
D
R

A
FT

Provenance Traces

Extended Report

James Cheney

University of Edinburgh

jcheney@inf.ed.ac.uk

Umut A. Acar Amal Ahmed

Toyota Technological Institute, Chicago

[umut|amal]@tti-c.org

Abstract

Provenance is information about the origin, derivation, ownership,
or history of an object. It has recently been studied extensively
in scientific databases and other settings due to its importance in
helping scientists judge data validity, quality and integrity. How-
ever, most models of provenance have been stated as ad hoc defini-
tions motivated by informal concepts such as “comes from”, “influ-
ences”, “produces”, or “depends on”. These models lack clear for-
malizations describing in what sense the definitions capture these
intuitive concepts. This makes it difficult to compare approaches,
evaluate their effectiveness, or argue about their validity.

We introduce provenance traces, a general form of provenance
for the nested relational calculus (NRC), a core database query lan-
guage. Provenance traces are related to the traces that have been
used in self-adjusting computation, but differ in important respects.
We define a tracing operational semantics for NRC queries that pro-
duces both an ordinary result and a trace of the execution. These
traces satisfy two strong semantic guarantees: consistency, mean-
ing that the traces describe what actually happened during execu-
tion, and fidelity, meaning that the traces are faithful to the original
expression even if the input is changed. We show that three pre-
existing forms of provenance for the NRC can be extracted from
provenance traces. Thus, provenance traces provide a general se-
mantic foundation for comparing and unifying models of prove-
nance in databases. We also discuss slicing techniques that extract
a smaller trace that contains only information pertinent to part of
the output.

1. Introduction

Sophisticated computer systems and programming techniques, par-
ticularly database management systems and distributed computa-
tion, are now being used for large-scale scientific endeavors in
many fields including biology, physics and astronomy. They are
typically being used directly by scientists, not professional pro-
grammers. For these users, the behavior of such systems is opaque
and — often correctly — viewed as unreliable. Simply presenting
the result of a computation is not considered sufficient to establish
its repeatability or scientific value in (for example) a journal article.
Instead, it is considered essential to provide high-level explanations
of how a part of the result of a database query or distributed compu-
tation was derived from its inputs, or how a database came to be the
way it is. Such information about the source, context, derivation, or
history of a (data) object is often called provenance.

Currently, many systems either require their users to deal with
provenance manually or provide one of a variety of ad hoc, cus-
tom solutions. Manual recordkeeping is tedious and error-prone,
while both manual and custom solutions are expensive and provide
few formal correctness guarantees. This state of affairs strongly
motivates research into automatic and standardized techniques for

recording, managing, and exploiting provenance in databases and
other systems.

A number of approaches for automatic provenance tracking
have been studied, each aiming to capture some intuitive aspect of
provenance such as “Where did a result come from in the input?”
(Buneman et al. 2001), “What inputs influenced a result?”(Cui et al.
2000; Buneman et al. 2001), “How was a result produced from the
input?” (Green et al. 2007), or “What inputs do results depend on?”
(Cheney et al. 2007). However, there is not yet much understanding
of the advantages, disadvantages and formal guarantees offered by
each, or of the relationships among them. Many of these techniques
have been presented as ad hoc definitions without clear formal
specifications of the problem the definitions are meant to solve.
In some cases, loose specifications have been developed, but they
appear difficult to extend beyond simple settings such as monotone
relational queries.

We believe that semantic foundations are needed for provenance
in order to understand and relate existing techniques, as well as
to motivate and validate new techniques. We focus on provenance
in database management systems, because of its practical impor-
tance and because several interesting provenance techniques have
already been developed in this setting. We investigate a semantic
foundation for provenance in databases based on traces. We begin
with an operational semantics based on stores in which each part
of each value has a label. We instrument the semantics so that as
an expression evaluates, we record certain properties of the oper-
ational derivation in a provenance trace. Provenance traces record
the relationships between the labels in the store, ultimately link-
ing the result of a computation to the input. Traces can be viewed
as a concrete representation of the operational semantics derivation
showing how each part of the output was computed from the input
and intermediate values.

We employ the nested relational calculus (NRC), a core database
query language closely related to monadic comprehensions as used
in Haskell and other functional programming languages (Wadler
1992). The nested relational model also forms the basis for dis-
tributed programming systems such as MapReduce (Dean and
Ghemawat 2008) and PigLatin (Olston et al. 2008) and is closely
related to XML. Thus, our results should generalize to these other
settings.

This paper makes the following contributions:
• We define traces, traced evaluation for NRC queries, and a trace

adaptation semantics and establish that traces provide a solid
semantic foundation for provenance. Specifically, we show that
the trace generated by evaluating an expression is consistent
with the resulting store, and that such traces are faithful to the
original expression even if the input store is changed.
• We show that we can extract several other forms of prove-

nance that have been developed for the NRC from traces,
including where-provenance (Buneman et al. 2001, 2007),

1 2008/9/18

D
R

A
FT

dependency provenance (Cheney et al. 2007), and semiring-
provenance (Green et al. 2007; Foster et al. 2008). The semiring-
provenance model already generalizes several other forms of
provenance such as why-provenance (Buneman et al. 2001)
and lineage (Cui et al. 2000), but where-provenance and
dependency-provenance are not instances of the semiring model.
Provenance traces thus unify three previously unrelated prove-
nance models.
Since traces are usually large and difficult to interpret, we dis-

cuss slicing and simplification techniques for extracting smaller
traces that are relevant to a part of the output. These slicing tech-
niques are motivated by notions of dependence similar to those
used as a foundation for program slicing, information flow security,
and access control (Abadi et al. 1999). However, a full investigation
of provenance trace slicing is beyond the scope of this paper.

The traces used in this paper are also related to traces studied in
other settings, particularly in AFL, an adaptive functional language
introduced by Acar et al. (2006). However, there are important dif-
ferences. First, while AFL leaves it up to the programmer to iden-
tify modifiable inputs and changeable outputs, provenance traces
implicitly treat every part of the input as modifiable and every part
of the output as changeable. This may make provenance traces too
inefficient for practical use, but our main goal here is to identify a
rich, principled form of provenance and efficiency is a secondary
concern. Second, AFL traces are based directly on source lan-
guage expressions, and were not designed with human-readability
or provenance extraction in mind. In contrast, provenance traces
can be viewed as directed acyclic graphs (with some extra struc-
ture and annotations) that can easily be traversed to extract other
forms of provenance. Finally, AFL includes user-defined, recursive
functions, whereas the NRC does not include function definitions
but does provide collection types and comprehension operations.
These differences are minor; it appears straightforward to add the
missing features to the respective languages.

Synopsis The structure of the rest of this paper is as follows. Sec-
tion 2 reviews the nested relational calculus, and introduces an op-
erational, destination-passing, store-based semantics for NRC. Sec-
tion 3 defines provenance traces and introduces a traced operational
semantics for NRC queries and a trace adaptation semantics for
adjusting traces to changes to the input. Section 4 establishes the
key metatheoretic and semantic properties of traces. Section 5 dis-
cusses extracting other forms of provenance from traces, and Sec-
tion 6 briefly discusses trace slicing and simplification techniques.
We discuss related and future work and conclude in Sections 7–8.

2. Nested relational calculus

The nested relational calculus (Buneman et al. 1995) is a simply-
typed core language (closely related to monadic comprehen-
sions (Wadler 1992)) that is as expressive as standard database
query languages such as SQL but has simpler syntax and cleaner
semantics. (We do not address certain dark corners of SQL such as
NULL values.) The syntax of NRC types τ ∈ Type is as follows:

τ ::= int | bool | τ1 × τ2 | {τ}

Types include base types such as int and bool, pairing types τ1×τ2,
and collection types {τ}. Collection types {τ} are often taken to
be sets, bags (multisets), or lists; in this paper, we consider multiset
collections only. We omit first-class function types and λ-terms
because most database systems do not support them.

We assume countably infinite, disjoint sets Var of variables and
labels Lab . The syntax of NRC expressions e ∈ Exp is as follows:

e ::= l | x | let x = e1 in e2 | (e1, e2) | πi(e)

| b | ¬e | e1 ∧ e2 | if e0 then e1 else e2

| i | e1 + e2 |
P

{e2 | x ∈ e1} | e1 ≈ e2

| ∅ | {e} | e1 ∪ e2 |
S

{e2 | x ∈ e1} | empty(e)

Variables and let-expressions, pairing, boolean, and integer oper-
ations are standard. Labels are used in the operational semantics
(Section 2.4). The expression ∅ denotes the empty collection; {e}
constructs a singleton collection, e1 ∪ e2 takes the (multiset) union
of two collections, and

S

{e | x ∈ e0} iterates over a collection ob-
tained by evaluating e, applying e(x) to each element of the collec-
tion, and unioning the results. Note that we can define {e | x ∈ e0}
as

S

{{e} | x ∈ e0}. Finally, the empty(e) predicate tests whether
the collection denoted by e is empty, and the

P

{e | x ∈ e0} oper-
ation takes the sum of a collection of integers.

Expressions are identified modulo alpha-equivalence, regarding
x bound in e(x) in the expressions

S

{e(x) | x ∈ e0},
P

{e(x) |
x ∈ e0} and let x = e0 in e(x). We write e[l/x] for the result of
substituting a label l for a variable x in e; labels cannot be bound
so substitution is naturally capture-avoiding.

2.1 Examples

As with many core languages, it is inconvenient to program di-
rectly in NRC. Instead, it is often more convenient to use id-
iomatic “comprehension syntax” similar to Haskell’s list compre-
hensions (Wadler 1992; Buneman et al. 1994). These can be viewed
as syntactic sugar for primitive NRC expressions, just as in Haskell
list comprehensions can be translated to the primitive monadic
operations on lists. Although we use unlabeled pairs, the NRC
can also be extended easily with convenient named-record syntax.
These techniques are standard so here we only illustrate them via
examples which will be used later in the paper.

