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Abstract. We present a Nominal Isabelle formalization of an expressive core
fragment of XQuery, a W3C standard functional language for querying XML
documents. Our formalization focuses on results presented in the literature con-
cerning XQuery’s operational semantics, typechecking, and optimizations. Our
core language, called mini-XQuery, omits many complications of XQuery such
as ancestor and sibling axes, recursive types and functions, node identity, and
unordered processing modes, but does handle distinctive features of XQuery in-
cluding monadic comprehensions, downward XPath steps and regular expression
types. To our knowledge no language with similar features has been mechani-
cally formalized previously. Our formalization is a first step towards a complete
formalization of full XQuery and may also be useful as a benchmark for compar-
ing other mechanized metatheory tools.

1 Introduction

The long-term vision of research on mechanized metatheory is to develop practical
computer-assisted techniques for designing new programming languages, validating
implementations and optimization techniques, and improving the reliability and effi-
ciency of existing languages. To realize this vision, it is important to apply mechanized
metatheory tools to real programming languages, not just well-studied core calculi [1,
18, 4, 26]. In this paper, we take first steps toward formalizing and verifying properties
of the XQuery language [6]. Formalizing XQuery’s semantics and verifying optimiza-
tion techniques will both stretch the capabilities of mechanized metatheory tools and
improve confidence in XQuery-based programs.

Over the last two decades the World Wide Web Consortium (W3C) has promul-
gated many key standards such as Hypertext Markup Language (HTML) used for Web
pages, and the more general Extensible Markup Language (XML) that can be used to
exchange data and documents. These standard protocols and data formats help ensure
cross-compatibility for Web browsers, servers, and other applications, catalyzing the
rapid growth of the Web over the past decades. More recently, the W3C has put a great
deal of effort into standardizing languages for querying, transforming, or processing
XML data — particularly XPath and XQuery.

XQuery is a flagship W3C standard language for querying XML databases that
manage efficient access to large amounts of data in XML form. XQuery can be used
to write high-level programs; in fact, some Web applications can be written entirely in
XQuery. XQuery is considered particularly suitable for integrating loosely-structured
data from diverse sources. Moreover, unlike many calculi used for mechanized metathe-
ory tools to date, the commercial value of XQuery is recognized by industry. Relational



database vendors such as IBM and Oracle view XML support as required functional-
ity; over 50 commercial products use XQuery. Another vendor, MarkLogic, has over
180 government and publishing industry clients for its native XML database software.
There are also several popular open-source XQuery implementations, such as Galax,
MonetDB/XQuery, BaseX and Saxonica.

XML databases offer great potential, but also pose new challenges. Efficient XQuery
implementations perform sophisticated optimizations based on equational reasoning
about programs [14]. Testing these optimizations can detect bugs, but can never guar-
antee that all bugs have been eliminated. Moreover, most equational reasoning has been
validated at the level of a simplified, purely functional form of XQuery. Equational rea-
soning about these core languages does not necessarily hold for the full language, in
part because full XQuery is not really pure: node identity allocation is an effect that
can be observed by identity tests or duplicate elimination. Consider the following two
XQuery expressions:

e1: e union e e2: let $x := e in ($x union $x)

Here, e2 performs less work than e1 by evaluating e only once, so it is tempting to
rewrite e1 to e2. This is an example of common subexpression elimination, an impor-
tant optimisation technique. However, naive use of common subexpression elimination
for XQuery can produce wrong answers, because e1 and e2 are not always equivalent.
For example, suppose e is an expression such as <a/> that constructs a new node. In
e1, two nodes are created because <a/> is evaluated twice yielding two element nodes
with distinct node identifiers, while in e2, only one new node identifier is created. The
union operation eliminates duplicate nodes, so count(<a/> union <a/>) = 2
while count(let $x := <a/> in $x union $x) = 1. Such corner cases
are unusual; common subexpression elimination and its inverse, inlining, are important
for optimizing XQuery programs. This provides a strong motivation for understanding
exactly when it is safe to substitute equals for equals in XQuery.

A great deal of research about XQuery (e.g. [14, 12, 8]) has focused on simpler
core languages that do not exhibit the above pathological behavior. Thus, as a starting
point for formalizing full XQuery, our strategy is to first formalize this well-understood
core and conduct mechanically-checked proofs of the main results about it. In this pa-
per, we focus on a Turing-incomplete core language called mini-XQuery that exhibits
many of the issues needed to handle full XQuery, but whose semantics is much cleaner
and easier to deal with because it omits features such as node identity. Mini-XQuery
is nevertheless rich enough to study several previously-developed type systems, equiv-
alence laws, and static analyses, including those of Fernandez et al. [14], Colazzo et
al. [12] and Cheney [8]. Moreover, our formalization is compact and could serve as a
useful benchmark for comparing other mechanized metatheory tools besides Nominal
Isabelle. The formalization is available online [9].

The structure of the rest of this paper is as follows: Section 2 presents the mini-
XQuery language we will formalize. Section 3 discusses the basic metatheory, including
the operational semantics, type soundness, determinacy and totality. Section 4 presents
formalizations of operational equivalences about XQuery, including the laws presented
by Fernandez et al. [14]. Section 5 presents the formalization of laws and properties



of regular expression subtyping. Section 6 reflects on the formalization process itself;
Section 7 presents related and future work and Section 8 concludes.

