms

4 Canonical forms

We define canonical forms informally to be higher-order terms that are β-normalized

and fully η-expanded — i.e., no η-expansions can be performed without introducing a

β-redex. Canonical and atomic forms obey the following grammar rules:

Mc ::= Ma | Λx.Mc Ma ::= x | c |Ma Mc

We give rules for identifying canonical and atomic forms in Figure 7. The judgment

Γ ` M ⇑ τ says that M is a canonical form of type τ in context Γ , and likewise

Γ `M ↓ τ says that M is an atomic form of type τ with respect to Γ . Obviously, these

rules are a subsystem of those in Figure 1. A canonical form of base type is an atomic

form of that type, whereas a canonical form of function type must be a Λ-abstraction

whose body is a canonical form of the result type. For example, the canonical forms of

type exp are of the form

ML, NL ::= x | app ML NL | lam (Λx.ML)

This seems obvious, but it requires some work to prove this formally (we will return

to this point in Section 5).

In the rest of this section, we show that each well-formed λHO term is definitionally

equivalent to a canonical form; moreover, if two λHO terms are definitionally equivalent

then they have the same canonical form.

4.1 Weak head reduction

We will employ a (standard) weak head reduction relation M
whr−−−→ N and weak head

normal forms predicate whnf(M), shown in Figure 8 and Figure 9 respectively. Here

we state and prove some properties of weak head reduction and weak head normal

forms that will be needed frequently, including subject reduction.

Proposition 4 (Properties of weak head reduction)

1. (Identity) (Λx.M) x
whr−−−→M

2. (Determinacy) If M
whr−−−→M ′ and M

whr−−−→M ′′ then M ′ = M ′′.

3. (Substitution) If M
whr−−−→M ′ then M{N/x} whr−−−→M ′{N/x}.

4. For any M , we have whnf(M) if and only if 6 ∃M ′.M
whr−−−→M ′.

Theorem 3 (Subject reduction) Assume M
whr−−−→ N and Γ ` M : τ . Then Γ `

M = N : τ and Γ ` N : τ .

Proof Structural induction on the derivation of M
whr−−−→ N , and case analysis on the

well-formedness derivation. ut

13

(Λx.M) N
whr−−−→M{N/x}

(whrβ)
M

whr−−−→M ′

M N
whr−−−→M ′ N

(whrapp)

Fig. 8 Weak head reduction

neut(x) neut(c)

neut(M)

neut(M N)

neut(M)

whnf(M) whnf(Λx.M)

Fig. 9 Weak head normal forms

x : τ ∈ Γ
Γ ` x ↓ x : τ

(↓var)
c : τ ∈ Σ

Γ ` c ↓ c : τ
(↓cst)

Γ `M1 ↓ N1 : τ1 → τ2 Γ `M2 ⇑ N2 : τ1

Γ `M1 M2 ↓ N1 N2 : τ2
(↓app)

Γ `M ↓ N : a

Γ `M ⇑ N : a
(⇑↓)

Γ, x : τ1 `M x ⇑ N : τ2

Γ `M ⇑ Λx.N : τ1 → τ2
(⇑fun)

M
whr−−−→M ′ Γ `M ′ ⇑ N : a

Γ `M ⇑ N : a
(⇑whr)

Fig. 10 Canonicalization

4.2 Canonicalization

The judgments for canonicalization are shown in Figure 10. These rules, broadly, canon-

icalize a (not necessarily well-formed) λHO term in a type-directed way by η-expansion

at function type, followed by weak head normalization at base type. Once the term is

in weak head normal form, we can use the auxiliary judgment Γ `M ↓ N : τ to match

the top portion of the weak head normalized term to its atomic form, and recursively

canonicalize the arguments.

We first establish some simple syntactic properties of canonicalization. Weakening

is standard and straightforward:

Lemma 1 (Weakening of canonicalization) Assume that Γ ⊆ Γ ′. Then:

1. If Γ `M ↓ N : τ then Γ ′ `M ↓ N : τ .

2. If Γ `M ⇑ N : τ then Γ ′ `M ⇑ N : τ .

Canonicalization is sound in the sense that it produces a canonical form of the

appropriate type, and if we canonicalize a well-formed λHO term then its canonical

form is definitionally equivalent:

Theorem 4 (Soundness)

1. If Γ `M ↓ N : τ then Γ ` N ↓ τ .
2. If Γ `M ⇑ N : τ then Γ ` N ⇑ τ .

In either case, if in addition Γ `M : τ then Γ `M = N : τ .

Proof The first two parts are trivial by induction on derivations. For the last part,

proof is by induction on the canonicalization derivation, using inversion on the typing

derivation of M . In the case for rule (⇑fun) we need weakening and η-expansion. In the

case for rule (⇑whr) we need the weak head subject reduction theorem. ut

The following lemmas provide the needed foundation to show that canonicalization

is deterministic (Theorem 5).

14

Lemma 2 If Γ `M ↓ N : τ then neut(M). Moreover, if Γ `M ⇑ N : a and whnf(M)

then Γ `M ↓ N : a.

Proof Both parts follow by straightforward simultaneous induction. For the second

part, note that the only rule that can apply is (⇑↓). The rule (⇑fun) cannot apply

because the type is a base type a and (⇑whr) cannot apply because M is weak head

normalized. ut

Lemma 3 If Γ `M ⇑ N : τ and M
whr−−−→M ′ then Γ `M ′ ⇑ N : τ .

Proof By induction on the structure of derivations, using Lemma 2 and determinacy

of weak head reduction. ut

Lemma 4 If Γ ` M ⇑ N : τ → τ ′ and x /∈ FV (Γ,M,N) then there exists K with

N = Λx.K and Γ, x:τ `M x ⇑ K : τ ′.

Proof Straightforward, by inversion and standard permutative renaming reasoning. ut

Theorem 5 (Determinacy of canonicalization)

1. If Γ `M ↓ N : τ and Γ `M ↓ N ′ : τ ′ then N = N ′ and τ = τ ′.
2. If Γ `M ⇑ N : τ and Γ `M ⇑ N ′ : τ ′ then N = N ′.

Proof By induction on derivations. Most cases are straightforward using inversion and

the induction hypothesis. We need Lemma 2 in the case for (⇑↓), Lemma 4 in the case

for (⇑fun) and Lemma 3 in the case for (⇑whr). ut

Moreover, canonicalization is idempotent in that a canonical form canonicalizes

(only) to itself.