Example 1 Suppose we have relations R : {(A:int, B:int, C:int)},
S : {(C:int, D:int)}. Consider the SQL “join” query

SELECT R.A,R.B,S.D FROM R,S WHERE R.C = S.C

This is equivalent to the core NRC expression

Q1 =
S

{
S

{if r.C = s.C
then {(A:r.A, B:r.B, D:s.D)} else ∅

| s ∈ S} | r ∈ R}

Example 2 Given R, S as above, the SQL “aggregation” query

SELECT 42 AS C, SUM(D) FROM S WHERE C = 2
UNION
SELECT B AS C, A AS D FROM R WHERE C = 4

can be expressed as

Q2 = {(C : 42, D :
P

{if s.C = 2 then s.D else 0 | s ∈ S})}
∪

S

{if r.C = 4 then {(C:r.B, D:r.A)} else ∅ | r ∈ R}

Some sample input tables and the results of running Q1 and Q2

on them are shown in Figure 1. The labels r, r1, . . . in are used in
the operational semantics, as discussed in Section 2.4.

2.2 Type system

NRC expressions can be typechecked using standard techniques.
The typechecking rules are shown in Figure 2. We employ contexts
Γ of the form Γ ::= · | Γ, x:τ .

2.3 Denotational semantics

The semantics of NRC expressions is usually defined denotation-
ally. We consider values v ∈ Val of the form:

v ::= i | b | (v1, v2) | {v1, . . . , vn}

2 2008/9/18

D
R

A
FT

A B C

1 2 3

1 3 3

7 42 4

Input table R(A, B, C)

r

r1

r2

r3

r11 r12 r13

r21 r22 r23

r31 r32 r33

C D

2 3

2 4

3 7

Input table S(C, D)

s

s1

s2

s3

s11 s12

s21 s22

s31 s23

A B D

1 2 7

1 3 7

Output table Q1(A, B, D)

l

l1

l2

l11 l12 113

l21 l22 l23

C D

42 7

42 7

Output table Q2(C, D)

l′

l′1

l′2

l′11 l′12

l′21 l′22

Figure 1. Examples

x : τ ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : τ1 Γ, x:τ ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

i ∈ Z

Γ ⊢ i : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

b ∈ B

Γ ⊢ b : bool
Γ ⊢ e : bool

Γ ⊢ ¬e : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 ∧ e2 : bool

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 ≈ e2 : bool

Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

Γ ⊢ e : {τ}

Γ ⊢ empty(e) : bool

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ πi(e) : τi

Γ ⊢ ∅ : {τ}
Γ ⊢ e : τ

Γ ⊢ {e} : {τ}

Γ ⊢ e1 : {τ} Γ ⊢ e2 : {τ}

Γ ⊢ e1 ∪ e2 : {τ}

Γ ⊢ e0 : {τ0} Γ, x:τ0 ⊢ e : {τ}

Γ ⊢
S

{e | x ∈ e0} : {τ}

Γ ⊢ e0 : {τ0} Γ, x:τ0 ⊢ e : int

Γ ⊢
P

{e | x ∈ e0} : int

Figure 2. Expression well-formedness

where i ∈ Z and b ∈ B, and interpret types as sets of values, as
follows:

JintK = Z = {. . . ,−1, 0, 1, 2, . . .}

JboolK = B = {t, f}

Jτ1 × τ2K = Jτ1K× Jτ2K

J{τ}K = Mfin(JτK)

We writeMfin(X) for the set of finite multisets of values. Figure 3
shows the (standard) equations defining the denotational semantics
of NRC expressions. NRC does not include arbitrary recursive
definitions, so we do not need to deal with nontermination.

We write γ : Var → Val for a finite function (or environment)
mapping variables x to values v. We write JΓK for the set of all
environments γ such that γ(x) ∈ JΓ(x)K for all x ∈ dom(γ).

The type system given above is sound in the following sense:

Proposition 1. If Γ ⊢ e : τ then JeK : JΓK→ JτK.

2.4 Operational semantics

The semantics of NRC is usually presented denotationally. For the
purposes of this paper, we will introduce an operational semantics

JxKγ = γ(x)

Jlet x = e1 in e2Kγ = Je2Kγ[x 7→ Je1Kγ]

JiKγ = i

Je1 + e2Kγ = Je1Kγ + Je2Kγ

J
P

{e | x ∈ e0}Kγ =
P

{JeKγ[x 7→ v] | v ∈ Je0Kγ}

JbKγ = b

J¬eKγ = ¬JeKγ

Je1 ∧ e2Kγ = Je1Kγ ∧ Je2Kγ

J(e1, e2)Kγ = (Je1Kγ, Je2Kγ)

Jπi(e)Kγ = πi(JeKγ)

J∅Kγ = ∅

J{e}Kγ = {JeKγ}

Je1 ∪ e2Kγ = Je1Kγ ⊔ Je2Kγ

J
S

{e | x ∈ e0}Kγ =
F

{JeKγ[x 7→ v] | v ∈ Je0Kγ}

Jif e0 then e1 else e2Kγ =



Je1Kγ if Je0Kγ = t
Je2Kγ if Je0Kγ = f

Je1 ≈ e2Kγ =



t if Je1Kγ = Je2Kγ
f if Je1Kγ 6= Je2Kγ

Jempty(e)Kγ =



t if JeKγ = ∅
f if JeKγ 6= ∅

Figure 3. Denotational semantics of NRC

based on stores in which every part of every value has a label.
This semantics will serve as the basis for our trace semantics, since
labels can easily be used to address parts of the input and output
of a query; this is challenging to accommodate in a denotational
semantics. We define value constructors k ∈ Con as follows:

k ::= i | b | (l1, l2) | {l1 : m1, . . . , ln : mn}

Here, {l1 : m1, . . . , ln : mn} denotes a multiset of labels (often
denoted L, L′), where mi is the multiplicity of li. Multiplicities
are assumed nonzero and omitted when equal to 1. Multisets are
equivalent up to reordering and we assume the elements li are
distinct. We write M⊔N for multiset union and M⊕N for domain-
disjoint multiset union, defined only when dom(M)∩ dom(N) =
∅.

We write Lab(k) for the set of labels mentioned in k. Stores
are finite maps σ : Lab → Con from labels to constructors. We
also consider label environments to be finite maps from variables
to labels γ : Var → Lab.

We will restrict attention to NRC expressions in “A-normal
form”, defined as follows:

w ::= x | l

e ::= w | let x = e1 in e2 | (w1, w2) | πi(w)

| b | ¬w | w1 ∧ w2 | if w0 then e1 else e2

| i | w1 + w2 |
P

{e2 | x ∈ w1} | w1 ≈ w2

| ∅ | {w} | w1 ∪ w2 |
S

{e2 | x ∈ w1} | empty(w)

The normalization translation is standard and straightforward, so
omitted. The operational semantics rules are shown in Figure 5.
The rules are in destination-passing style. We use two judgments:
σ, l ⇐ e ⇓ σ′, meaning “in store σ, evaluating e at location l
yields store σ′”; and σ, x∈L, e ⇓⋆ σ′, L′, meaning “in store σ,
iterating e with x bound to each element of L yields store σ′ and
result labels L′.” The second judgment deals with iteration over

3 2008/9/18

D
R

A
FT

op(l, σ) = σ(l)
op(i, σ) = i

op(l1 + l2, σ) = σ(l1) +Z σ(l2)

op(l1 ≈ l2, σ) =



t (σ(l1) = σ(l2))
f (σ(l1) 6= σ(l2))

op(b, σ) = b
op(l1 ∧ l2, σ) = σ(l1) ∧B σ(l2)

op(¬l, σ) = ¬Bσ(l)
op((l1, l2), σ) = (l1, l2)

op(∅, σ) = ∅
op({l}, σ) = {l : 1}

op(l1 ∪ l2, σ) = σ(l1) ⊔ σ(l2)

op(empty(l), σ) =



t (σ(l) = ∅)
f (σ(l) 6= ∅)

Figure 4. Definition of op

σ, l⇐ t ⇓ σ[l := op(t, σ)]

σ, l′ ⇐ e1 ⇓ σ′ σ′, l⇐ e2[l′/x] ⇓ σ′′ l′ fresh

σ, l⇐ let x = e1 in e2 ⇓ σ′′

σ(l′) = b σ, l⇐ eb ⇓ σ′

σ, l⇐ if l′ then et else ef ⇓ σ′

σ(l′) = (l1, l2)

σ, l⇐ πi(l′) ⇓ σ[l := σ(li)]

σ, x∈σ(l0), e ⇓⋆ σ′, L′

σ, l⇐
S

{e | x ∈ l0} ⇓ σ′[l :=
F

σ′[L′]]

σ, x∈σ(l0), e ⇓⋆ σ′, L′

σ, l⇐
P

{e | x ∈ l0} ⇓ σ′[l :=
P

σ′[L′]]

σ, x∈∅, e ⇓⋆ σ, ∅

σ, l′ ⇐ e[l/x] ⇓ σ′ l′ fresh

σ, x∈{l : m}, e ⇓⋆ σ′, {l′ : m}

σ, x∈L1, e ⇓⋆ σ1, L′
1 σ, x∈L2, e ⇓⋆ σ2, L′

2

σ, x∈L1 ⊕ L2, e ⇓⋆ σ1 ⊎σ σ2, L′
1 ⊕ L′

2

Figure 5. Operational semantics

multisets involved in comprehensions; this exemplifies a common
pattern used throughout the paper.

Many of the rules are similar; for brevity, we use a single rule
for terms t of the following forms:

t ::= i | l1 + l2 | l1 ≈ l2 | b | ¬l | l1 ∧ l2

| (l1, l2) | l | ∅ | {l} | l1 ∪ l2 | empty(l)

Each term is either a constant, a label, or a constructor or primitive
function applied to some labels. The meaning of each of these
operations is defined via the op function, as shown in Figure 4,
which maps a term t ∈ Term and a store σ : Lab → Con to a
constructor.

When L is a set of labels, we write σ[L] for the multiset of
constructors {σ(l) : m | l : m ∈ L}. This notation is used in
the rules for

S

and
P

. In this notation, the standard definition
of summation of multisets of integers is

P

{i1 : m1, . . . , in :
mn} =

Pn

j=1 ij ·mj . Similarly,
F

{L1 : m1, . . . , Ln : mn} =
m1 ·L1 ⊔· · ·⊔mn ·Ln}, where m · {l1 : k1, . . . , ln : kn} = {l1 :
m · k1, . . . , m · kn}.