2 Background

Values We use a simplified model of XML values, in common with previous work that
focuses on the element and text node structure of trees and ignores attributes and other
leaf node types. While these details matter in implementations, the main challenges lie
in formalizing the handling of elements and text nodes.

v̂ ::= text{w} | elem l {v} v ::= v̂, v | ()

Here, w, l ∈ Σ∗ are strings and values v are lists of atomic values v̂ which can be
text nodes text{w} or element nodes elem l {v}. We define functions such as [v̂]
(which makes an atomic value into a singleton list) and v @ v′ (which concatenates two
sequences).

Types In XQuery, the type system is based on regular expression types and the related
notion of subtyping is language inclusion [19]. The syntax of types is as follows:

α ::= text | elem l {τ} | item τ ::= α | () | τ1, τ2 | τ1|τ2 | τ∗

Note that we distinguish syntactically between atomic types α that match atomic values,
versus general types τ that represent values v. We also omit recursive types; although
star types provide a limited form of recursion, our types will always have a bounded
nesting depth of element constructors. This is not an essential limitation; however, we
chose to focus on non-recursive types in this paper to focus attention on the new issues
arising for regular expression types.

The meaning of types is defined using the judgment v : τ indicating when a value
matches a type. (Equivalently, we could write this denotationally as v ∈ [[τ ]]). This
judgment is defined as follows:

text{w} : text
v : τ

elem l {v} : elem l {τ} v̂ : item () : ()
v̂ : α
[v̂] : α

v1 : τ1 v2 : τ2

v1 @ v2 : τ1, τ2

v : τ1

v : τ1|τ2

v : τ2

v : τ1|τ2 () : τ∗
v : τ
v : τ∗

v1 : τ∗ v2 : τ∗

v1 @ v2 : τ∗

XPath steps and tests. We handle the downward XPath axis steps and basic node tests:

ax ::= self | child | dos φ ::= node() | text() | l

Axis steps include self, which corresponds to the identity relation; child, which cor-
responds to the parent-child relation; and the dos or descendant-or-self axis which
corresponds to the transitive, reflexive closure of child. We also consider the basic
node tests node() which selects any node, text() which selects text nodes only, and l
which selects element nodes with label l. Note that the (seemingly superfluous) paren-
theses on node() and text() are part of the syntax of XPath/XQuery. Also note that
the node() test is often abbreviated ∗, and /child :: φ is often abbreviated as just /φ.



Expressions The expressions of mini-XQuery are as follows:

e ::= () | e, e′ | elem l {e} | w | x | x/ax :: φ | let x := e in e′

| if e then e1 else e2 | for x ∈ e return e′

where again w, l ∈ Σ∗ are strings. These include expressions for constructing val-
ues, such as the empty sequence (), sequential composition e1, e2, element nodes
elem l {e} and string literals w ∈ Σ∗, as well as standard variables, let-bindings
let x := e1 in e2, and conditionals if e then e1 else e2. Furthermore, the ex-
pression x/ax :: φ denotes the result of taking an XPath step from a variable and
for x ∈ e return e′ denotes iteration over a value viewed as a sequence. Note that
in XQuery source programs it is typical to write programs with compound XPath steps
and abbreviations

for x ∈ y/a//b return e

However, in XQuery this is desugared to

for z1 ∈ y/a return for z2 ∈ z1/ ∗ return for x ∈ z2/dos::b return e

where the extra ∗-step is due to the fact that //b really abbreviates the descendant step,
which is irreflexive.

Value and typing contexts. We write γ for value contexts mapping variables to values
v, and Γ for typing context mapping variables to types τ . These are represented as lists
of pairs of variables with values or types, such that no variable is repeated. As usual,
we need to define validity for such contexts and prove a number of routine properties
to ensure that e.g. a variable bound in a valid context has a unique value. We also
build validity assumptions into the evaluation and typing judgments (for example, by
requiring validity in the rules for base cases such as variables) to decrease the number
of explicit validity hypotheses we need to state the main results. We omit the details of
this part of the formalization. A value context γ is considered well-formed with respect
to a typing context Γ if they bind the same variables and for each x in their common
domain, we have γ(x) : Γ (x). We write γ : Γ to indicate that this is the case. Again, in
the formalization we need to be more pedantic (e.g. we also require that γ and Γ bind
the same variables in the same order) but for the purposes of exposition these details
are omitted.

Evaluation The XQuery standard gives an operational semantics, while several papers
give a denotational semantics for mini-XQuery-like core languages. Although denota-
tional semantics is attractive for a purely functional, terminating core language such as
mini-XQuery, we expect that operational techniques will scale better to handling the
full language, so we will use a simplified operational semantics for mini-XQuery.