Lemma 5 (Idempotence)

1. If Γ ` N ↓ τ then Γ ` N ↓ N : τ .

2. If Γ ` N ⇑ τ then Γ ` N ⇑ N : τ .

Proof Straightforward by induction on the given derivations. ut

The key property we need to reason about adequacy is that definitionally equivalent

terms have unique canonical forms. We have already established that canonicalization

is sound with respect to definitional equivalence and canonical forms are unique when

they exist.

Theorem 6 (Completeness) If Γ `M = N : τ then for some K, we have Γ `M ⇑
K : τ and Γ ` N ⇑ K : τ . Moreover, K is the unique canonical form definitionally

equivalent to M and N .

In an appendix, we prove Theorem 6 by a Kripke logical relations argument similar

to that used by Crary [5] and (for LF) by Harper and Pfenning [12] to prove the

completeness of type-directed algorithms for definitional equivalence. Both proofs have

been formalized previously using Nominal Isabelle [16,23], and our proof follows a

similar strategy, but there are some significant differences: in particular, we prove the

existence of a common canonical form for M and N directly, rather than by extracting

it from an algorithmic equivalence derivation as is done in Harper and Pfenning [12].

However, the proof details are not needed in order to appreciate the applications of

Theorem 6 to the adequacy proof.

15

5 The proof of adequacy

Before we begin proving the remaining properties needed to show that the encoding

p−q is an interpretation, we need to introduce some additional concepts.

Although we have stated the adequacy theorem in terms of closed terms, in general

we also need to relate open terms (with, say, free variables x1, . . . , xn) to λHO con-

texts (with, say, free variables x1:exp, . . . , xn:exp). To make this precise, we introduce

untyped contexts X, which are lists of distinct variables, and define a translation on

contexts as follows:

p•q = • pX,xq = pXq, x:exp

We also introduce a simple validity relation X ` t, meaning that X is a list of

distinct variables that includes all of the free variables of t.

x ∈ X
X ` x

X ` t X ` u
X ` t u

X, x ` t x 6∈ X
X ` λx.t

It is easy to show that X ` t ⇐⇒ fv(t) ⊆ X, and that • ` t holds if and only if t is

closed. In addition, we will need the following key property:

Lemma 6 For any X, we have X ` t if and only if pXq ` ptq : exp.

Proof Proof in the forward direction is by induction on the derivation of X ` t. In the

reverse direction, the proof proceeds by induction on the structure of t and inversion

on the typing derivation. ut

Note in particular that the forward direction of Lemma 6 shows that p−q maps

closed object terms to elements of pLq, as required by the definition of interpretation.

5.1 The encoding is a compositional bijection

Injectivity To prove injectivity, we introduce an inductive, relational definition of the

graph of the encoding as follows:

x ∼ x
t ∼M u ∼ N
t u ∼ app M N

t ∼M
λx.t ∼ lam (Λx.M)

Lemma 7 For any t and M , we have ptq = M if and only if t ∼M .

Proof The forward direction is by induction on t. The second part is by induction on

the derivation of t ∼M . ut

Lemma 8 (Injectivity on graph) If t ∼M and u ∼M then t = u.

Proof By induction on the derivation of t ∼ M , and inversion on the derivation of

u ∼M . ut

Corollary 1 (Injectivity) The function p−q is injective.

Now, we can prove that the encoding satisfies part 4(a) of the definition of inter-

pretation:

16

Theorem 7 (Injectivity on definitional equivalence classes) If pXq ` ptq =

puq : exp then t = u. In particular, if t, u are closed and • ` ptq = puq : exp then t = u.

Proof By completeness, we know both ptq and puq have a common canonical form K.

Moreover since ptq and puq are both themselves canonical, by determinacy (Theorem 5)

and idempotence (Lemma 5) we have ptq = K = puq. By injectivity of p−q, we

conclude t = u. ut

Surjectivity We break the proof of surjectivity down into several stages. We define a

predicate range as follows:

range(x)

range(M) range(N)

range(app M N)

range(M)

range(lam (Λx.M))

We first prove range(−) characterizes the range of p−q. We will then show that the

range predicate also defines the set of canonical forms. Finally, we combine this with

the canonical forms theorem to show that every well-formed expression of appropriate

type is definitionally equivalent to the encoding of an object term.

Lemma 9 For any M , we have range(M) if and only if there exists t such that ptq =

M .

Next we need to show that the range predicate correctly identifies the canonical

forms. To do this, we need to proceed by height induction on λHO terms and apply

inversion principles to show that canonical forms must be of the same shape as the

elements of range(−).

Lemma 10 (Atomic forms have at most two arguments) For any X,M, τ , if

pXq `M ↓ τ (with respect to ΣL) then τ is not of the form τ1 → (τ2 → (τ3 → τ4)).

Proof By height induction on M and inversion on derivations. In the base cases for

constants and variables, the proof is by case analysis of the possible types. The inductive

case involving application follows because in the application rule for atomic forms, the

type in the hypothesis has one more argument than in the conclusion. ut

Lemma 11 If pXq `M ⇑ exp then either:

1. M is a variable x ∈ X; or

2. There exist M1,M2 such that M = app M1 M2 and pXq ` M1 ↓ exp and pXq `
M2 ↓ exp; or

3. There exist x,M ′ with x /∈ X and M = lam(Λx.M ′) and pX,xq `M ′ ↓ exp.

Proof Case analysis, using the previous lemma to cut off inversion. ut

Lemma 10 is admittedly ugly, but there is no obvious way to avoid it: for any finite

signature there will always be a finite bound on the number of arguments, but to prove

a specific case analysis lemma such as Lemma 11 we need to know a constant upper

bound to cut off the inversion.

Theorem 8 For any X,M , we have range(M) and pXq ` M : exp if and only if

pXq `M ⇑ exp.

17

Proof The forward direction is immediate by induction on derivations of range(M).

For the reverse direction, we can use height induction on M , using the previous lemma

to split into cases. ut

Corollary 2 If pXq `M ⇑ exp then there exists t such that X ` t and ptq = M .

Now we can show that the encoding satisfies the desired part 4(b) of the definition

of interpretation.

Theorem 9 (Surjectivity) If pXq `M : exp then there exists t such that X ` t and

pXq ` ptq = M : exp. In particular if • ` M : exp then there exists a closed t with

• ` ptq = M : exp.

Bijectivity and Compositionality In treatments of adequacy for LF, it is often expected

that the encoding function be a bijection mapping object terms to canonical forms,

and in addition should be “compositional”, which is generally taken to mean that it

should satisfy the equation

pt[u/x]q = ptq{puq/x}

The bijectivity property follows immediately from Lemma 6, injectivity and sur-

jectivity:

Corollary 3 For any X, the function p−q is a bijection

p−q : {t | X ` t} → {M | pXq `M ⇑ exp}

between the set of object language terms (over variables X) and the set of definitional

equivalence classes of meta-language terms (represented by canonical forms) of type exp

(over context pXq).