The iteration rules σ, x∈L, e ⇓⋆ σ′, L′, evaluate e with x
bound to each l ∈ L independently, preserving the multiplicity
of labels. They split L using ⊕ and combine the result stores using
the orthogonal store merging operation ⊎σ defined as follows:

Definition 1 (Orthogonal extensions and merging) We say σ1

and σ2 are orthogonal extensions of σ if σ1 = σ ⊎ σ′
1 and

σ2 = σ⊎σ′
2 and dom(σ′

1)∩dom(σ′
2) = ∅, and we write σ1⊎σ σ2

for σ ⊎ σ′
1 ⊎ σ′

2.

Ω ⊢term i : int

Ω(w1) = Ω(w2) = int

Ω ⊢term w1 + w2 : int

Ω(w1) = Ω(w2) = int

Ω ⊢term w1 ≈ w2 : bool

Ω ⊢term (w1, w2) : Ω(w1)× Ω(w2)

Ω ⊢term b : bool

Ω(w1) = Ω(w2) = bool

Ω ⊢term w1 ∧w2 : bool

Ω(w) = bool

Ω ⊢term ¬w : bool

Ω ⊢term ∅ : {τ}

Ω(w) = τ

Ω ⊢term {w} : {τ}

Ω(w1) = {τ} = Ω(w2)

Ω ⊢term w1 ∪w2 : {τ}

Ω(w) = {τ}

Ω ⊢term empty(w) : bool Ω ⊢term w : Ω(w)

Ω ⊢term t : τ

Ω ⊢ t : τ

Ω ⊢ e1 : τ ′ Ω, x:τ ′ ⊢ e2 : τ

Ω ⊢ let x = e1 in e2 : τ

Ω(w) = τ1 × τ2

Ω ⊢ πi(w) : τi

Ω(w) = bool Ω ⊢ et : τ Ω ⊢ ef : τ

Ω ⊢ if w then et else ef : τ

Ω(w) = {τ} Ω, x:τ ⊢ e : {τ ′}

Ω ⊢
S

{e | x ∈ w} : {τ ′}

Ω(w) = {τ} Ω, x:τ ⊢ e : int

Ω ⊢
P

{e | x ∈ w} : {τ}

Figure 6. Well-formed normalized NRC expressions

Ψ ⊢con i : int Ψ ⊢con b : bool Ψ ⊢con (l1, l2) : Ψ(l1)×Ψ(l2)

τ = Ψ(l1) = · · · = Ψ(ln)

Ψ ⊢con {l1 : m1, . . . , ln : mn} : {τ} · : ·

σ : Ψ Ψ ⊢con k : τ

σ, l 7→ k : Ψ, l : τ

Figure 7. Store and constructor well-formedness

The operational semantics is illustrated on the Examples 1–2
in Figure 1; here, the labels r, r1, . . . , s, . . . uniquely identify each
part of the input tables R,S and the labels on the results reflect one
possible labeling that is consistent with examples given later.

2.5 Type system for A-normalized expressions

We define typing rules for (normalized) NRC expressions as shown
in Figure 6. We use standard contexts Γ ::= · | Γ, x:τ mapping
variables to types and store types Ψ of the form Ψ ::= · | Ψ, l:τ .
For brevity, we write Ω for a pair Ψ, Γ and Ω(w) for Ψ(l) if l = w
or Γ(x) if w = x respectively. The judgment Ψ, Γ ⊢ e : τ means
that given store type Ψ and context Γ, expression e has type τ .

The well-formedness judgment for stores is σ : Ψ, or “σ has
store type Ψ”. This judgment is defined in Figure 7, using an
auxiliary judgment Ψ ⊢con k : τ , meaning “in stores of type
Ψ, constructor k has type τ”. The well-formedness judgment for
environments γ : Var → Lab is Ψ ⊢ γ : Γ, or “in a store with type
Ψ, environment γ matches context Γ”. The rules are as follows:

Ψ ⊢ · : ·

Ψ ⊢ γ : Γ Ψ(l) = τ

Ψ ⊢ γ, x 7→ l : Γ, x 7→ τ

We sometimes combine the judgments and write Ψ ⊢ σ, γ : Γ to
indicate σ : Ψ and Ψ ⊢ γ : Γ. The operational semantics is sound
with respect to the store typing rules:

Theorem 1. Suppose Ψ ⊢ e : τ and σ : Ψ. Then if σ, l ⇐ e ⇓ σ′

then there exists Ψ′ such that Ψ′(l) = τ and σ′ : Ψ′.

2.6 Correctness of operational semantics

To show the correctness of the operational semantics relative to the
denotational semantics, we need to translate from stores and labels
to values. We define the functions σ ↑τ l by induction on types as

4 2008/9/18

D
R

A
FT

follows:

σ ↑int l = σ(l)

σ ↑bool l = σ(l)

σ ↑τ1×τ2
l = (σ ↑τ1

π1(σ(l)), σ ↑τ2
π2(σ(l)))

σ ↑{τ} l = {σ ↑τ l′ | l′ ∈ σ(l)}

We also define σ ↑Γ γ pointwise, so that (σ ↑Γ γ)(x) = σ ↑Γ(x)

γ(x). We can easily show that:

Proposition 2. If σ : Ψ and l : τ ∈ Ψ then σ ↑τ l ∈ JτK.
Moreover, if Ψ ⊢ γ : Γ then σ ↑Γ γ ∈ JΓK.

The correctness of the operational semantics can then be estab-
lished by induction on the structure of derivations:

Proposition 3. Suppose that Γ ⊢ e : τ and Ψ ⊢ σ, γ : Γ. Then
there exists σ′ such that σ, l ⇐ γ(e) ⇓ σ′. Moreover, for any such
σ′, JeK(σ ↑Γ γ) = σ′ ↑τ l.

3. Traced evaluation and adaptation

We now consider traces which are intended to capture the “execu-
tion history” of a query in a form that is itself suitable for querying.
We define traces T using the terms introduced earlier as follows:

T ::= l← t | l ← proji(l
′, l′′) | condl(l

′, b, T)e2

e1
| T1; T2

| l← sum(l′, Θ)x.e | l← comp(l′, Θ)x.e

Θ ::= {[l1]T1 : m1, . . . , [ln]Tn : mn}

Terms, introduced above, describe single computation steps. La-
beled trace collections Θ are multisets of labeled traces [l]T . As-
signment traces l ← t record that a new label l was created and
assigned the value described by trace term t. Projection traces
l← proji(l

′, l′′) record that l was created and assigned the value at
l′′, by projecting the i-th component of pair l′. Sequential composi-

tion traces T1; T2 indicate that T1 was performed first followed by
T2. Conditional traces condl(l

′, b, T)e2
e1

record that a conditional

expression tested l′, found it equal to boolean b, and then performed
trace T that writes to l. In addition, conditional traces record the al-
ternative expressions e1 and e2 corresponding to the true and false
branches. Comprehension traces l ← comp(l′, Θ)x.e record that l
was created by performing a comprehension over the set at l′, with
subtraces Θ describing the iterations; the expression x.e records the
body of the comprehension with its bound variable x. Sum traces
l← sum(l, Θ)x.e are similar.

When the expressions e1, e2, x.e in conditional or comprehen-
sion traces are irrelevant to the discussion we often omit them for
brevity, e.g. writing condl(l

′, b, T) or comp(l, Θ).
We define the result label of a trace as follows:

out(l← t) = l

out(T1; T2) = out(T2)

out(condl(l
′, b, T)e2

e1
) = l

out(l ← proji(l
′, l′′)) = l

out(l← comp(l′, Θ)x.e) = l

out(l← sum(l′, Θ)x.e) = l

We define the input labels of a labeled trace set Θ as in⋆(Θ) = {l :
m | [l]T : m ∈ Θ}. Similarly, the result labels of Θ are defined as
out⋆(Θ) = {out(T) : m | [l]T : m ∈ Θ}. Note that we treat both
as multisets.

3.1 Traced operational semantics

We now define traced evaluation, a refinement of the operational
semantics in Section 2.4. The rules for traced evaluation are shown
in Figure 8. There are two judgments: σ, l ⇐ e ⇓ σ′, T , meaning

σ, l⇐ t ⇓ σ[l := op(t, σ)], l← t

σ, l′ ⇐ e1 ⇓ σ1, T1 σ, l⇐ e2[l′/x] ⇓ σ2, T2

σ, l⇐ let x = e1 in e2 ⇓ σ2, T1; T2
l′ fresh

σ(l′) = b σ, l⇐ eb ⇓ σ′, T

σ, l⇐ if l′ then et else ef ⇓ σ′, condl(l
′, b, T)

ef
et

σ(l′) = (l1, l2)

σ, l⇐ πil
′ ⇓ σ[l := σ(li)], l← proji(l

′, li)

σ, x∈σ(l′), e ⇓⋆ σ′, L′,Θ

σ, l⇐
S

{e | x ∈ l′} ⇓ σ′[l :=
F

σ′[L′]], l← comp(l′,Θ)x.e

σ, x∈σ(l′), e ⇓⋆ σ′, L′,Θ

σ, l⇐
P

{e | x ∈ l′} ⇓ σ′[l :=
P

σ′[L′]], l← sum(l′,Θ)x.e

σ, x∈∅, e ⇓⋆ σ, ∅, ∅

σ, l′ ⇐ e[l/x] ⇓ σ′, T l′ fresh

σ, x∈{l : m}, e ⇓⋆ σ′, {l′ : m}, {[l]T : m}

σ, x∈L1, e ⇓⋆ σ1, L′
1,Θ1 σ, x∈L2, e ⇓⋆ σ2, L′

2,Θ2

σ, x∈L1 ⊕ L2, e ⇓⋆ σ1 ⊎σ σ2, L′
1 ⊕ L′

2, Θ1 ⊕Θ2

Figure 8. Traced evaluation

“Starting in store σ, evaluating e and storing the result at l yields
store σ′ and trace T ”, and σ, x∈L, e ⇓⋆ σ′, L′, Θ, meaning “Start-
ing in store σ, evaluating e with x bound to each label in L in turn
yields store σ′, result labels L′ and labeled traces Θ”.