We define the operational semantics judgments via inference rules as shown in
Figure 1. The semantics uses two judgments, one for ordinary expression evaluation
γ � e ⇒ v and one for iterated evaluation γ, x ∈ v �∗ e ⇒ v′. Intuitively, the it-
eration judgment does a list comprehension over the input value list v, binding x to
each atomic v̂, evaluating e, and then concatenating the resulting value sequences. It is



γ � e ⇒ v

γ � ()⇒ ()

γ � e ⇒ v

γ � elem l {e} ⇒ elem l {v}
γ � e1 ⇒ v1 γ � e2 ⇒ v2

γ � e1, e2 ⇒ v1 @ v2

γ � w ⇒ w

(x, v) ∈ γ

γ � x ⇒ v γ � x/ax :: φ ⇒ (γ(x)/ax) :: φ

γ � e0 ⇒ v̂, v γ � e1 ⇒ v1

γ � if e0 then e1 else e2 ⇒ v1

γ � e0 ⇒ () γ � e2 ⇒ v2

γ � if e0 then e1 else e2 ⇒ v2

γ � e1 ⇒ v1 γ, x 7→ v1 � e2 ⇒ v2

γ � let x := e1 in e2 ⇒ v2

γ � e1 ⇒ v1 γ, x ∈ v1 �∗ e2 ⇒ v2

γ � for x ∈ e1 return e2 ⇒ v2

γ, x ∈ v �∗ e ⇒ v′

γ, x ∈ () �∗ e ⇒ ()
NIL∗

γ, x 7→ v̂ � e ⇒ v′

γ, x ∈ [v̂] �∗ e ⇒ v′ SNG∗

γ, x ∈ v1 �∗ e ⇒ v′
1 γ, x ∈ v2 �∗ e ⇒ v′

2

γ, x ∈ v1 @ v2 �∗ e ⇒ v′
1 @ v′

2

SEQ∗

Fig. 1. Large-step operational semantics

an important fact about mini-XQuery that these iterations are completely independent,
that is, the sub-computations can be evaluated in any order or in parallel (as long as they
are reassembled in the correct order). Also note that conditionals test emptiness.

We use auxiliary functions v/ax and v :: φ to define the behavior of axis steps and
node tests on values. Their definitions are:

v̂/self = [v̂]

elem l {v}/child = v

text{w}/child = ()

elem l {v}/dos = elem l {v}, (v/dos)

text{w}/dos = text{w}
()/ax = ()

(v̂, v)/ax = v̂/ax @ v/ax

v̂ :: node() = [v̂]

elem l {v} :: l = elem l {v}
elem l {v} :: l′ = ()

text{w} :: l = ()

elem l {v}::text() = ()

text{w} :: l = text{w}
() :: φ = ()

(v̂, v) :: φ = v̂ :: φ @ v :: φ

Observe that in both cases, the behavior over value sequences is uniform. In the case of
the descendant-or-self axis, we always return the value itself followed by the result of
evaluating the descendant-or-self axis on the sequence of children of the node (if any).
For example:

elem a {elem b {text{”x”}}, elem c {elem b {text{”y”}}}}/dos :: b/text()
= text{”x”}, text{”y”}

This example also illustrates another (minor) simplification in mini-XQuery: we do not
normalize values to merge adjacent text nodes.



Substitution We define a form of substitution adapted to mini-XQuery as follows:

x[e/x] = e

y[e/x] = y

(x/ax :: φ)[e/x] = let x := e in x/ax :: φ

(y/ax :: φ)[e/x] = y/ax :: φ

w[e/x] = w

()[e/x] = ()

(e1, e2)[e/x] = (e1[e/x], e2[e/x])
elem l {e0}[e/x] = elem l {e0[e/x]}

(if e0 then e1 else e2)[e/x] = if e0[e/x] then e1[e/x] else e2[e/x]
(let y := e1 in e2)[e/x] = let y := e1[e/x] in e2[e/x] (y /∈ FV (x, e, e1))

(for y ∈ e1 return e2)[e/x] = for y ∈ e1[e/x] return e2[e/x] (y /∈ FV (x, e, e1))

Note that for variable occurrences in axis steps, we cannot always substitute for the
variable, so we simply re-bind it locally. This function can be defined as a total function
in Nominal Isabelle as described for similar languages in [24, 26]. It is worth pointing
out that this substitution function is not the one that comes “for free” with higher-order
abstract syntax [18].

Type system The typing rules used for mini-XQuery are shown in Figure 2. These
rules include the ordinary expression typing judgment Γ ` e : τ and iteration typing
judgment Γ, x ∈ τ `∗ e : τ ′.

Auxiliary rules for axis and node test typechecking are given in Figure 3. In most
cases these simply follow the operational behavior or the structure of the regular ex-
pression type. Because we omitted recursive types, we can employ a more precise rule
for typechecking descendant-or-self steps: specifically, we symbolically evaluate the
descendant-or-self step on the regular expression type. This level of precision is not
possible in the presence of recursion, because the resulting language is not necessarily
regular. Instead, Colazzo et al.’s µXQ system [12] simply approximates the descendant-
or-self step as (α1| · · · |αn)∗, where α1, . . . , αn. We believe that the nonrecursive case
is common enough to warrant special handling for this increased precision.

Our rules are not the same as the original W3C type system either. The W3C system
does not use rules similar to the iteration judgment; instead, when an expression of the
form for x ∈ e1 return e2 is typechecked, the type of e1 is split into a prime type
α1| · · · |αn and a quantifier q ∈ {1,+, ∗, ?}. The body of the loop is then checked with
x bound to α1| · · · |αn and the return type is adjusted using q.