In our formalization, the compositionality or substitution-preservation property is

also straightforward by induction on the structure of terms. This is straightforward

because variables in expressions in the range of the bijection are always of type exp,

hence these substitutions never introduce any β-reductions.

Theorem 10 (Compositionality) Let t, u be object terms and x be a variable. Then

pt[u/x]q = ptq{puq/x}

Proof Induction on t, avoiding variable capture in x and u. ut

Compositionality does not correspond to any one part of the definition of inter-

pretation that we are using, since we are only proving that relations on closed object

terms are interpreted as other relations on closed λHO terms. However, we still need

to establish compositionality in order to prove that the encoding preserves and reflects

β-reduction.

5.2 The encoding preserves and reflects reduction

Ultimately, we want to show that for closed terms t, u, we have t −→β u if and only if

•;ΦL =⇒ ptq 99Kβ puq is derivable. To show this we will need to prove more general

versions of these statements involving open terms. We refer to the forward, easier

direction as preservation, and the reverse direction as reflection.

18

(a
)

Γ
`
M

:
ex

p

Γ
`
N

:
ex

p

Γ
`
P

:
ex

p

Γ
;Φ
L

=
⇒

M
99

K β
P

Γ
;Φ
L
|a

p
p
M

N
99

K β
a
p
p
P
N
−→

a
p
p
M

N
99

K β
a
p
p
P
N

Γ
;Φ
L
|M

99
K β

P
⊃

a
p
p
M

N
99

K β
a
p
p
P
N
−→

a
p
p
M

N
99

K β
a
p
p
P
N

Γ
;Φ
L
|Π

P
:
ex

p
.M

99
K β

P
⊃

a
p
p
M

N
99

K β
a
p
p
P
N
−→

a
p
p
M

N
99

K β
a
p
p
P
N

Γ
;Φ
L
|Π

N
,P

:
ex

p
.M

99
K β

P
⊃

a
p
p
M

N
99

K β
a
p
p
P
N
−→

a
p
p
M

N
99

K β
a
p
p
P
N

Γ
;Φ
L
|Π

M
,N
,P

:
ex

p
.M

99
K β

P
⊃

a
p
p
M

N
99

K β
a
p
p
P
N
−→

a
p
p
M

N
99

K β
a
p
p
P
N

Γ
;Φ
L

=
⇒

a
p
p
M

N
99

K β
a
p
p
P
N

(b
)

Γ
,x
′ :
ex

p
;Φ
L

=
⇒

(Λ
x
.M

)
x
′
99

K β
(Λ
x
.M

′)
x
′

Γ
;Φ
L

=
⇒

Π
x
′
:
ex

p
.(
Λ
x
.M

)
x
′
99

K β
(Λ
x
.M

′)
x
′

Γ
;Φ
L
|l

a
m

(Λ
x
.M

)
99

K β
la

m
(Λ
x
.M

′)
−→

la
m

(Λ
x
.M

)
99

K β
la

m
(Λ
x
.M

′)

Γ
;Φ
L
|(
Π
x
′
:
ex

p
.(
Λ
x
.M

)
x
′
99

K β
(Λ
x
.M

′)
x
′)
⊃

la
m

(Λ
x
.M

)
99

K β
la

m
(Λ
x
.M

′)
−→

la
m

(Λ
x
.M

)
99

K β
la

m
(Λ
x
.M

′)

Γ
;Φ
L
|Π

N
:
ex

p
→

ex
p
.(
Π
x
′
:
ex

p
.(
Λ
x
.M

)
x
′
99

K β
N
x
′)
⊃

la
m

(Λ
x
.M

)
99

K β
la

m
N
−→

la
m

(Λ
x
.M

)
99

K β
la

m
(Λ
x
.M

′)

Γ
;Φ
L
|Π

M
,N

:
ex

p
→

ex
p
.(
Π
x
′
:
ex

p
.M

x
′
99

K β
N
x
′)
⊃

la
m
M

99
K β

la
m
N
−→

la
m

(Λ
x
.M

)
99

K β
la

m
(Λ
x
.M

′)

Γ
;Φ
L

=
⇒

la
m

(Λ
x
.M

)
99

K β
la

m
(Λ
x
.M

′)

(c
)

Γ
`

a
p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

(Λ
x
.M

)
N

=
a
p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

M
{N

/
x
}

:
o

Γ
;Φ
L
|a

p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

(Λ
x
.M

)
N
−→

a
p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

M
{N

/
x
}

Γ
;Φ
L
|Π

N
:
ex

p
.a

p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

(Λ
x
.M

)
N
−→

a
p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

M
{N

/
x
}

Γ
;Φ
L
|Π

M
:
ex

p
→

ex
p
.Π
N

:
ex

p
.a

p
p

(l
a
m
M

)
N

99
K β

M
N
−→

a
p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

M
{N

/
x
}

Γ
;Φ
L

=
⇒

a
p
p

(l
a
m

(Λ
x
.M

))
N

99
K β

M
{N

/
x
}

Fig. 11 Derivations for Lemma 12.

19

Preservation We first establish that the rules of object language β-equivalence are

correctly simulated by derivability in ΦL:

Lemma 12 (Rule preservation)

1. If Γ ;ΦL =⇒ M 99Kβ P and Γ ` M,N,P : exp then Γ ;ΦL =⇒ app M N 99Kβ

app P N .

2. If Γ ;ΦL =⇒ N 99Kβ P and Γ ` M,N,P : exp then Γ ;ΦL =⇒ app M N 99Kβ

app M P .

3. If Γ, x:exp;ΦL =⇒ M 99Kβ M ′ and Γ, x:exp ` M,M ′ : exp and x /∈ FV (Γ) then

Γ ;ΦL =⇒ lam (Λx.M) 99Kβ lam (Λx.M ′).
4. If Γ, x:exp ` M : exp and Γ ` N : exp and x /∈ FV (Γ,N) then Γ ;ΦL =⇒

app (lam (Λx.M)) N 99Kβ M{N/x}.

Proof In each case, we proceed by looking up the appropriate rule in ΦL, renaming the

quantified variables to fresh names, and instantiating.

– The cases for application-congruences are straightforward (albeit tedious). One case

is shown in Figure 11(a); the other is symmetric.