Each operational semantics rule relates a different expression
form to its trace form. Thus, traces can be viewed as explaining
the dynamic execution history of the expression. (We will make
this precise in Section 4). In particular, terms t are translated to as-
signment traces. Let-expressions are translated to sequential com-
positions of traces. For these expressions, it would be superfluous
to record additional information such as the values of the inputs
and outputs, since this can be recovered from the input store and
the trace (as we shall see below). However, more detailed trace
information is needed for some expressions, such as projections,
conditionals, comprehensions, and sums. Their traces record some
expression annotations and some information about the structure of
the input store. Conditionals record the boolean value of the condi-
tional test as well as both branches of the conditional; comprehen-
sions and sums record the labels and subtraces of the elements of
the input set as well as the body of the comprehension. This infor-
mation is necessary to obtain the fidelity property (Section 4) and
to ensure that we can extract other forms of provenance from traces
(Section 5).

Example 3 Figure 9 shows one possible trace resulting from nor-
malizing and running query Q1 from Example 1 on the data in Fig-
ure 1. Similarly, Figure 10 shows a possible trace of the grouping-
aggregation query Q2 from Example 2. Since the example queries

use record syntax, we use terms such as (~A : ~l) and traces l ←
projA(l′, l′′) for record construction and field projection. These
operations are natural generalizations of pair terms and projection
traces. For brevity, the examples omit expression annotations.

We will need the following property:

Lemma 1. If σ, l⇐ e ⇓ σ′, T then out(T) = l.

Proof. Easy induction on derivations.

3.2 Adaptive semantics

We also introduce an adaptive semantics that adapts traces to
changes in the input. Similarly to change-propagation in AFL (Acar
et al. 2006), we can use the adaptive semantics to “recompute” an
expression when the input is changed, and to adapt the trace to be

5 2008/9/18

D
R

A
FT

l <- comp(r,{
[r1] x11 <- proj_C(r1,r13); x1 <- comp(s,{
[s1] x111 <- proj_C(s1,s11); x112 <- x11 = x111;

cond(x112,f,x113 <- {}),
[s2] x121 <- proj_C(s2,s21); x122 <- x11 = x121;

cond(x122,f,x123 <- {}),
[s3] x131 <- proj_C(s3,s31); x132 <- x11 = x131;

cond(x132,t,l11 <- proj_A(r1,r11);
l12 <- proj_B(r1,r12);
l13 <- proj_D(s3,s32);
l1 <- (A:l11,B:l12,D:l13);
x136 <- {l1})}),

[r2] x21 <- proj_C(r2,r23); x2 <- comp(s,{
[s1] x211 <- proj_C(s1,s11); x212 <- x21 = x211;

cond(x212,f,x213 <- {}),
[s2] x221 <- proj_C(s2,s21); x222 <- x21 = x221;

cond(x222,f,x223 <- {}),
[s3] x231 <- proj_C(s3,s31); x232 <- x21 = x231;

cond(x232,t,l21 <- proj_A(r2,r21);
l22 <- proj_B(r2,r22);
l23 <- proj_D(s3,s32);
l2 <- (A:l21,B:l22,D:l23);
x126 <- {l2})}),

[r3] x31 <- proj_C(r3,r33); x3 <- comp(s,{
[s1] x311 <- proj_C(s1,s11); x312 <- x31 = x311;

cond(x312,f,x313 <- {}),
[s2] x321 <- proj_C(s2,s21); x322 <- x31 = x321;

cond(x322,f,x323 <- {}),
[s3] x331 <- proj_C(s3,s31); x332 <- x31 = x331;

cond(x332,f,x333 <- {})})})

Figure 9. Example trace for Q1

l11’ <- 42; x1 <- 2;
l12’ <- sum(s,{

[s1] x11 <- proj_C(s1,s11); x12 <- x11 = x1;
cond(x12,t, x13 <- proj_D(s1,s12)),

[s2] x21 <- proj_C(s2,s21); x22 <- x21 = x1;
cond(x22,t, x23 <- proj_D(s2,s22)),

[s3] x31 <- proj_C(s3,s31); x32 <- x31 = x1;
cond(x32,f, x33 <- 0)});

l1’ <- (C:l11’,D:l12’); x <- {l1’}; y12 <- 4;
y <- comp(r,{

[r1] y11 <- proj_C(r1,r13); y12 <- y11 = y1;
cond(y12,f, y13 <- {}),

[r2] y21 <- proj_C(r2,r21); y22 <- y21 = y1;
cond(y22,f,y23 <- {}),

[r3] y31 <- proj_C(r3,r31); y32 <- y31 = y1;
cond(y32,t,l21’ <- proj_B(r3,r32);

l22’ <- proj_A(r3,r31);
l2’ <- (C:l21’,D:l22’)
y33 <- {l2’})});

l’ <- x U y

Figure 10. Trace example for query Q2

σ, l← t y σ[l := op(t, σ)], l← t

σ, T1 y σ′, T ′
1 σ′, T2 y σ′′, T ′

2

σ, T1;T2 y σ′′, T ′
1;T ′

2

σ(l′) = (l′1, l′2)

σ, l← proji(l
′, li) y σ[l := li], l← proji(l

′, l′i)

b′ = σ(l′) 6= b σ, l⇐ eb′ ⇓ σ′, T ′

σ, condl(l
′, b, T)e2

e1
y σ′, condl(l

′, b′, T ′)e2
e1

σ(l′) = b σ, T y σ′, T ′ l = out(T ′)

σ, condl(l
′, b, T)e2

e1
y σ′, condl(l

′, b, T ′)e2
e1

σ, x∈σ(l′), e, Θ y
⋆ σ′, L′,Θ′

σ, l← comp(l′,Θ)x.e y σ′[l :=
F

σ′[L′]], l← comp(l′, Θ′)x.e

σ, x∈σ(l′), e, Θ y
⋆ σ′, L′,Θ′

σ, l← sum(l′, Θ)x.e y σ′[l :=
P

σ′[L′]], l← sum(l′,Θ′)x.e

σ, x∈∅, e, Θ y
⋆ σ, ∅, ∅

[l]T ∈ Θ σ, T y σ′, T ′

σ, x∈{l : m}, e, Θ y
⋆ σ′, {out(T ′) : m}, {[l]T ′ : m}

l /∈ in⋆(Θ) l′ fresh σ, l′ ⇐ e[l/x] ⇓ σ′, T ′

σ, x∈{l : m}, e, Θ y
⋆ σ′, {l′ : m}, {[l]T ′ : m}

σ, x∈L1, e, Θ y
⋆ σ1, L′

1,Θ1 σ, x∈L2, e, Θ y
⋆ σ2, L′

2,Θ2

σ, x∈L1 ⊕ L2, e, Θ y
⋆ σ1 ⊎σ σ2, L′

1 ⊕ L′
2, Θ1 ⊕Θ2

Figure 11. Trace adaptation semantics

consistent with the new input and output. However, unlike in AFL,
our goal here is not to efficiently recompute results, but rather to
characterize how traces “represent” or “explain” computations. We
believe efficient techniques for recomputing database queries could
also be developed using similar ideas, but view this as beyond the
scope of this paper.

We define the adaptive semantics rules in Figure 11. Following
the familiar pattern established by the operational semantics, we
use two judgments: σ, T y σ′, T ′, or “Recomputing T on σ yields
result σ′ and new trace T ′”, and σ, x∈L, e, Θ y

⋆ σ′, L′, Θ′, or
“Reiterating e on σ for each x ∈ L with cached traces Θ yields
result σ′, result labels L′, and new trace Θ′”.

Many of the basic trace steps have straightforward adaptation
rules. For example, the rule for traces l← t simply recomputes the
result using the values of the input labels in the current store. For
projection, we recompute the operation and discard the cached la-
bels. Adaptation for sequential composition is also straightforward.
For conditional traces, there are two rules. If the boolean value of
the label is the same as that recorded in the trace, then we proceed
by re-using the subtrace. Otherwise, we need to fall back on the
trace semantics to compute the other branch.

The rules for comprehension and summation traces make use
of the iteration adaptation judgment. In each case, we traverse the
current store value of l0. For each label l in this set, we re-compute
the body of the comprehension, re-using a trace [l]T if present in
Θ, otherwise evaluating e[l/x] in the traced semantics. The iterative
judgments return a new labeled trace set Θ and its return labels L′.
Note that trace adaptation ignores the multiplicity of cached traces.
When we re-use a cached trace [l]T on a label l with multiplicity
m, we simply rerun the trace and use m as the multiplicity of the
result label and new trace.

4. Metatheory

We now investigate the metatheoretic properties of the traced eval-
uation and trace adaptation semantics.

6 2008/9/18

D
R

A
FT

σ(l) = op(t, σ)

σ |= l ← t

σ(l′) = (l1, l2) σ(l) = σ(li)

σ |= l ← proji(l
′, li)

σ |= T1 σ |= T2

σ |= T1; T2

σ(l′) = b σ |= T out(T) = l

σ |= condl(l
′, b, T)e2

e1

σ(l′) = in⋆(Θ) σ |=⋆ Θ σ(l) =
F

σ[out⋆(Θ)]

σ |= l← comp(l′, Θ)x.e

σ(l′) = in⋆(Θ) σ |=⋆ Θ σ(l) =
P

σ[out⋆(Θ)]

σ |= l← sum(l′, Θ)x.e

σ |=⋆ ∅

σ |=⋆ Θ1 σ |=⋆ Θ2

σ |=⋆ Θ1 ⊕Θ2

σ |= T

σ |=⋆ {[l]T : m}

Figure 12. Declarative semantics of traces

We first show that the traced semantics correctly implements
the operational semantics of NRC expressions, if we ignore traces.
This is a straightforward induction in both directions.

Theorem 2. For any σ, l, e, σ′, we have σ, l ⇐ e ⇓ σ′ if and only
if σ, l⇐ e ⇓ σ′, T for some T .

We now turn to the correctness of the trace semantics. We
can view the trace semantics as both evaluating e in a store σ
yielding σ′ and translating e to a trace T which “explains” the
execution of e. What properties should a trace have in order to be
a valid explanation? We identify two such properties which help to
formalize this intuition. They are called consistency and fidelity.

Consistency The trace is meant to be an explanation of what
happened when e was evaluated on σ. For example, if the trace
says that l ← l1 + l2 but σ′(l) 6= σ′(l1) + σ′(l2) then this
is inconsistent with the real execution. Also, if the trace contains
condl(l

′, f, T)e2
e1

, but l′ actually evaluated to t in the evaluation of
e, then the trace is inconsistent with the actual execution. As a third
example, if the trace contains l′ ← comp(l, {[l1]T1, [l2]T2})x.e

whereas σ(l) = {l2, l3} then the trace is inconsistent because it
does not correctly show the behavior of the comprehension over l.