We believe it is more interesting to prove type soundness for the more precise ap-
proach; soundness for the W3C type system can then be proved easily by showing that
the type inferred by our system is always a subtype of that inferred by the W3C system.
We have not formalized the W3C system or this proof, but this appears straightforward
(Colazzo and Sartiani [13] present such a result and discuss a number of related issues
concerning the expressiveness of the two systems).



Γ ` e : τ

Γ ` () : ()
Γ ` e : τ

Γ ` elem l {e} : elem l {τ}
Γ ` e : τ Γ ` e′ : τ ′

Γ ` e, e′ : τ, τ ′

w ∈ Σ∗

Γ ` text{w} : text
x:τ ∈ Γ
Γ ` x : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

Γ ` c : τ0 Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` if c then e1 else e2 : τ1|τ2

x : τ ∈ Γ τ/ax ⇒ τ ′ τ ′ :: φ ⇒ τ ′′

Γ ` x/ax :: φ : τ ′′

Γ ` e1 : τ1 Γ, x ∈ τ1 `∗ e2 : τ2

Γ ` for x ∈ e1 return e2 : τ2

Γ ` e : τ τ <: τ ′

Γ ` e : τ ′

Γ, x ∈ τ `∗ e : τ ′

Γ, x ∈ () `∗ e : ()

Γ, x:α ` e : τ

Γ, x ∈ α `∗ e : τ

Γ, x ∈ τ1 `∗ e : τ2

Γ, x ∈ τ∗
1 `∗ e : τ∗

2

Γ, x ∈ τ1 `∗ e : τ ′
1 Γ, x ∈ τ2 `∗ e : τ ′

2

Γ, x ∈ τ1, τ2 `∗ e : τ ′
1, τ

′
2

Γ, x ∈ τ1 `∗ e : τ ′
1 Γ, x ∈ τ2 `∗ e : τ ′

2

Γ, x ∈ τ1|τ2 `∗ e : τ ′
1|τ ′

2

Fig. 2. Query well-formedness rules

3 Basic Metatheory

In this section we present some of the basic properties of evaluation needed for the main
results in the later sections. Values and value typing have a number of properties that
are often needed:

Lemma 1. 1. For any v, we have v/self = v = v :: node().
2. For all τ , there exists v : τ .
3. For all v, we have v : item∗.

Theorem 1 (Weakening). Assume γ ⊆ γ′. Then:

1. If γ � e ⇒ v holds and γ ⊆ γ′ then γ′ � e ⇒ v holds.
2. If x /∈ γ′ then γ, x ∈ v �∗ e ⇒ v′ holds then γ′, x ∈ v �∗ e ⇒ v′ holds.

Theorem 2 (Strengthening). Suppose x /∈ γ1, γ2 and x /∈ FV (e). Then:

1. If γ1, x 7→ v0, γ2 � e ⇒ v then γ1, γ2 � e ⇒ v.
2. If y /∈ γ1, x 7→ v0, γ2 and γ1, x 7→ v0, γ2, y ∈ v1 �∗ e ⇒ v2 then γ1, x 7→

v0, γ2, y ∈ v1 �∗ e ⇒ v2.

Theorem 3 (Exchange).

1. If γ1, x 7→ v1, y 7→ v2, γ2 � e ⇒ v then γ1, y 7→ v2, x 7→ v1, γ2 � e ⇒ v.
2. If γ1, x 7→ v1, y 7→ v2, γ2, z ∈ v �∗ e ⇒ v′ then γ1, y 7→ v2, x 7→ v1, γ2, z ∈ v �∗

e ⇒ v′.



τ :: φ ⇒ τ ′

α :: node() ⇒ α text :: text() ⇒ text elem l {τ} :: text() ⇒ ()

text :: l ⇒ () elem l {τ} :: l ⇒ elem l {τ}
l 6= l′

elem l {τ} :: l′ ⇒ ()

item :: φ ⇒ item∗ () :: φ ⇒ ()

τ1 :: φ ⇒ τ ′
1 τ2 :: φ ⇒ τ ′

2

τ1, τ2 :: φ ⇒ τ ′
1, τ

′
2

τ1 :: φ ⇒ τ ′
1 τ2 :: φ ⇒ τ ′

2

τ1|τ2 :: φ ⇒ τ ′
1|τ ′

2

τ1 :: φ ⇒ τ2

τ∗
1 :: φ ⇒ τ∗

2

τ/φ ⇒ τ ′

α/self⇒ α text/child⇒ () elem l {τ}/child⇒ τ text/dos⇒ text

τ/dos⇒ τ ′

elem l {τ}/dos⇒ elem l {τ}, τ ′ item/ax ⇒ item∗ ()/ax ⇒ ()

τ1/ax ⇒ τ ′
1 τ2/ax ⇒ τ ′

2

τ1, τ2/ax ⇒ τ ′
1, τ

′
2

τ1/ax ⇒ τ ′
1 τ2/ax ⇒ τ ′

2

τ1|τ2/ax ⇒ τ ′
1|τ ′

2

τ1/ax ⇒ τ2

τ∗
1 /ax ⇒ τ∗

2

Fig. 3. Auxiliary judgments

Another important property is that the iteration rules are invertible, despite their
rather nondeterministic flavor. In particular:

Theorem 4 (Inversion).