– In the rule for λ-congruence we need to show that the meta-logic’s use of the

Π-quantifier is correct. This requires β-conversion and so is more involved. First,

let x′ be a fresh variable name. By substitution we can derive Γ, x′:exp;ΦL =⇒
M{x′/x} 99Kβ M ′{x′/x}. Thus, by β-converting both sides, using Proposition 3,

we have Γ, x′:exp;ΦL =⇒ (Λx.M) x′ 99Kβ (Λx.M ′) x′. We can then reason as

shown in Figure 11(b).

– In the case for β-reduction we need to verify that the substitution in the β-

reduction step is simulated by β-reduction in the meta-language. The derivation

is shown in Figure 11(c). Deriving Γ ` app (lam (Λx.M)) N 99Kβ (Λx.M) N =

app (lam (Λx.M)) N 99Kβ M{N/x} : o requires a number of further inference

steps. ut

Theorem 11 (Encoding preserves reduction) Assume X ` t, u. Then if t −→β u

then pXq;ΦL =⇒ ptq 99Kβ puq.

Proof By induction on the derivation of t −→β u. In each case we employ the corre-

sponding derivable rule from the previous lemma. In the case for β-reduction steps we

need Theorem 10. ut

So in particular we have established the preservation direction of part 4(c) of the

definition of interpretation:

Corollary 4 If t, u are closed terms and t −→β u then •;ΦL =⇒ ptq 99Kβ puq.

Reflection As might be expected, the reflection direction is harder, and its formaliza-

tion involves some subtle choices concerning how to formulate inversion principles and

when to appeal to canonical-forms principles.

Informally, the proof idea is to proceed by inspecting the possible derivations of

•;ΦL =⇒ ptq 99Kβ puq to establish that t −→β u. Given such a derivation, we wish

to proceed by applying inversion rules, examining all cases to see that any derivation

in λHO
⇒ must end with a pattern of reasoning similar to those exhibited in the proof

of Lemma 12, then appealing to the induction hypothesis. However, while this infor-

mal strategy appears straightforward or even trivial, mechanically formalizing it is a

significant engineering challenge. There are several reasons for this.

20

φ ∈ Φ Γ ;Φ | φ −→n A

Γ ;Φ =⇒n+1 A
(sel)n Γ ` A = A′ : o

Γ ;Φ | A′ −→n A
(hyp)n

Γ ;Φ, φ =⇒ ψ

Γ ;Φ =⇒n φ ⊃ ψ
(⊃R)n

Γ ;Φ =⇒n φ Γ ;Φ | ψ −→n A

Γ ;Φ | φ ⊃ ψ −→n A
(⊃L)n

Γ, x:τ ;Φ =⇒ φ

Γ ;Φ =⇒n Πx:τ.φ
(ΠR)n

Γ `M : τ Γ ;Φ | φ{M/x} −→n A

Γ ;Φ | Πx:τ.φ −→n A
(ΠL)n

Fig. 12 Height-bounded λHO
⇒ derivations

First, we cannot proceed directly by induction on the structure of derivations of

•;ΦL =⇒ ptq 99Kβ puq, because each single rule in the object language corresponds to

many rule applications in the meta-logic. Instead, we need to reason by height-induction

on the λHO
⇒ derivations.

Second, it is also challenging, purely as a practical matter, to prove inversion prin-

ciples for each formula in ΦL. The proofs of these inversion principles involve reasoning

about relatively large terms, compared with the rest of the development. For example,

the abstract syntax tree for the smallest rule (red beta) contains 19 nodes. Nominal

Isabelle’s ability to deal with substitution as a total function is crucial for these proofs.

If we were dealing with substitution relationally or as a partial function, we might need

to reason explicitly about how to push the substitution through each of the 19 nodes.

A related issue is that the rules in ΦL are defined by fixing specific name values for

the bound variables. We have informally glossed over the choice of these names in this

article, but in a formalization, to invert the uses of these rules we need to generate fresh

variables and rename the formulas. This again forced us to rely heavily on Nominal

Isabelle’s support for swapping and Isabelle’s simplifier.

Finally, although we eventually want to prove that •;ΦL =⇒ ptq 99Kβ puq implies

t −→β u, this is too strong to use as our induction hypothesis. Of course, we need to

generalize from the empty context to a context pXq. We also need to generalize the

conclusion ptq 99Kβ puq to M 99Kβ N where M,N are λHO terms that are defini-

tionally equivalent to ptq and puq respectively. This is in principle no problem, but in

practice can lead to extremely large and unwieldy induction hypotheses if we are not

careful.

To summarize, we follow this strategy to prove reflection:

1. Introduce an equivalent variant of λHO
⇒ instrumented with height annotations.

2. Prove inversion principles for focused derivations involving each rule of ΦL.

3. Introduce a convenient definition X ` t � M with useful properties, particularly

that pXq;ΦL =⇒ M 99Kβ N implies that for some t, u we have X ` t � M and

X ` u � N where t −→β u.

4. Conclude that for closed t, u, if •;ΦL =⇒ ptq 99Kβ puq then t −→β u.

Height-bounded rules for λHO
⇒ To formalize the informal proof idea sketched above, we

introduce an instrumented version of the λHO
⇒ proof rules. We define the two instru-

mented judgments Γ ;Φ =⇒n φ and Γ ;Φ | φ −→n A in Figure 12. Note that n is only

incremented in the rule (sel)n, so n essentially tracks the number of uses of that rule.

We will need the following basic properties:

Proposition 5 (Properties of height-bounded derivations)

1. If n ≤ m then Γ ;Φ =⇒n φ implies Γ ;Φ =⇒m φ.

21

2. If n ≤ m then Γ ;Φ | φ −→n A implies Γ ;Φ | φ −→m A.

3. Γ ;Φ =⇒n φ holds for some n iff Γ ;Φ =⇒ φ.

4. Γ ;Φ | φ −→n A holds for some n iff Γ ;Φ | φ −→ A.

Proof The first two parts are by an easy simultaneous structural induction on deriva-

tions. Parts (3) and (4) are easy in the forward direction; in the reverse direction we

need the monotonicity properties (parts (1,2)) for the case (⊃L). ut

Inversion principles for the reduction rules We will now show that for each of the

formulas φ ∈ {(red app1), (red app2), (red lam), (red beta)} = ΦL, if we know Γ ;ΦL |
φ −→n M 99Kβ N , then the derivation can be inverted in an appropriate way. To show

this, we will frequently need to use the fact that the 99Kβ relation symbol is injective

with respect to definitional equivalence. This follows easily from properties already

established, but it is needed frequently so we state it as a separate lemma:

Lemma 13 (Injectivity of reduction) If Γ ` (M 99Kβ N) = (M ′ 99Kβ N ′) : o

then Γ `M = M ′ : exp and Γ ` N = N ′ : exp.