To formalize this notion of consistency, observe that we can
view a trace declaratively as a collection of statements about the
values in the store. We define a judgment σ |= T , meaning “T
is satisfied in store σ”. We also employ an auxiliary judgment
σ |=⋆ Θ, meaning “Each trace in Θ is satisfied in store σ”. The
satisfiability relation is defined in Figure 12.

Theorem 3 (Consistency). If σ, l⇐ e ⇓ σ′, T then σ′ |= T .

Fidelity Consistency is a necessary, but not sufficient, require-
ment for traces to be “explanations”. It tells us that the trace records
valid information about the results of an execution. However, this
is not enough, in itself, to say that the trace really “explains” the
execution, because a consistent trace might not tell us what might
have happened in other possible executions. To see why, consider a
simple expression if ly then lx + lz else lz run against input store
[lx = 42, ly = t, lz = 5}. Consider the traces, T1 = l ← lx + lz
and T2 = l ← 47. Both of these traces are consistent, but neither
really “explain” what actually happened. Saying that l ← lx + lz
or l ← 47 is enough to know what the result value was in the
actual run, but not what the result would have been under all con-
ditions. The dependence on lx is lost in T2. If we rerun T1 with a
different input store lx = 37, then T1 will correctly return 42 while
T2 will still return 47. Moreover, the dependences on ly are lost
in both: changing ly to f invalidates both traces. Instead, the trace

T3 = condl(ly , t, l ← lx + lz)
lz
lx+lz

records enough information

to recompute the result under any (reasonable) change to the input
store.

We call traces faithful to e if they record enough information
to recompute e when the input store changes. We first consider a
property called partial fidelity. Partial fidelity tells us that the trace
adaptation semantics is partially correct with respect to the traced
evaluation semantics. That is, if T was obtained by running e on σ1

and we can successfully adapt T to a new input σ2 to obtain σ′
2 and

T ′, then we know that σ′
2 and T ′ could also have been obtained by

traced evaluation from σ2 “from scratch”.
We first need some lemmas:

Lemma 2. If [l]T ∈ Θ and σ, x∈L, e ⇓⋆ σ′, L′, Θ then for some
σ′′ we have σ, out(T)⇐ e[l/x] ⇓ σ′′, T .

Proof. Induction on the structure of σ, x∈L, e ⇓⋆ σ′, L′, Θ.

• The case where Θ = ∅ is vacuous since [l]T ∈ Θ.
• Suppose the derivation is of the form

σ, x∈L1, e ⇓
⋆ σ1, L

′
1, Θ1 σ, x∈L2, e ⇓

⋆ σ2, L
′
2, Θ2

σ, x∈L1 ∪ L2, e ⇓
⋆ σ1 ⊎σ σ2, L

′
1 ∪ L′

2, Θ1 ⊕Θ2

Then either [l]T ∈ Θ1 or [l]T ∈ Θ2; the cases are symmetric.
In either case, the induction hypothesis applies and we have
σ, out(T)⇐ e[l/x] ⇓ σi, T as desired.

• Suppose the derivation is of the form

σ, l′ ⇐ e[l/x] ⇓ σ′, T

σ, x∈{l : m}, e ⇓⋆ σ′, {l′ : m}, {[l]T : m}

Then the subderivation σ, l′ ⇐ e[l/x] ⇓ σ′, T is the desired
conclusion.

Lemma 3. If [l]T ∈ Θ and Ψ ⊢ τ ⊲ Θ ⊲ τ ′ then we have
Ψ, l:τ ⊢ T ⊲ out(T) : τ ′.

Proof. Straightforward induction similar to Lemma 2.

Lemma 4. If σ, T y σ′, T ′ then out(T) = out(T ′).

Proof. Straightforward induction on derivations.

Theorem 4 (Partial fidelity). Let σ1, σ
′
1, σ2, σ

′
2, T, T ′, Θ, Θ′ be

given.

1. If σ1, l ⇐ e ⇓ σ′
1, T and σ2, T y σ′

2, T
′ then σ2, l ⇐ e ⇓

σ′
2, T

′.

2. If σ1, x∈L1, e ⇓
⋆ σ′

1, L
′
1, Θ and σ2, L2∈e, Θ, σ′

2 y
⋆ L′

2, Θ
′,

then σ2, x∈L2, e ⇓
⋆ σ′

2, L
′
2, Θ

′

Proof. Induction on the structure of the second derivation, with
inversion on the first derivation. Lemma 2 is needed in part (2) to
deal with the adaptation case where [l]T ∈ Θ holds.

For part 1, the cases are as follows:

• If the second derivation is of the form

σ2, l ← t y σ2[l := op(t, σ2)], l ← t

then the first must be of the form

σ1, l ⇐ t ⇓ σ1[l := op(t, σ1)], l ← t

and so we can immediately conclude

σ2, l ⇐ t ⇓ σ2[l := op(t, σ2)], l ← t

7 2008/9/18

D
R

A
FT

• If the second derivation is of the form

σ2(l
′) = (l′1, l

′
2)

σ2, l ← proji(l
′, li) y σ2[l := σ2(l

′
i)], l← proji(l

′, l′i)

then the first derivation is of the form

σ1(l
′) = (l1, l2)

σ1, l ⇐ πi(l
′) ⇓ σ1[l := σ1(li)], l← proji(l

′, li)

and so we can immediately conclude

σ2(l
′) = (l′1, l

′
2)

σ2, l ⇐ πi(l
′) ⇓ σ2[l := σ2(l

′
i)], l← proji(l

′, l′i)

• If the second derivation is of the form

σ2, T11 y σ′
2, T21 σ′

2, T12 y σ′′
2 , T22

σ2, T11; T12 y σ′′
2 , T21; T22

then the first derivation must be of the form

σ1, l
′ ⇐ e1 ⇓ σ′

1, T11 σ′
1, l⇐ e2[l

′/x] ⇓ σ′′
1 , T12

σ1, l ⇐ let x = e1 in e2 ⇓ σ′′
1 , T11; T12

Then by induction we have σ2, l
′ ⇐ e1 ⇓ σ′

2, T21 and σ′
2, l ⇐

e2[l/x] ⇓ σ′′
2 , T22, so can conclude

σ2, l
′ ⇐ e1 ⇓ σ′

2, T21 σ′
2, l⇐ e2[l

′/x] ⇓ σ′′
2 , T22

σ2, l ⇐ let x = e1 in e2 ⇓ σ′′
2 , T21; T22

• If the second derivation is of the form

σ2(l) = b σ2, T1 y σ′
2, T2

σ2, condl(l
′, b, T1)

ef
et y σ′

2, condl(l
′, b, T2)

ef
et

then the first derivation must be of the form

σ1(l
′) = b σ1, l⇐ eb ⇓ σ′

1, T1

σ1, l⇐ if l′ then et else ef ⇓ σ′
1, condl(l

′, b, T1)
ef
et

We proceed by induction, obtaining σ2, l ⇐ eb ⇓ σ′
2, T2 and

concluding

σ2(l) = b σ2, l⇐ eb ⇓ σ′
2, T2

σ2, l⇐ if l′ then et else ef ⇓ σ′
2, condl(l

′, b, T2)
ef
et

• If the second derivation is of the form:

b 6= σ2(l) = b′ σ2, l ⇐ eb′ ⇓ σ′
2, T2

σ2, condl(l
′, b, T1)

ef
et y σ′

2, condl(l
′, b, T2)

ef
et

then again the first derivation must be of the form

σ1(l
′) = b σ1, l⇐ eb ⇓ σ′

1, T1

σ1, l⇐ if l′ then et else ef ⇓ σ′
1, condl(l

′, b, T1)
ef
et

amd we may immediately conclude:

σ2(l) = b′ σ2, l⇐ eb′ ⇓ σ′
2, T2

σ2, l ⇐ if l′ then et else ef ⇓ σ′
2, condl(l

′, b′, T2)
ef
et

• If the second derivation is of the form

σ2, x∈σ2(l′), e, Θ1 y
⋆ σ′

2, L2, Θ2

σ2, l← comp(l′, Θ1)x.e y σ′
2[l :=

F

σ′
2[L2]], l← comp(l′,Θ2)x.e

then the first derivation must be of the form

σ1, x∈σ1(l
′), e ⇓⋆ σ′

1, L1, Θ1

σ1, l⇐
S

{e | x ∈ l′} ⇓ σ′
1[l :=

F

σ′[L1]], l← comp(l′, Θ1)x.e

By induction hypothesis (2), we have that σ2, x∈σ2(l
′), e ⇓⋆

σ′
2, L2, Θ2 holds, so can conclude:

σ2, x∈σ2(l
′), e ⇓⋆ σ′

2, L2, Θ2

σ2, l⇐
S

{e | x ∈ l′} ⇓ σ′
2[l :=

F

σ′[L2]], l← comp(l′, Θ2)x.e

• If the second derivation is of the form

σ2, x∈σ2(l′), e, Θ1 y
⋆ σ′

2, L2, Θ2

σ2, l← sum(l′, Θ1)x.e y σ′
2[l :=

P

σ′
2[L2]], l← sum(l′, Θ2)x.e

the reasoning is similar to the previous case.