1. If γ, x ∈ () �∗ e ⇒ v then v = ().
2. If γ, x ∈ [v̂] �∗ e ⇒ v′ then γ, x 7→ v̂ � e ⇒ v′.
3. If γ, x ∈ v1 @ v2 �∗ e ⇒ v then there exist v′

1, v
′
2 such that v = v′

1 @ v′
2 and

γ, x ∈ v1 �∗ e ⇒ v′
1 and γ, x ∈ v2 �∗ e ⇒ v′

2.

Proof. Of these, the inversion of SEQ∗ is the most complex. We need to reason carefully
by induction on the structure of the derivation, using parts (1) and (2) as well as a
number of facts about lists and @. ut

A final useful property of the value typing rules is that we can “lift” functions on
atomic values to functions on values, preserving typing. Let f be a function from atomic
values to values, and let lift f be the natural extension of f to a function on values, given
by lift f () = () and lift f (v̂1, v2) = f(v̂1) @ (lift f v2). Then:

Lemma 2 (Star lifting). Assume that for all v′ : τ1 we have lift f v′ : τ2. Then if v : τ∗
1

then (lift f) v : τ∗
2 .

3.1 Type soundness

We now have enough infrastructure to show type soundness. First, we need to establish
soundness properties for variables, axis steps, and iterations:



Lemma 3. 1. (Variable soundness) If γ : Γ then γ(x) : Γ (x).
2. (Axis soundness) If τ/ax ⇒ τ ′ and v : τ then v/ax : τ ′.
3. (Test soundness) If τ :: φ ⇒ τ ′ and v : τ then v :: φ : τ ′.
4. (Star soundness) Assume that for all v1, v2 such that v1 : τ1 and γ, x ∈ v1 �∗ e ⇒

v2 we have v2 : τ2. Then if v′
1 : τ∗

1 and γ, x ∈ v′
1 �∗ e ⇒ v′

2 then v′
2 : τ∗

2 .

Proof. Part (1) is immediate. Parts (2) and (3) are by induction on axis or test typing
derivations, using Star Lifting for the case involving τ∗. Part (4) is by induction on
value typing judgments, using evaluation inversion principles. ut

Theorem 5 (Type soundness).

1. If Γ ` e : τ and γ : Γ and γ � e ⇒ v then v : τ .
2. If Γ, x ∈ τ `∗ e : τ ′ and γ, x ∈ v �∗ e ⇒ v′ and γ : Γ and v : τ , then v′ : τ ′.

Proof. By induction on the typing derivations, using the previous lemma and evaluation
inversion principles for the iteration cases. ut

In fact, we can also show that all well-formed programs evaluate to a value. Al-
though mini-XQuery has iteration, the iteration is always bounded. Naturally, this prop-
erty does not carry over to the full language, but it is useful here since it means we can
eliminate some termination side-conditions on equivalence laws.

Lemma 4 (Star convergence). Suppose that for all v1, if v1 : τ1 then there exists
v2 such that γ, x ∈ v1 �∗ e ⇒ v2. Then if v′

1 : τ∗
1 then there exists v′

2 such that
γ, x ∈ v′

1 �∗ e ⇒ v′
2.

Theorem 6 (Convergence).

1. If γ ` e : τ and γ : Γ then there exists v : τ such that γ � e ⇒ v.
2. If γ, x ∈ τ `∗ e : τ ′ and γ : Γ and v : τ then there exists v′ such that γ, x ∈ v �∗

e ⇒ v′.

3.2 Determinacy

The evaluation relation is also deterministic. This is not easy to show directly. Instead,
we introduce an alternative evaluation relation that is easy to prove deterministic, and
show that it is equivalent to the first presentation. This alternative presentation replaces
the SNG∗ and SEQ∗ rules with the following CONS∗ rule:

γ, x 7→ v̂1 � e ⇒ v′
1 γ, x ∈ v2 �∗ e ⇒ v′

2

γ, x ∈ v̂1, v2 �∗ e ⇒ v′
1 @ v′

2
CONS∗

Theorem 7 (Equivalence of presentations). The CONS∗ rule is derivable from NIL∗,
SNG∗ and SEQ∗; conversely, SNG∗ and SEQ∗ are admissible using NIL∗ and CONS∗.

Theorem 8 (Determinacy).

1. If γ � e ⇒ v and γ � e ⇒ v′ then v = v′.



2. If γ, x ∈ v0 �∗ e ⇒ v and γ, x ∈ v0 �∗ e ⇒ v′ then v = v′.

Proof. We first show this for the evaluation relation defined using NIL∗ and CONS∗,
which is straightforward. We then use the previous lemma to transfer the result to the
NIL∗, SNG∗, SEQ∗ presentation of the rules. ut

It is probably not strictly necessary to introduce the second presentation based on
NIL∗ and CONS∗, but it is sometimes convenient to use it since there are fewer cases to
cover. Proving the systems equivalent was also useful as a sanity check.

4 Operational Equivalences

We define operational equivalence as follows:

Γ � e ∼= e′ ⇐⇒ ∀γ : Γ.γ � e ⇒ v ⇐⇒ γ � e′ ⇒ v

This definition suffices for our semantics in the absence of side-effects such as node
identifier generation. Note that the context Γ is necessary to track the variables of e
and e′ that are needed for evaluation to be sensible. Without this constraint, proving
even simple equivalences such as FOREMPTY is nontrivial, since we have to explicitly
rename the bound name to avoid names already present in the context. Nevertheless,
using an explicit typing context for this is just for convenience (we could also have
just used a list of variables), since we can always use the top type item∗ for all the
variables. Using a typing context Γ to impose nontrivial type constraints on the free
variables of e also means we can take type information into account when reasoning
about equivalence. We give an example at the end of the next section.