Proof We know that both Γ ` M 99Kβ N : o and Γ ` M ′ 99Kβ N ′ : o must hold. By

the canonical-forms theorem, we know both terms canonicalize to a common canonical

form. By inversion and inspection of the derivations leading to the canonical forms, we

can see that the canonical form must be of the form K 99Kβ K
′, and moreover we must

have subderivations of Γ ` M ⇑ K : exp and Γ ` M ′ ⇑ K : exp. So by soundness of

canonicalization (Theorem 4) and transitivity and symmetry of definitional equivalence

we can conclude Γ ` M = M ′ : exp. A similar argument shows Γ ` N = N ′ : exp, as

desired. ut

Lemma 14 (Rule reflection)

1. If Γ ;ΦL | (red app1) −→n M 99Kβ N then there exist M ′, N ′, P such that

(a) Γ `M = app M ′ N ′ : exp and Γ ` N = app P N ′ : exp;

(b) Γ `M ′ : exp and Γ ` N ′ : exp and Γ ` P : exp; and

(c) Γ ;ΦL =⇒n M
′ 99Kβ P .

2. If Γ ;ΦL | (red app2) −→n M 99Kβ N then there exist M ′, N ′, P such that

(a) Γ `M = app M ′ N ′ : exp and Γ ` N = app M ′ P : exp;

(b) Γ `M ′ : exp and Γ ` N ′ : exp and Γ ` P : exp; and

(c) Γ ;ΦL =⇒n N
′ 99Kβ P .

3. If Γ ;ΦL | (red lam) −→n M 99Kβ N then there exist M ′, N ′, x such that:

(a) x 6∈ FV (Γ,M ′, N ′);
(b) Γ `M = lam M ′ : exp and Γ ` N = lam N ′ : exp;

(c) Γ `M ′ : exp → exp and Γ ` N ′ : exp → exp ; and

(d) Γ, x:exp;ΦL =⇒n M
′ x 99Kβ N

′ x.
4. If Γ ;ΦL | (red beta) −→n M 99Kβ N then there exist M ′, N ′, x such that:

(a) x 6∈ FV (Γ,N ′);
(b) Γ `M = app (lam (Λx.M ′)) N ′ : exp and Γ ` N = (Λx.M ′) N ′ : exp; and

(c) Γ, x:exp `M ′ : exp and Γ ` N ′ : exp.

Proof The proofs of these inversion principles require choosing fresh names for the

bound variables in the rules and applying case-analysis and inversion rules following

the syntax of the rules, using Lemma 13 as needed. Essentially, we show that the

derivations can only have the forms exhibited in the proof of Lemma 12. ut

22

To prove the main reflection result, we will prove the more general induction hy-

pothesis:

pXq;ΦL =⇒n M 99Kβ N implies ∃t, u. X ` t � M ∧X ` u � N ∧ t −→β u

where X ` t � M abbreviates the property that M is definitionally equivalent to the

encoding of t with respect to variables in X:

X ` t � M , pXq ` ptq = M : exp

It is straightforward to show from prior developments that this relation satisfies the

following properties, which are needed in the proof of reflection:

Proposition 6 (Properties of encoding)

1. (Variable) If x ∈ X then X ` x � x.

2. (Application) If X ` t � M and X ` u � N then X ` t u � app M N .

3. (Lambda) If X,x ` t � M and x /∈ FV (X) then X ` λx.t � lam (Λx.M).

4. (Closure under definitional equivalence) If pXq ` M = N : exp then X ` t � M

holds if and only if X ` t � N holds.

5. (Injectivity) If X ` t � M and X ` u � M then t = u.

6. (Surjectivity) If pXq `M : exp then there exists t with X ` t � M .

7. (Substitution) If X,x ` t � M and X ` u � N where x /∈ FV (X) then X `
t[u/x] � M{N/x}.

Proof Parts 1–3 are immediate by unwinding definitions. Injectivity and surjectivity

follow by Theorems 7 and 9. Most other parts follow by combining previously estab-

lished properties for the individual judgments. For part 5 we need Theorem 7. For part

6 we need Lemma 6 and Theorem 9. Part 7 requires Lemma 6 and Theorem 10. ut

We can now establish the main result using the height-instrumented derivations,

as follows:

Theorem 12 If pXq;ΦL =⇒n M 99Kβ N then there exist t, u with X ` t � M and

X ` u � N and t −→β u.

Proof We proceed by induction on n. If n = 0, the conclusion holds vacuously by case

analysis since pXq;ΦL =⇒0 M 99Kβ N can never be derived. If n = n0 + 1 where the

induction hypothesis holds for n0, then we distinguish cases. Since the conclusion of

the rule is an atomic formula, the derivation must be of the form:

φ ∈ ΦL pXq;ΦL | φ −→n0 M 99Kβ N

pXq;ΦL =⇒n0+1 M 99Kβ N

There are only four choices for φ, and for each possibility there is an applicable case of

Lemma 14.

1. (red app1): Using Lemma 14(1), we know that there must exist well-formedM ′, N ′, P
such that M is definitionally equivalent to app M ′ N ′ and N is definitionally equiv-

alent to app P N ′ and pXq;ΦL =⇒n0 M
′ 99Kβ P . So, by induction, we know that

there must exist t and t′ with X ` t � M ′ and X ` t′ � P and t −→β t′. More-

over, by Proposition 6(6), we also know that there is a u such that X ` u � N ′.
Hence, to conclude, using Proposition 6(2) we can derive:

X ` t � M ′ X ` u � N ′

X ` t u � app M ′ N ′
X ` t′ � P X ` u � N ′

X ` t′ u � app P N ′
t −→β t

′

t u −→β t
′ u

23

2. (red app2): Similar to the first case, using Lemma 14(2).

3. (red lam): Using Lemma 14(3), we know that there must exist M ′ and N ′ and

x with M definitionally equivalent to lam M ′ and N definitionally equivalent to

lam N ′ and pXq, x:exp;ΦL =⇒n0 M
′ x 99Kβ N ′ x derivable. So, by induction, we

know that there must exist t, u with X,x ` t � M ′ x and X,x ` u � N ′ x. By

transitivity and η-equivalence we know that pXq ` M = lam (Λx.M ′ x) : exp, so

we can show that X ` λx.t � M by reasoning as follows:

pXq `M = lam (Λx.M ′ x) : exp

X,x ` t � M ′ x

X ` λx.t � lam (Λx.M ′ x)

X ` λx.t � M

Similarly, since pXq ` N = lam (Λx.N ′ x) : exp also holds by transitivity and

η-equivalence, we can show that X ` λx.u � N . Finally, we can conclude that the

desired object β-reduction step can be performed:

t −→β u

λx.t −→β λx.u

4. (red beta): Using Lemma 14(4), we know that there must exist x,M ′, N ′ such that

x 6∈ FV (Γ,N ′) and

(a) Γ `M = app (lam (Λx.M ′)) N ′ : exp and Γ ` N = (Λx.M ′) N ′ : exp; and

(b) Γ, x:exp `M ′ : exp and Γ ` N ′ : exp.