For part (2), the proof is by induction on the second derivation:

• If the derivation is of the form:

σ2, x∈∅, e, Θ1 y
⋆ σ2, ∅, ∅

then we can immediately conclude

σ2, x∈∅, e ⇓
⋆ σ2, ∅, ∅

• If the derivation is of the form:

σ2, x∈L21, e, Θ1 y
⋆ σ21, L

′
21, Θ21

σ2, x∈L22, e, Θ1 y
⋆ σ22, L

′
22, Θ22

σ2, x∈L21 ∪ L22, e, Θ1 y
⋆ σ21 ⊎σ2

σ22, L
′
21 ∪ L′

22, Θ21 ∪Θ22

then we proceed by induction, concluding:

σ2, x∈L21, e ⇓
⋆ σ21, L

′
21, Θ21

σ2, x∈L22, e ⇓
⋆ σ22, L

′
22, Θ22

σ2, x∈L21 ∪ L22, e ⇓
⋆ σ21 ⊎σ2

σ22, L
′
21 ∪ L′

22, Θ21 ∪Θ22

• If the derivation is of the form

l /∈ in⋆(Θ1) l′ fresh σ2, l
′ ⇐ e[l/x] ⇓ σ′

2, T2

σ2, x∈{l : m}, e, Θ1 y
⋆ σ′

2, {l
′ : m}, {[l]T2 : m}

then we can immediately conclude:

σ2, l
′ ⇐ e[l/x] ⇓ σ′

2, T2 l′ fresh

σ2, x∈{l : m}, e ⇓⋆ σ′
2, {l

′ : m}, {[l]T2 : m}

• If the derivation is of the form:

[l]T1 ∈ Θ1 σ2, T1 y σ′
2, T2

σ2, x∈{l : m}, e, Θ1 y
⋆ σ′

2, {out(T2) : m}, {[l]T2 : m}

then observe that out(T1) = out(T2) by Lemma 4. Moreover,
by Lemma 2, we have σ1, out(T1) ⇐ e[l/x] ⇓ σ′′

1 , T1, so by
induction we have σ2, out(T1)⇐ e[l/x] ⇓ σ′

2, T2, and we can
conclude

σ2, out(T1)⇐ e[l/x] ⇓ σ′
2, T2

σ2, x∈{l : m}, e ⇓⋆ σ′
2, {out(T2) : m}, {[l]T2 : m}

However, partial fidelity is rather weak since there is no guaran-
tee that T can be adapted to a given σ2. To formalize and prove to-
tal fidelity, we need to be careful about what changed inputs σ2 we
consider. Obviously, σ2 must be type-compatible with T in some
sense; for instance we cannot expect a trace such as l ← l1 + l2 to
adapt to an input in which l1 = t. Thus, we need to set up a type
system for stores and traces and prove type-soundness for traced
evaluation and adaptation.

More subtly, if we have a trace l← t that writes to l and we try
to evaluate it on a different store that already defines l, perhaps at a
different type, then the adaptation step may succeed, but the result
store may be ill-formed, leading to problems later on. In general,
we need to restrict attention to altered stores σ2 that preserve the
types of labels read by T and avoid labels written by T .

We say that σ matches Ψ avoiding S (written σ <: Ψ # S) if
σ : Ψ′ for some Ψ′ ⊇ Ψ with dom(Ψ′)∩S = ∅. That is, σ satisfies
the type information in Ψ, and may have other labels, but the other
labels cannot overlap with S. Moreover, when L is a collection
of labels {l1 : m1, . . . , ln : mn}, we sometimes write L:τ as an

8 2008/9/18

D
R

A
FT

Ψ ⊢term t : τ

Ψ ⊢ l← t ⊲ l : τ

Ψ(l′) = τ1 × τ2

Ψ ⊢ l← proji(l
′, li) ⊲ l : τi

Ψ ⊢ T1 ⊲ l′ : τ ′ Ψ, l′:τ ′ ⊢ T2 ⊲ l : τ

Ψ ⊢ T1;T2 ⊲ l : τ

Ψ(l′) = bool Ψ ⊢ T ⊲ l : τ Ψ ⊢ et : τ Ψ ⊢ ef : τ

Ψ ⊢ condl(l
′, b, T)

ef
et ⊲ l : τ

Ψ(l′) = {τ ′} Ψ ⊢ τ ′ ⊲ Θ ⊲ {τ} Ψ, x:τ ′ ⊢ e : {τ}

Ψ ⊢ l← comp(l′, Θ)x.e ⊲ l : {τ}

Ψ(l′) = {τ ′} Ψ ⊢ τ ′ ⊲ Θ ⊲ int Ψ, x:τ ′ ⊢ e : int

Ψ ⊢ l← sum(l′,Θ)x.e ⊲ l : int

Ψ ⊢ τ ⊲ ∅ ⊲ τ ′

Ψ, l:τ ⊢ T ⊲ l′ : τ ′

Ψ ⊢ τ ⊲ {[l]T : m} ⊲ τ ′

Ψ ⊢ τ ⊲ Θ1 ⊲ τ ′ Ψ ⊢ τ ⊲ Θ2 ⊲ τ ′

Ψ ⊢ τ ⊲ Θ1 ⊕Θ2 ⊲ τ ′

Figure 13. Trace well-formedness

abbreviation for l1 : τ, . . . , ln : τ ; thus, σ <: Ψ, L:τ # S stands
for σ <: Ψ, l1:τ, . . . , ln:τ # S.

We also need to be careful to avoid making the type system
too specific about the labels used internally by T , because these
may change when T is adapted. We therefore introduce a typing
judgment for traces Ψ ⊢ T ⊲ l : τ , meaning “In a store matching
type Ψ, trace T produces an output l of type τ .” Trace typing does
not expose the types of labels created by T for internal use in the
rules for let and comprehension. The rules are shown in Figure 13,
along with the auxiliary judgment Ψ ⊢ τ ⊲ Θ ⊲ τ ′, meaning “In a
store matching Ψ, the labeled traces Θ operate on inputs of type τ
and produce outputs of type τ ′”.

We now show that for well-formed expressions and input
stores, traced evaluation can construct well-formed output stores
and traces avoiding any finite set of labels. Here, we need label-
avoidance constraints to avoid label conflicts between σ1 and σ2 in
the ⇓⋆-rule for Θ1 ⊕ Θ2. We also need these constraints later in
proving Theorem 7. Next we show traced evaluation is sound, that
is, produces well-formed traces and states.

Theorem 5 (Traceability). Let S be a finite set of labels, and
Ψ, e, τ, l, σ be arbitrary.

1. If Ψ ⊢ e : τ and σ <: Ψ # S ∪{l} then there exists σ′, T such
that σ, l ⇐ e ⇓ σ′, T and σ′ <: Ψ, l:τ # S.

2. If Ψ, x:τ ⊢ e : τ ′ and σ <: Ψ, L:τ # S ∪ L′ then there exists
σ′, Θ such that σ, x∈L, e ⇓⋆ σ′, L′, Θ and σ′ <: Ψ, L′:τ ′ # S

Proof. For part (1), proof is by induction on the structure of deriva-
tions of Ψ ⊢ e : τ .

• If the expression is a term t then we have

Ψ ⊢term t : τ

Ψ ⊢ t : τ

Hence, Ψ ⊢con op(σ, t) : τ so

σ, l ⇐ t ⇓ σ[l := op(σ, t)], l ← t

where σ[l := op(σ, t)] <: Ψ, l:τ # S.
• If the derivation is of the form

Ψ ⊢ l′ : τ1 × τ2

Ψ ⊢ πi(l
′) : τi

then we know Ψ ⊢con σ(l′) : τ1 × τ2 so we must have
σ(l′) = (l1, l2). Hence, we can derive

σ(l′) = (l1, l2)

σ, l⇐ πi(l
′) ⇓ σ[l := σ(li)], l ← proji(l

′, li)

where σ[l := σ(li)] <: Ψ, l:τi # S.

• If the derivation is of the form

Ψ ⊢ e1 : τ ′ Ψ, x:τ ′ ⊢ e2 : τ

Ψ ⊢ let x = e1 in e2 : τ

then choose a fresh l′ 6∈ dom(σ) ∪ S ∪ {l}. By induction we
have σ, l′ ⇐ e1 ⇓ σ′, T1 where σ′ <: Ψ, l′:τ ′ # S ∪ {l}.
Substituting l′ for x, we have Ψ, l′:τ ′ ⊢ e2[l/x] : τ so by
induction we also have σ′, l ⇐ e2[l

′/x] ⇓ σ′′, T2 where
σ′′ <: Ψ, l′:τ ′, l:τ # S. Finally we can derive

l′ fresh σ, l′ ⇐ e1 ⇓ σ′, T1 σ′, l⇐ e2[l
′/x] ⇓ σ′′, T2

σ, l ⇐ let x = e1 in e2 ⇓ σ′′, T1; T2

and σ <: Ψ, l:τ # S.

• If the derivation is of the form

Ψ(l′) = bool Ψ ⊢ et : τ Ψ ⊢ ef : τ

Ψ ⊢ if l′ then et else ef : τ

then we must have σ(l′) = b ∈ B. By induction, we obtain
σ, l ⇐ eb ⇓ σ′, T where σ′ <: Ψ, l:τ # S. Thus, we can
conclude

σ(l) = b σ, l ⇐ eb ⇓ σ′, T

σ, l ⇐ if l′ then et else ef ⇓ σ′, condl(l
′, b, T)

ef
et

• If the derivation is of the form

Ψ(l) = {τ ′} Ψ, x:τ ′ ⊢ e : {τ}

Ψ ⊢
S

{e | x ∈ l} : {τ}

then we must have σ(l) = L where Ψ ⊢con L′ : {τ ′}. Then
there exist σ′, L′, Θ such that σ, x∈σ(l), e ⇓⋆ σ′, L′, Θ and
σ <: Ψ, L′:{τ ′}# {l′} ∪ S. Hence we can conclude

σ, x∈σ(l), e ⇓⋆ σ′, L′, Θ

σ, l′ ⇐
S

{e | x ∈ l} ⇓ σ′[l′ :=
F

σ′[L′]], l′ ← comp(l, Θ)x.e

and σ <: Ψ, l′:{τ ′} # S.

• The case for
P

{e | x ∈ l} is similar.

For part (2), the proof is by induction on L:

• If L = ∅ then we can immediately conclude

σ, x∈∅, e ⇓⋆ σ, ∅, ∅

where σ <: Ψ # S.

• If L = L1 ⊕ L2 then by induction we have σ, x∈L1, e ⇓
⋆

σ1, L
′
1, Θ1 where σ1 <: Ψ, L1:τ

′ # S. Moreover, we also have
σ, x∈L2, e ⇓

⋆ σ2, L
′
2, Θ2 where σ2 <: Ψ, L2:τ

′ # (dom(σ1)−
dom(σ)) ∪ S. Thus, σ1 ⊎σ σ2 exists and avoids S; hence,

σ, x∈L1, e ⇓
⋆ σ1, L

′
1, Θ1 σ, x∈L2, e ⇓

⋆ σ2, L
′
2, Θ2

σ, x∈L1 ⊕ L2, e ⇓
⋆ σ1 ⊎σ σ2, L

′
1 ⊕ L′

2, Θ1 ⊕Θ2

and σ1 ⊎σ σ2 <: Ψ, L1 ∪ L2:τ
′ # S.