One important lemma is that we can drop let-bindings if the value of the bound
variable is never used:

Lemma 5 (Let weakening). Suppose x /∈ e2. Then Γ � let x := e in e2
∼= e2.

To prove operational equivalence laws involving commuting let and for, we need
additional properties of evaluation.

Lemma 6 (Variable iteration). Assume x /∈ γ. Then γ, x ∈ v �∗ x ⇒ v′ holds if and
only if v = v′.

Lemma 7 (Let iteration). Assume γ � e1 ⇒ v1. Then γ, x 7→ v1, y ∈ v �∗ e2 ⇒ v2

iff γ, y ∈ v �∗ let x := e1 in e2 ⇒ v2.

Lemma 8 (For iteration). Assume x /∈ e1, γ and y /∈ e2, γ and x 6= y. Then γ, y ∈
v �∗ for x ∈ e1 return e2 ⇒ v2 holds iff there exists a v1 such that γ, y ∈ v �∗

e1 ⇒ v1 and γ, x ∈ v1 �∗ e2 ⇒ v2.

Using these laws, we can verify all of the standard properties of XQuery expressions
discussed in for example [14], and a number of others.

Theorem 9. The operational equivalences and laws listed in Figure 4 are valid for
mini-XQuery.



Γ � (), e ∼= e SEQUNITL
Γ � e,() ∼= e SEQUNITR
Γ � (e1, e2), e3

∼= e1, (e2, e3) SEQASSOC

Γ � for x ∈ () return e ∼= () FOREMPTY

Γ � for x ∈ e return x ∼= e FORVAR

Γ � for x ∈ (e1, e2) return e ∼= (for x ∈ e1 return e, for x ∈ e2 return e) FORSEQ

Γ � for x ∈ text{w} return e ∼= let x := w in e FORSTRING

Γ � for x ∈ elem l {e1} return e2
∼= let x := elem l {e1} in e2 FORELEM

Γ � for x ∈ (if e then e1 else e2) return e0

∼= if e then (for x ∈ e1 return e0) else for x ∈ e2 return e0 FORCOND

Γ � for x ∈ (let y := e1 in e2) return e ∼= let y := e1 in (for x ∈ e2 return e) FORLET

Γ � for x ∈ (for y ∈ e1 return e2) return e
∼= for y ∈ e1 return (for x ∈ e2 return e) FORFOR

Γ � if () then e1 else e2
∼= e2 CONDEMPTY

Γ � if text{w} then e1 else e2
∼= e1 CONDSTRING

Γ � if elem l {e} then e1 else e2
∼= e1 CONDELEM

Γ � if (e1, e2) then e′1 else e′2 ∼= if e1 then e′1 else (if e2 then e′1 else e′2) CONDCOND

Γ � x/self :: node() ∼= x SELFID

Γ � let x := e in x ∼= e LETVAR

Γ � let x := e in elem l {e0} ∼= elem l {let x := e in e0} LETELEM

Γ � let x := e in (e1, e2) ∼= (let x := e in e1, let x := e in e2) LETSEQ

Γ � let x := e in (if e0 then e1 else e2)
∼= if (let x := e in e0) then (let x := e in e1) else (let x := e in e2) LETCOND

Γ � let x := e in (let y := e1 in e2)
∼= let y := (let x := e in e1) in (let x := e in e2) LETLET

Γ � let x := e in (for y ∈ e1 return e2)
∼= for y ∈ (let x := e in e1) return (let x := e in e2) LETFOR

Fig. 4. Verified operational equivalence laws for mini-XQuery.

Proof. Most of the laws are straightforward using inversion, weakening, and strength-
ening. The FORVAR, FORLET and FORFOR laws require variable, let, and for-iteration
respectively. ut

We can also verify congruence laws for all of the expression forms. These are shown
in Figure 5. Note that in the congruence rules for let and for, we use the item∗

type for the type of x in the extended context, meaning that we must verify that e2

is equivalent to e′2 under all possible values for x. The congruence rule for for also
requires a lemma:

Lemma 9 (For-iteration congruence). Assume Γ, x : item∗ � e ∼= e′ and γ : Γ
where x /∈ γ. Then γ, x ∈ v �∗ e ⇒ v′ holds if and only if γ, x ∈ v �∗ e′ ⇒ v′ holds.

Theorem 10 (Evaluation is a congruence). The congruence laws of Figure 5 all hold
of operational equivalence.