By Proposition 6(6), we know that there must exist t, u with X,x ` t � M ′ and

X ` u � N ′. First, since pXq ` M = app (lam (Λx.M ′)) N ′ : exp, we can show

that X ` (λx.t) u � M , reasoning as follows:

pXq `M = app (lam (Λx.M ′)) N ′ : exp

X,x ` t � M ′

X ` (λx.t) � lam (Λx.M ′) X ` u � N ′

X ` (λx.t) u � app (lam (Λx.M ′)) N ′

X ` (λx.t) u � M

Next, observe that pXq ` N = M ′{N ′/x} : exp must hold by transitivity and

β-equivalence, so we can also show that X ` t[u/x] � N , reasoning as follows:

pXq ` N = M ′{N ′/x} : exp

X,x ` t � M ′ X ` u � N ′

X ` t[u/x] � M ′{N ′/x}
X ` t[u/x] � N

Finally, we can conclude that the above terms do reduce in the object-language:

(λx.t) u −→β t[u/x]

Since these were the only four possibilities, the proof is complete. ut

Corollary 5 (Encoding relation reflects reduction) If pXq;ΦL =⇒ M 99Kβ N

then there exist t, u with X ` t � M and X ` u � N and t −→β u.

Proof By the previous theorem and the equivalence between the height-instrumented

and ordinary λHO
⇒ rules. ut

24

Theorem 13 (Encoding reflects reduction) If pXq;ΦL =⇒ ptq 99Kβ puq where

X ` t, u then t −→β u.

Proof As shown above, we know that there exist t′, u′ with X ` t′ � ptq and X `
u′ � puq and t′ −→β u

′. Moreover, clearly X ` t � ptq and X ` u � puq. Hence, by

injectivity of the encoding relation we have t = t′ −→β u
′ = u. ut

In particular we have established the reflection direction of part 4(c) of the definition

of interpretation:

Corollary 6 If t, u are closed terms and •;ΦL =⇒ ptq 99Kβ puq then t −→β u.

6 Conclusion

We have shown that the model-theoretic notion of interpretation provides a useful

generalization of the notion of adequacy in higher-order abstract syntax, and proved the

existence of an interpretation in detail for a standard example. We have intentionally

focused on a simply-typed (and simple) metalanguage and simple object language

in order to avoid an overwhelming number of details. We believe that the resulting

formalization will be useful for further studying adequacy in a number of contexts.

An immediate next step for future work is to adapt our formalization to study

adequacy for more complex examples, such as Abel’s encoding of the λµ-calculus [1].

We are also interested in formalizing adequacy for other systems, particularly for type

theories supporting nominal abstract syntax [2,19]. Our proof may be useful for identi-

fying proof patterns for automating adequacy proofs, or avenues for further improving

reasoning about names and binding in Nominal Isabelle.

Most higher-order abstract syntax techniques have the capability to use implication

subgoals (viewing theories as higher-order logic programs). For example, a typing rule

for λ-abstraction is typically implemented using a rule such as:

ΠT1, T2:ty.ΠM :exp → exp. (Πx:exp. of x T1 → of (M x) T2) → of (lamM) (arrow T1 T2)

where ty is a new type with constructor arrow : ty → ty → ty and of : exp → ty → o. Our

proof did not exercise this capability. (Put another way, nowhere did we make use of the

(⊃R) rule.) Moreover, we have not discussed how to translate object-language prop-

erties to metatheoretic properties in Twelf, which rely on additional features such as

worlds (sets of contexts) and subordination relations (independence constraints among

types). Formalizing adequacy for richer specifications in languages such as LF or Canon-

ical LF therefore remains a significant open problem. One natural next step could be

to formalize Harper and Licata’s detailed, but not mechanically checked, development

of adequacy [11] for the simply-typed lambda-calculus in LF.

A final question is the (informal) adequacy of our encodings of the object language,

meta-language and meta-logic in Nominal Isabelle. Formally, Urban showed that a

vanilla untyped λ-calculus is isomorphic to the nominal datatype we used here; a

similar result could easily be shown for our λHO language. Beyond that, as we argued

in the introduction, it appears impossible to fully formalize adequacy; instead, all we

can formalize is the relationships between two different representations in some third

system in which we must repose trust. Our work nevertheless shows that formalization

can help increase confidence in the adequacy of representations of languages with name-

binding.

25

Acknowledgements We wish to thank Bob Harper and Frank Pfenning for discussions about
adequacy and Andrew Pitts and Christian Urban for discussions about nominal techniques
and Nominal Isabelle. Cheney is supported by a Royal Society University Research Fellow-
ship. NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

References

1. A. Abel. A third-order representation of the λµ-calculus. In S. Ambler, R. Crole, and
A. Momigliano, editors, Electronic Notes in Theoretical Computer Science, volume 58.
Elsevier Science Publishers, 2001.

2. J. Cheney. A simple nominal type theory. In Logical Frameworks and Meta-Languages:
Theory and Practice, pages 90–104, 2008.

3. J. Cheney and C. Urban. Nominal logic programming. ACM Transactions on Program-
ming Languages and Systems, 30(5):26, August 2008.

4. T. Coquand. An algorithm for testing conversion in type theory. In Logical frameworks,
pages 255–279. Cambridge University Press, New York, NY, USA, 1991.

5. K. Crary. Logical relations and a case study in equivalence checking. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages, pages 223–244. MIT Press, 2005.

6. K. Crary and R. Harper. Higher-order abstract syntax: setting the record straight.
SIGACT News, 37(3):93–96, 2006.

7. R. Crole. The representational adequacy of Hybrid. Mathematical Structures in Computer
Science, 2011. To appear.

8. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13:341–363, 2002.

9. P. Gardner. Equivalences between logics and their representing type theories. Mathemat-
ical Structures in Computer Science, 5(3):323–349, 1995.

10. R. Harper, F. Honsell, and G. D. Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, 1993.

11. R. Harper and D. R. Licata. Mechanizing metatheory in a logical framework. J. Funct.
Program., 17(4-5):613–673, 2007.