• If L = {l : m} then we can substitute to obtain Ψ, l:τ ⊢
e[l/x] : τ ′. Choose l′ fresh for dom(σ) ∪ S so that we have
σ <: Ψ, l:τ # S ∪ {l′}. Then by induction we have σ, l′ ⇐
e[l/x] ⇓ σ′, T where σ′ <: Ψ, l:τ, l′:τ ′ # S. Then we can
conclude

l′ fresh σ, l′ ⇐ e[l/x] ⇓ σ′, T

σ, x∈{l : m}, e ⇓⋆ σ′, {l′ : m}, {[l]T : m}

9 2008/9/18

D
R

A
FT

since σ′ <: Ψ, l′:τ ′ # S.

Theorem 6 (Soundness of traced evaluation). Let Ψ, e, τ, l, σ be
arbitrary.

1. If Ψ ⊢ e : τ and σ, l ⇐ e ⇓ σ′, T and σ <: Ψ then
Ψ ⊢ T ⊲ l : τ and σ′ <: Ψ, l:τ .

2. If Ψ, x:τ ⊢ e : τ ′ and σ <: Ψ, L : τ and σ, x∈L, e ⇓⋆

σ′, L′, Θ then Ψ ⊢ τ ⊲ Θ ⊲ τ ′ and σ′ <: Ψ, L′ : τ ′.

Proof. For part (1), proof is by induction on the second derivation.

• If the derivation is of the form

σ, l ⇐ t ⇓ σ[l := op(t, σ)], l← t

then by inversion we have that Ψ ⊢term t : τ and so we can
derive

Ψ ⊢term t : τ

Ψ ⊢ l← t ⊲ l : τ

• If the derivation is of the form

σ(l′) = (l1, l2)

σ, l⇐ πil
′ ⇓ σ[l := σ(li)], l← proji(l

′, li)

then by inversion we have that Ψ(l′) = τ1 × τ2, so we may
conclude:

Ψ(l′) = τ1 × τ2

Ψ ⊢ l ← proji(l
′, li) ⊲ l : τi

• If the derivation is of the form

σ, l′ ⇐ e1 ⇓ σ1, T1 σ, l⇐ e2[l
′/x] ⇓ σ2, T2

σ, l ⇐ let x = e1 in e2 ⇓ σ2, T1; T2
l′ fresh

then we must also have

Ψ ⊢ e1 : τ ′ Ψ, x:τ ′ ⊢ e2 : τ

Ψ ⊢ let x = e1 in e2 : τ

and by induction and substituting l′ for x we have Ψ ⊢ T1 ⊲ l′ :
τ ′ and Ψ, l′:τ ′ ⊢ T2 ⊲ l : τ . So we may conclude

Ψ ⊢ T1 ⊲ l′ : τ ′ Ψ, l′:τ ′ ⊢ T2 ⊲ l : τ

Ψ ⊢ T1; T2 ⊲ l : τ

• If the derivation is of the form:

σ(l′) = b σ, l ⇐ eb ⇓ σ′, T

σ, l ⇐ if l′ then et else ef ⇓ σ′, condl(l
′, b, T)

ef
et

then by inversion we must have

Ψ(l′) = bool Ψ ⊢ et : τ Ψ ⊢ ef : τ

Ψ ⊢ if l′ then et else ef : τ

Hence whatever the value of b, by induction we can obtain
Ψ ⊢ T ⊲ l : τ . To conclude, we derive:

Ψ(l′) = bool Ψ ⊢ T ⊲ l : τ Ψ ⊢ et : τ Ψ ⊢ ef : τ

Ψ ⊢ condl(l
′, b, T)ef

et ⊲ l : τ

• If the derivation is of the form

σ, x∈σ(l′), e ⇓⋆ σ′, L′, Θ

σ, l ⇐
S

{e | x ∈ l′} ⇓ σ′[l :=
F

σ′[L′]], l← comp(l′, Θ)x.e

then by inversion we have

Ψ(l′) = {τ ′} Ψ, x:τ ′ ⊢ e : {τ}

Ψ ⊢
S

{e | x ∈ l′} : {τ}

Then by induction hypothesis (2) we have that Ψ ⊢ τ ′⊲Θ⊲{τ},
so we may conclude:

Ψ(l′) = {τ ′} Ψ ⊢ τ ′ ⊲ Θ ⊲ {τ} Ψ, x:τ ′ ⊢ e : {τ}

Ψ ⊢ l← comp(l′, Θ)x.e ⊲ l : {τ}

• For the
P

case,

σ, x∈σ(l′), e ⇓⋆ σ′, L′, Θ

σ, l ⇐
P

{e | x ∈ l′} ⇓ σ′[l :=
P

σ′[L′]], l← sum(l′, Θ)x.e

the reasoning is similar to the previous case.

For part (2), proof is by induction on the structure of the third
derivation.

• If the derivation is of the form:

σ, x∈∅, e ⇓⋆ σ, ∅, ∅

then we can immediately derive

Ψ ⊢ τ ⊲ ∅ ⊲ τ ′

• If the derivation is of the form:

σ, l′ ⇐ e[l/x] ⇓ σ′, T

σ, x∈{l : m}, e ⇓⋆ σ′, {l′ : m}, {[l]T : m}

then we may substitute l for x to obtain Ψ, l:τ ⊢ e[l/x] : τ ′

and so by induction hypothesis (1) we have Ψ, l:τ ⊢ T ⊲ l′ : τ ′.
We may conclude by deriving:

Ψ, l:τ ⊢ T ⊲ l′ : τ ′

Ψ ⊢ τ ⊲ {[l]T : m} ⊲ τ ′

• If the derivation is of the form:

σ, x∈L1, e ⇓
⋆ σ1, L

′
1, Θ1 σ, x∈L2, e ⇓

⋆ σ2, L
′
2, Θ2

σ, x∈L1 ⊕ L2, e ⇓
⋆ σ1 ⊎σ σ2, L

′
1 ⊕ L′

2, Θ1 ⊕Θ2

then by induction we obtain Ψ ⊢ τ ⊲Θ1⊲τ ′ and Ψ ⊢ τ ⊲Θ2 ⊲τ ′

so conclude

Ψ ⊢ τ ⊲ Θ1 ⊲ τ ′ Ψ ⊢ τ ⊲ Θ2 ⊲ τ ′

Ψ ⊢ τ ⊲ Θ1 ⊕Θ2 ⊲ τ ′

We define the set of labels written by T , or Wr(T), as follows:

Wr(l ← t) = {l}

Wr(l ← proji(l
′, li)) = {l}

Wr(condl(l
′, b, T)e2

e1
) = {l} ∪Wr(T)

Wr(T1; T2) = Wr(T1) ∪Wr(T2)

Wr(l ← comp(l′, Θ)x.e) = {l} ∪Wr(Θ)

Wr(l← sum(l′, Θ)x.e) = {l} ∪Wr(Θ)

Wr(Θ) =
S

{Wr(T) | [l]T : m ∈ Θ}

Finally, we show that the adaptive semantics always succeeds
for well-formed traces T and well-formed stores that avoid the
labels written by T .

Theorem 7 (Adaptability). Let S be a finite set of labels, and
Ψ, T, τ, l, σ be arbitrary.

1. If Ψ ⊢ T ⊲ l : τ and σ <: Ψ # S ∪Wr(T) then there exists
σ′, T ′ such that σ, T y σ′, T ′ and σ′ <: Ψ, l:τ # S.

2. If Ψ ⊢ τ ⊲ Θ ⊲ τ ′ and Ψ, x:τ ⊢ e : τ ′ and σ <: Ψ, L :
τ # Wr(Θ)∪S then there exist σ′, L′, Θ′ such that σ, x∈L, e, Θ y

⋆

σ′, L′, Θ′ and σ′ <: Ψ, L′:τ ′ # S.

10 2008/9/18

D
R

A
FT

Proof. For the first part, proof is by induction on the structure of
the first derivation.

• If the derivation is of the form

Ψ ⊢term t : τ

Ψ ⊢ l← t ⊲ l : τ

then we can conclude

σ, l ← t y σ[l := op(t, σ)], l ← t

since σ avoids Wr(l← t) = {l}. Moreover, σ <: Ψ, l:τ # S.
• If the derivation is of the form

Ψ(l′) = τ1 × τ2

Ψ ⊢ l ← proji(l
′, li) ⊲ l : τi

then σ(l′) must be a pair (l′1, l
′
2), and we can conclude

σ(l′) = (l′1, l
′
2)

σ, l ← proji(l
′, li) y σ[l := σ(l′i)], l← proji(l

′, l′i)

since σ avoids Wr(l ← proji(l
′, li)) = {l}. Note that we do

not re-use li so the typing judgment does not need to check that
it is of the right type. In fact, li need not be in Ψ at all. Finally,
σ′ <: Ψ, l:τi # S.
• If the derivation is of the form

Ψ ⊢ T1 ⊲ l′ : τ ′ Ψ, l′:τ ′ ⊢ T2 ⊲ l : τ

Ψ ⊢ T1; T2 ⊲ l : τ

then since l′ ∈ Wr(T1) and σ <: Ψ # Wr(T1) ∪ (Wr(T2) ∪
S), by induction we have that σ, T1 y σ′, T ′

1 and σ′ <:
Ψ, l′:τ ′ # Wr(T2)∪S. Moreover, since σ′ <: Ψ, l′:τ ′ # Wr(T2)∪
S by induction we have σ′, T2 y σ′′, T ′

2 and σ′′ <: Ψ, l′:τ ′, l:τ # S.
Hence we may derive

σ, T1 y σ′, T ′
1 σ′, T2 y σ′′, T ′

2

σ, T1; T2 y σ′′, T ′
1; T

′
2

and also we have σ′′ <: Ψ, l:τ # S as desired.
• If the derivation is of the form

Ψ(l′) = bool Ψ ⊢ T ⊲ l : τ Ψ ⊢ et : τ Ψ ⊢ ef : τ

Ψ ⊢ condl(l
′, b, T)

ef
et ⊲ l : τ

then we must have σ(l′) ∈ B. There are two cases. Suppose
σ(l) = b. Then by induction we have that σ, T y σ′, T ′ and
σ′ <: Ψ, l:τ # S. We can conclude