Finally, using the equivalence laws, congruences, and the definition of substitution
we can prove that inlining is sound in mini-XQuery. Of course, inlining is not sound for



Γ � e ∼= e

Γ � e′ ∼= e

Γ � e ∼= e′
Γ � e ∼= e′ Γ � e′ ∼= e′′

Γ � e ∼= e′′
Γ � e ∼= e′

Γ � elem l {e} ∼= elem l {e′}
Γ � e1

∼= e′1 Γ � e2
∼= e′2

Γ � (e1, e2) ∼= (e′1, e
′
2)

Γ � e ∼= e′ Γ � e1
∼= e′1 Γ � e2

∼= e′2

Γ � if e then e1 else e2
∼= if e′ then e′1 else e′2

Γ � e1
∼= e′1 Γ, x : item∗ � e2

∼= e′2

Γ � let x := e1 in e2
∼= let x := e′1 in e′2

Γ � e1
∼= e′1 Γ, x : item∗ � e2

∼= e′2

Γ � for x ∈ e1 return e2
∼= for x ∈ e′1 return e′2

Fig. 5. Congruence laws for mini-XQuery equivalence

full XQuery but nevertheless it is an important optimization, and its soundness proof in
mini-XQuery sheds some light on what is needed for specific instances of inlining to be
sound in XQuery.

Theorem 11 (Inlining). Γ � let x = e1 in e2
∼= e2[e1/x]

Proof. By induction on the structure of e, using many of the rules in Figure 4, congru-
ence rules, and the definition of substitution. ut

5 Subtyping

Subtyping is based on containment of regular expression types, that is,

τ <: τ ′ ⇐⇒ ∀v.v : τ ⊃ v : τ ′

Moreover, we often employ type equivalence τ ≡ τ ′ defined as the symmetric closure
of <: (or equivalently, as ∀v.v : τ ⇐⇒ v : τ ′).

We first establish a number of routine properties of regular expression types, in-
cluding pre-congruence and ∗-induction rules shown in Figure 6, and equivalence or
subtyping laws shown in Figure 7.

Since we do not include an empty type or recursive types that could be used to
define empty types, we can show that any subtype of () is equivalent to (). We first
need a few auxiliary properties:

Lemma 10. 1. Neither () <: α nor α <: () holds for any atomic type α.
2. If τ1, τ2 <: () then τ1 <: () and τ2 <: ().
3. If τ1|τ2 <: () then τ1 <: () and τ2 <: ().
4. If τ∗ <: () then τ <: ().

Theorem 12. If τ <: () then τ ≡ ().

Proof. Proof is by induction on the structure of τ , using the previous lemma to rule out
the case τ = α and to bridge the gap between the assumption and induction hypotheses.
Consider the case for τ∗. We can assume that τ∗ <: () holds and that τ <: () implies
τ ≡ (). By part (4) of the lemma, we have that τ <: (), which implies τ ≡ (), which
is equivalent to ()∗ as shown in Figure 7. ut



τ <: τ
τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

τ1 <: τ2

elem l {τ1} <: elem l {τ2}
τ1 <: τ ′

1 τ2 <: τ ′
2

τ1, τ2 <: τ ′
1, τ

′
2

τ1 <: τ ′
1 τ2 <: τ ′

2

τ1|τ2 <: τ ′
1|τ ′

2

τ1 <: τ2

τ∗
1 <: τ∗

2

() <: τ2 τ1 <: τ2 τ2, τ2 <: τ2

τ∗
1 <: τ2

Fig. 6. Subtyping congruence rules and ∗-induction

τ,() ≡ τ
(), τ ≡ τ

τ, (τ ′, τ ′′) ≡ (τ, τ ′), τ ′′

τ1|τ2 ≡ τ2|τ1

τ1 <: τ1|τ2

τ2 <: τ2|τ2

()∗ ≡ ()

τ1|(τ2|τ3) ≡ (τ1|τ2)|τ3

τ, (τ1|τ2) ≡ (τ, τ1)|(τ, τ2)
(τ1|τ2), τ ≡ (τ1, τ)|(τ2, τ)

elem l {τ1|τ2} ≡ elem l {τ1}|elem l {τ2}
() <: τ∗

τ <: τ∗

τ∗, τ∗ <: τ∗

Fig. 7. Subtyping and type equivalence laws.

To conclude the section, we show how types can be used to help optimize programs.

Theorem 13 (Statically dead code elimination). If Γ ` e : () then Γ � e ∼= ().

Proof. Let γ : Γ be given; we must show that γ � e ⇒ v holds if and only if γ �
() ⇒ v. For the forward direction of the equivalence, we just use soundness and the
fact that () is the only value of type (). For the reverse direction, we use Convergence
to show that e must evaluate to some value, then use soundness again to show that it
must be (), and finally use inversion to show that the only value () can evaluate to is
also (). ut

This suggests the following optimization technique: traverse the term, typecheck each
subterm and replace each subterm whose type is () with ().

6 Discussion

Table 1 provides some summary information about the formalization (see also [9]),
including the number of lines of proof and number of lemmas for each theory (cor-
responding to the previous three sections of the paper). We have not attempted to be
rigorous about blank lines or comments; the merit of raw lines of proof as a metric is
unclear to us (especially across different systems), but these figures could at least pro-
vide a rough comparison with other possible formalizations. Many of the more subtle
proofs turn out to be short, while longer proofs tend to be mostly “brute force” induction
steps for which most cases follow the similar reasoning pattern. We have made no at-
tempt to shorten proofs by leveraging Isabelle’s automation beyond the basics, because
it makes the behavior (and termination) of proof search tactics much harder to control,
but it is plausible that more sophisticated use of Isabelle’s existing automation (or use
of a different technique altogether) could lead to much shorter proofs.