12. R. Harper and F. Pfenning. On equivalence and canonical forms in the LF type theory.
ACM Trans. Comput. Log., 6(1):61–101, 2005.

13. W. Hodges. A shorter model theory. Cambridge University Press, 1997.
14. D. Miller and G. Nadathur. A logic programming approach to manipulating formulas and

programs. In S. Haridi, editor, IEEE Symposium on Logic Programming, pages 379–388,
San Francisco, Sept. 1987.

15. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for
logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

16. J. Narboux and C. Urban. Formalising in Nominal Isabelle Crary’s completeness proof for
equivalence checking. In LFMTP, volume 196 of ENTCS, 2007.

17. M. Norrish and R. Vestergaard. Proof pearl: De Bruijn terms really do work. In K. Schnei-
der and J. Brandt, editors, TPHOLs, volume 4732 of Lecture Notes in Computer Science,
pages 207–222. Springer, 2007.

18. F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume II, chapter 17, pages 1063–1147. Elsevier Science, 2001.

19. A. Pitts. Nominal system T. In POPL, pages 159–170, 2010.
20. A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53(3):459–

506, May 2006.
21. C. Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning, 40(4):327–356,

2008.
22. C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable convention in rule induc-

tions. In CADE, volume 4603 of LNAI, pages 35–50, 2007.
23. C. Urban, J. Cheney, and S. Berghofer. Mechanizing the metatheory of LF. ACM Trans-

actions on Computational Logic, 2010. In press.
24. K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework I:

Judgments and properties. Technical Report CMU-CS-02-101, Carnegie Mellon University,
May 2003.

26

Γ `M = N ∈ JaK ≡ ∃K. Γ `M ⇑ K : a ∧ Γ ` N ⇑ K : a

Γ `M = N ∈ Jτ1 → τ2K ≡ ∀Γ ′ ⊇ Γ. ∀M ′, N ′. Γ ′ `M ′ = N ′ ∈ Jτ1K
⇒ Γ ′ `M M ′ = N N ′ ∈ Jτ2K

Γ ` • = • ∈ J•K ≡ >
Γ ` θ,M/x = σ,N/x ∈ J∆,x:τK ≡ Γ ` θ = σ ∈ J∆K ∧ Γ `M = N ∈ JτK

Fig. 13 Logical relation for existence of canonical forms

A Proof of completeness of canonicalization

The logical relation is shown in Figure 13. As with other Kripke-style logical relations, we
index by a context Γ and quantify over argument terms M ′, N ′ over an extended context Γ ′

in the case for function application. Note that we build the fact that logically related λHO

terms of base type have a common canonical form into the base case. We also extend the
logical relation to handle simultaneous substitutions. Simultaneous substitutions are of the
form θ = M1/x1, . . . ,Mn/xn and their behavior is defined in the standard way:

x{θ} = M (M/x ∈ θ)
y{θ} = y (no M/y ∈ θ)

(M N){θ} = M{θ} N{θ}
(λx.M){θ} = λx.(M{θ}) (x 6∈ FV (θ))

where FV (θ) includes all variables mentioned in θ.
The main difference between our proof technique and the other approaches mentioned

above is that we directly establish the existence of a common canonical form using the canon-
icalization judgment. In contrast, the main objective in the earlier proofs is completeness of
type-directed βη-equivalence algorithms [5,12]. Harper and Pfenning [12] showed that canoni-
cal and atomic forms can be extracted from their algorithmic equivalence derivations once these
have been shown to exist. For our purposes, this approach would represent extra formalization
effort that is not strictly necessary for the adequacy results we wish to establish.

Our proof is also technically slightly simpler. Compared to Crary’s proof, we use simpler
rules that perform weak head reduction one step at a time rather than multi-step weak head
normalization. Compared to Harper and Pfenning’s proof, we can prove transitivity of the
logical relation directly; in contrast, in our formalization of Harper and Pfenning’s proof,
proving transitivity of the logical relation requires establishing that the equivalence algorithm is
transitive, which in turn requires simultaneous induction on two derivations. Here, in contrast,
transitivity of the logical relation follows from determinacy, which we proved using structural
induction.

Lemma 15 (Logical relation weakening) If Γ ⊆ Γ ′ then:

1. If Γ `M = N ∈ JτK then Γ ′ `M = N ∈ JτK.
2. If Γ ` θ = σ ∈ J∆K then Γ ′ ` θ = σ ∈ J∆K.

Proof Straightforward by induction on τ or ∆ respectively, using weakening for canonicaliza-
tion in the base case. ut

Theorem 14 (Main theorem)

1. If Γ `M = N ∈ JτK then there exists K such that Γ `M ⇑ K : τ and Γ ` N ⇑ K : τ .
2. If Γ `M ↓ K : τ and Γ ` N ↓ K : τ hold for some K then Γ `M = N ∈ JτK.

Proof We prove both implications simultaneously (for arbitrary Γ,M,N) by induction on τ .
The base cases are trivial. If τ = τ1 → τ2, where the induction hypothesis holds for τ1 and τ2,
then we proceed as follows.

27

1. For part (1), let Γ,M,N be given such that Γ ` M = N ∈ Jτ1 → τ2K. Choose a fresh
variable name x /∈ FV (Γ,M,N). Then Γ, x:τ1 is a well-formed context extending Γ , and
we can show easily that Γ, x:τ1 ` x ↓ x : τ1. Hence, by induction we know Γ, x:τ1 ` x = x ∈
Jτ1K. By definition of the logical relation, it follows that Γ, x:τ1 ` M x = N x ∈ Jτ2K. By
induction, we can choose K satisfying Γ, x:τ1 `M x ⇑ K : τ2 and Γ, x:τ1 ` N x ⇑ K : τ2.
Hence, we can conclude that Γ ` M ⇑ Λx.K : τ1 → τ2 and Γ ` N ⇑ Λx.K : τ1 → τ2, i.e.,
Λx.K is the common canonical form of M and N .

2. For part (2), if τ = τ1 → τ2, let Γ,M,N,K be given such that Γ ` M ↓ K : τ1 → τ2
and Γ ` N ↓ K : τ1 → τ2 hold. Then by definition of the logical relation, it suffices
to show that for any Γ ′ ⊇ Γ and M ′, N ′ satisfying Γ ′ ` M ′ = N ′ ∈ Jτ1K, we have Γ ′ `
M M ′ = N N ′ ∈ Jτ2K. Let Γ ′,M ′, N ′ satisfying these criteria be given. By induction, since
Γ ′ `M ′ = N ′ ∈ Jτ1K we also know that there must exist a K′ such that Γ `M ′ ⇑ K′ : τ1
and Γ ` N ′ ⇑ K′ : τ1. Thus, we can derive:

Γ `M ↓ K : τ1 → τ2

Γ ′ `M ↓ K : τ1 → τ2 Γ ′ `M ′ ⇑ K′ : τ1

Γ ′ `M M ′ ↓ K K′ : τ2

using weakening and the (↓app) rule. Similarly, we can derive Γ ′ ` N N ′ ↓ K K′ : τ2. By

induction, we therefore can conclude that Γ ′ `M M ′ = N N ′ ∈ Jτ2K, and since Γ ′,M ′, N ′

were arbitrary we can conclude that Γ `M = N ∈ Jτ1 → τ2K also.
ut

Lemma 16 (Logical relation symmetry)

1. If Γ `M = N ∈ JτK then Γ ` N = M ∈ JτK.
2. If Γ ` θ = σ ∈ J∆K then Γ ′ ` σ = θ ∈ J∆K

Proof Straightforward inductions on τ or ∆. ut

Lemma 17 (Logical relation transitivity)

1. If Γ `M = N ∈ JτK and Γ ` N = N ′ ∈ JτK then Γ `M = N ′ ∈ JτK.
2. If Γ ` θ = σ ∈ J∆K and Γ ` σ = σ′ ∈ J∆K then Γ ′ ` θ = σ′ ∈ J∆K.

Proof Part (1) is by induction on τ .

– If τ = a then by assumption we have Γ `M ⇑ K : a and Γ ` N ⇑ K : a and Γ ` N ⇑ K′ : a
and Γ ` N ′ ⇑ K′ : a. By determinacy, we know that K = K′. Hence, Γ ` M ⇑ K : a and
Γ ` N ′ ⇑ K : a, so we can conclude Γ `M = N ′ ∈ JaK.

– If τ = τ1 → τ2 where the induction hypothesis holds for τ1 and τ2 then by assumption
we have Γ ` M = N ∈ Jτ1 → τ2K and Γ ` N = N ′ ∈ Jτ1 → τ2K. To prove Γ ` M =
N ′ ∈ Jτ1 → τ2K, let Γ ′ ⊇ Γ,M1, N1 be given with Γ ′ ` M1 = N1 ∈ Jτ1K. By symmetry,
we know Γ ′ ` N1 = M1 ∈ Jτ1K so by induction we know Γ ′ `M1 = M1 ∈ Jτ1K. Hence, by
assumption we know that Γ ′ ` M M1 = N M1 ∈ Jτ2K and Γ ′ ` M M1 = N ′ N1 ∈ Jτ2K,
so by induction we can conclude that Γ `M = N ′ ∈ Jτ1 → τ2K.

For part (2), we proceed by straightforward induction on ∆. ut

Lemma 18 (Closure under weak head expansion)

1. If M
whr−−−→M ′ and Γ `M ′ = N ∈ JτK then Γ `M = N ∈ JτK

2. If N
whr−−−→ N ′ and Γ `M = N ′ ∈ JτK then Γ `M = N ∈ JτK

Proof By (straightforward) induction on τ , using (⇑whr) in the base case. ut

Theorem 15 (Well-formed terms are logically related) If Γ ` M : τ then for any
∆, θ, σ, if ∆ ` θ = σ ∈ JΓ K then ∆ `M{θ} = M{σ} ∈ JτK.

28

Proof By induction on the well-formedness derivation. For variables and applications the rea-
soning is straightforward. For constants, we appeal to Theorem 14. For Λ-abstractions, suppose
we have

Γ, x:τ1 `M : τ2

Γ ` Λx.M : τ1 → τ2

and assume that for some ∆, θ, σ we have ∆ ` θ = σ ∈ JΓ K. We wish to show ∆ ` M{θ} =
M{σ} ∈ Jτ1 → τ2K, so let ∆′ ⊇ ∆,M ′, N ′ be given with ∆′ ` M ′ = N ′ ∈ Jτ1K. Then using
weakening and the definition of the logical relation for substitutions we have ∆′ ` θ,M ′/x =
σ,N ′/x ∈ JΓ, x:τK. It follows by induction that ∆′ ` M{θ,M ′/x} = M{σ,N ′/x} ∈ Jτ2K.
By closure under weak head expansion and properties of simultaneous substitutions, we have
∆′ ` (Λx.M{θ})M ′ = (Λx.M{σ}) N ′ ∈ Jτ2K. Since Γ ′,M ′, N ′ were arbitrary, we can conclude
that ∆ ` (Λx.M{θ}) = (Λx.M{σ}) ∈ Jτ1 → τ2K, as desired. ut

Lemma 19 (Closure under βη-conversion)

1. If Γ ` (Λx.M) N : τ and Γ ′ ` θ = σ ∈ JΓ K and x 6∈ FV (Γ, Γ ′, θ, σ,N) then Γ ′ `
(Λx.M{θ}) N{θ} = M{N/x}{σ} ∈ JτK.

2. If Γ ` M : τ → τ ′ and Γ ′ ` θ = σ ∈ JΓ K and x 6∈ FV (Γ, Γ ′, θ, σ,M) then Γ ′ ` M{θ} =
Λx.M{σ} x ∈ Jτ → τ ′K.

Proof Both parts are straightforward, using subject reduction, the previous theorem, and
closure under weak head expansion. ut

Theorem 16 (Definitionally equivalent terms are logically related) If Γ `M = N : τ
and Γ ′ ` θ = σ ∈ JΓ K then Γ ′ `M{θ} = N{σ} ∈ JτK.

Proof The proof for the cases of congruence rules are similar to those for Theorem 15. The
new cases involve β- or η-equivalence, symmetry and transitivity. The cases for β- and η-
equivalence follow from the previous lemma, and the cases for symmetry and transitivity
follow using symmetry and transitivity of the logical relation. ut

Lemma 20 (Identity substitution is logically related to itself) For any Γ we have
Γ ` idΓ = idΓ ∈ JΓ K.

Lemma 21 (Definitionally equivalent implies logically related) If Γ ` M = N : τ
then Γ `M = N ∈ JτK.

Proof Immediate, chaining Lemma 20 and Theorem 16. ut

We can now complete the proof of Theorem 6 as follows:

Proof (of Theorem 6) By the previous lemma we have Γ ` M = N ∈ JτK, and by the main
theorem (Theorem 14) we have Γ ` M ⇑ K : τ and Γ ` N ⇑ K : τ for some K. Clearly, by
soundness (Theorem 4) K is a canonical form definitionally equivalent to both M and N and
by determinacy (Theorem 5) it is unique. ut