Theory Description Lines Lemmas
XQuery Basic definitions, evaluation metatheory, and type soundness. 1740 95
Equivalence Operational equivalence laws and congruences 965 45
Subtyping Properties of subtyping; type-based equivalences 459 42

Table 1. Overview of the formalization

We have begun to formalize some more complex results such as the admissibility of
subsumption (a simplified version of the main result of [8]). We have a partial formal-
ization of the syntactic part of the proof from [8], but the semantic aspects of the proof
are proving tricky to formalize — the original proof involves reasoning about various
regular expression homomorphisms, some of which are partial. We have already found
one minor bug in the proof, and we are investigating workarounds.

7 Related work

Among W3C standards, XQuery is distinctive in that formalization of its semantics was
integrated into the standardization process from an early stage. Fernandez et al. [14] pre-
sented a core XML query language that served as one starting point for XQuery, which
included several features not present in XQuery such as pattern matching, while exclud-
ing other features such as node identity and schema validation. Siméon and Wadler [23]
studied and formalized the behavior of validation in XML Schema and XQuery, identi-
fying some formal properties that helped influence the final design.

The only previous work we are aware of on mechanically checking properties of
XML query languages is by Genevés and Vion-Dury [16]. They formalize the XML
tree model in Coq and define the semantics of XPath axes (including ancestor and sib-
ling axes that we do not handle), and they formalize some equivalence laws for XPath.
However, they do not consider XQuery constructs involving name-binding (for, let)
or construction of new XML document values (elem l {e}). We view their formaliza-
tion as complementary; ultimately a formalization of full XQuery will have to handle
all of the features in their work, all those in this paper, and more.

Malecha et al. [20] formalize an implementation of a core SQL-like relational query
language in Coq, including a formalization of the B-tree data structure, and leverag-
ing proof automation techniques available in Coq, as also documented by Chlipala et
al. [11]. XQuery can be implemented by translating XML trees and queries to alge-
braic or relational languages (see e.g. Grust et al. [17] or Ré et al. [21]) and it would be
interesting to verify such translations. Rose [22] is developing a rewriting-based com-
piler for full XQuery. While the aim of this system is to simplify compiler development
and experimentation with optimization rules, it is also an attractive starting point for
verification.

There are also a number of other results from papers on XQuery that we would like
to formalize, including the path-error analysis of Colazzo et al. [12]. Also, there are
refinements to the typechecking algorithm that we have not verified, including some
discussed further in more recent work by Colazzo and Sartiani [13]. More ambitious
would be to formalize the W3C XQuery Update Facility [7]. Its semantics is defined



informally as part of an ongoing standards process, but Benedikt and Cheney [3] give a
candidate operational semantics for a core language based on a recent W3C draft.

Naturally it would also be interesting to extend the regular expression type system
to handle recursion; it would be even more interesting to formalize the syntax-oriented
algorithm for deciding subtyping of Hosoya et al. [19]. Another interesting direction for
future work is extending mini-XQuery with XQuery 1.1 features such as higher-order
functions, exceptions, and grouping or aggregation constructs in order to understand
how they interact with XQuery’s distinctive approach to typechecking.

Nominal Isabelle is an implementation of the nominal abstract syntax approach pi-
oneered by Gabbay and Pitts [15]. Our work employs mature aspects of the Nominal
Isabelle infrastructure [24], particularly strong induction principles [25] and inversion
principles [5] that enable reasoning about name-binding syntax in a way that parallels
on-paper reasoning, and which have been used in a number of other case studies, includ-
ing various lambda-calculi such as LF [26] and the π-calculus [4]. More recent work
on Nominal Isabelle has aimed at supporting additional name-binding constructs [27],
such as simultaneous binding in function definitions, and these features should be very
useful in scaling our formalization up to XQuery; conversely, the formalization needs
of full XQuery may help motivate further investigation of mechanized metatheory tech-
niques, much as the POPLMark challenge has helped spur research on such tools [1].

While some of the properties we proved are essentially syntactic and ought (in prin-
ciple) to be formalizable in any mechanized metatheory system, others such as oper-
ational equivalence and type equivalence involve a mixture of syntactic and semantic
methods, which seems to require the expressiveness of first-order logical definitions,
which are not available in certain systems. We expect that it would be straightforward
(albeit possibly labor-intensive) to formalize mini-XQuery in Coq using standard tech-
niques [2, 10], but it is not clear to us how one could formalize these results (partic-
ularly concerning substitution or inversion principles) in an LF-based system such as
Twelf [18].

8 Conclusions

XQuery is a compelling target for formalization because it is commercially relevant,
there is a growing literature on optimization techniques for XQuery, and there is a
detailed (albeit not fully mechanized) formal semantics for XQuery already. In this
paper, we have taken an important step towards a complete mechanical formalization
of XQuery, by formalizing an expressive core language called mini-XQuery. Although
Nominal Isabelle seems well-suited for formalizing mini-XQuery, it is possible that
other techniques have equal or greater benefits — in particular, techniques based on
higher-order abstract syntax or using more advanced tactic programming — could avoid
a great deal of “brute force” proof steps. We invite advocates of other approaches to
demonstrate the advantages of their systems using mini-XQuery as a benchmark.
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