σ(l′) = b σ, T y σ′, T ′

σ, condl(l
′, b, T)ef

et y σ′, condl(l
′, b, T ′)ef

et

Otherwise, σ(l′) = b′ 6= b. So using Theorem 5, we have σ′, T ′

such that σ, l ⇐ eb′ ⇓ σ′, T ′ and σ′ <: Ψ, l:τ # S, so we may
conclude

σ(l′) = b′ 6= b σ, l⇐ eb′ ⇓ σ′, T ′

σ, condl(l
′, b, T)ef

et y σ′, condl(l
′, b, T ′)ef

et

• If the derivation is of the form

Ψ(l′) = {τ ′} Ψ ⊢ τ ′ ⊲ Θ ⊲ {τ} Ψ, x:τ ′ ⊢ e : {τ}

Ψ ⊢ l← comp(l′, Θ)x.e ⊲ l : {τ}

then for L = σ(l′), since Ψ ⊢con σ(l′) : {τ ′} we have
σ <: Ψ, L : τ ′ # Wr(Θ) ∪ S. Hence by induction we
have σ′, L′, Θ′ such that σ, x∈σ(l′), e,Θ y

⋆ σ′, L′, Θ′ and
σ′ <: Ψ, L′ : {τ} # S. Therefore,

F

σ′[L′] is well-defined so
we can conclude

σ, x∈σ(l′), e, Θ y
⋆ σ′, L′, Θ′

σ, l ← comp(l′, Θ)x.e y σ′[l :=
F

σ′[L′]], l← comp(l′, Θ′)x.e

• If the derivation is of the form

Ψ(l′) = {τ ′} Ψ ⊢ τ ′ ⊲ Θ ⊲ int Ψ, x:τ ′ ⊢ e : int

Ψ ⊢ l← sum(l′, Θ)x.e ⊲ l : int

then the reasoning is similar to the previous case.

For part (2), the proof is by induction on the structure of L.

• If L = ∅, then then we can simply conclude

σ, x∈∅, e, Θ y
⋆ ∅, ∅,

• If L = {l : m} then there are two cases. If [l]T ∈ Θ
for some T , then we proceed as follows. Let l′ = out(T).
By Lemma 3, we have that Ψ, l:τ ⊢ e[l/x] ⊲ l′ : τ ′. So,
by induction hypothesis (1), we have σ, T y σ′, T ′ where
σ′ <: Ψ, l′:τ ′ # S. To conclude, we derive:

[l]T ∈ Θ σ, T y σ′, T ′

σ, x∈{l : m}, e, Θ y
⋆ σ′, {l′ : m}, {[l]T ′ : m}

Otherwise, l /∈ in⋆(Θ), so we fall back on traced evaluation.
Choose l′ fresh for l, σ and S. Since σ <: Ψ, l:τ # S, by
Theorem 5 we can obtain σ, l′ ⇐ e ⇓ σ′, T ′ where σ <:
Ψ, l′:τ ′ # S. To conclude we derive

l 6∈ in⋆(Θ) l′ fresh σ, l′ ⇐ e[l/x] ⇓ σ′, T ′

σ, x∈{l : m}, e, Θ y
⋆ σ′, {l′ : m}, {[l]T ′ : m}

• If L = L1 ⊕ L2, then clearly, σ <: Ψ, L1:τ # Wr(Ts) ∪ S
so by induction we have σ, x∈L1, e,Θ y

⋆ σ1, L
′
1, Θ1 where

σ1 <: Ψ, L′
1:τ

′ # S. Similarly, we have σ, x∈L2, e, Θ y
⋆

σ2, L
′
2, Θ2 where σ2 <: Ψ, L′

2:τ
′ # (dom(σ1)−dom(σ))∪S.

Hence, σ1 and σ2 are orthogonal extensions of σ, so σ1 ⊎σ σ2

exists and σ1 ⊎σ σ2 <: Ψ, L′
1 ∪ L′

2:τ
′ # S. We conclude by

deriving:

σ, x∈L1, e, Θ y
⋆ σ1, L

′
1, Θ1 σ, x∈L2, e, Θ y

⋆ σ2, L
′
2, Θ2

σ, x∈L1 ⊕ L2, e, Θ y
⋆ σ1 ⊎σ σ2, L

′
1 ⊕ L′

2, Θ1 ⊕Θ2

By combining the above partial fidelity and soundness theo-
rems, we can finally obtain our main result:

Corollary 1 (Total Fidelity). Suppose σ1, l ⇐ e ⇓ σ′
1, T1 where

σ1 : Ψ and Ψ ⊢ e : τ and suppose σ2 <: Ψ # Wr(T). Then there
exists σ′

2, T2 such that σ2, T1 y σ′
2, T2 and σ2, l⇐ e ⇓ σ′

2, T2.

Proof. By Theorem 6 we have that Ψ ⊢ T1 ⊲ l : τ . Thus, by
Theorem 7 there must exist T2, σ

′
2 such that σ2, T1 y σ′

2, T2. By
Theorem 4, it follows that σ2, l⇐ e ⇓ σ′

2, T2.

5. Provenance extraction

As we discussed in Section 1, a number of forms of provenance
have been defined already in the literature. Although most of this
work has focused on flat relational queries, several techniques have
recently been extended to the NRC. Thus, a natural question is: are
traces related to these other forms of provenance?

In this section we describe algorithms for extracting where-
provenance (Buneman et al. 2007), dependency provenance (Ch-
eney et al. 2007), and semiring provenance (Foster et al. 2008) from
traces. We will develop extraction algorithms and prove them cor-
rect relative to the existing definitions. However, our operational
formulation of traces is rather different from existing denotational
presentations of provenance semantics, so we need to set up appro-
priate correspondences between store-based and value-based repre-
sentations. Precisely formulating these equivalences requires in-
troducing several auxiliary definitions and properties.

11 2008/9/18

D
R

A
FT

We also discuss how provenance extraction yields insight into
the meaning of other forms of provenance. We can view the extrac-
tion algorithms as dynamic analyses of the provenance trace. For
example, where-provenance can be viewed an analysis that identi-
fies “chains of copies” form the input to the output. Conversely, we
can view high-level properties of traces as clear specifications that
can be used to justify new provenance-tracking techniques.

We first fix some terminology used in the rest of the section.

We consider an annotated store σ(h) to consist of a store σ and
a function h : dom(σ) → A mapping each label in σ to an
annotation in A. We also consider several kinds of annotated
values. In general, a value v ∈ Val (A) with annotations a from
some set A is an expression of the form

v ::= wx

w ::= i | b | (v1, v2) | {v1, . . . , vn}

This syntax strictly generalizes that of ordinary values since ordi-
nary values can be viewed as values annotated by elements of some
unit set {⋆}, up to an obvious isomorphism. Also, we write |v| for
the ordinary value obtained by erasing the annotations from v. This
is defined as:

|ix| = i |bx| = b |(v1, v2)
x| = (|v1|, |v2|)

|{v1, . . . , vn}| = {|v1|, . . . , |vn|}

Moreover, we define ⌊wx⌋ = w and ⌈wx⌉ = x.

Given an A-annotated store σ(h), we can extract annotated
values using the same technique as extracting ordinary values from
an ordinary store:

σ(h) ↑Aint l = σ(l)h(l)

σ(h) ↑Abool l = σ(l)h(l)

σ(h) ↑Aτ1×τ2
l = (σ(h) ↑Aτ1

l1, σ
(h) ↑Aτ2

l2)
h(l) (σ(l) = (l1, l2))

σ(h) ↑A{τ} l = {σ(h) : m ↑Aτ l′ | l′ : m ∈ σ(l)}h(l)

Moreover, for γ : Var → Lab we again write σ(h) ↑AΓ γ : Var →
Val (A) for the extension of the annotated value extraction function
from labels to environments. Similarly, for L a collection of labels

we write σ(h) ↑A{τ} L for {σ ↑Aτ l : m | l : m ∈ L}.

5.1 Where-provenance

As discussed by (Buneman et al. 2001, 2007), where-provenance is
information about “where an output value came from in the input”.
Buneman et al. (2007) defined where-provenance semantics for
NRC queries via values annotated with optional annotations A⊥ =
A ⊎ {⊥}. Here, ⊥ stands for the absence of where-provenance,
and A is a set of tokens chosen to uniquely address each part of the
input.

The idea of where-provenance is that values “copied” via vari-
able or projection expressions retain their annotations, while other
operations produce results annotated with ⊥. We use an auxiliary
function

where(l, h) = h(l)

where(t, h) = ⊥ (t 6= l)

that defines the annotation of the result of a term t with respect to
h : Lab → A⊥ to be preserved if t = l and otherwise⊥. Buneman
et al. (2007) did not consider integer operations or sums; we support
them by annotating the results with ⊥.

We first review the denotational presentation of where-provenance
from (Buneman et al. 2007). Figure 14 shows the semantics of ex-
pressions e as a function W JeK mapping contexts γ : Var →
Val (A⊥) to A⊥-annotated values.

σ(h), l← t ⇓W σ[l := t](h[l:=where(t,h)])

σ(h), l′ ← e1 ⇓W σ′(h′) σ′(h′), l← e2[l′/x] ⇓W σ′′(h′′) l′ fresh

σ(h), l← let x = e1 in e2 ⇓W σ′′(h′′)

σ(l′) = (l1, l2)

σ(h), l← πi(l′) ⇓W σ[l := σ(li)](h[l:=h(li)])

σ(l′) = b σ(h), l← eb ⇓W σ′(h′)

σ(h), l← if l′ then et else ef ⇓W σ′(h′)

σ(h), x ∈ σ(l), e ⇓⋆
W σ′(h′), L′

σ(h), l←
S

{e | x ∈ l′} ⇓W σ′[l :=
F

σ′[L′]](h[l:=⊥])

σ(h), x ∈ σ(l), e ⇓⋆
W σ′(h′), L′

σ(h), l←
P

{e | x ∈ l′} ⇓W σ′[l :=
P

σ′[L′]](h[l:=⊥])

σ(h), x ∈ ∅, e ⇓⋆
W σ(h), ∅

σ(h), x ∈ L1, e ⇓⋆
W σ

(h1)
1 , L′

1 σ(h), x ∈ L1, e ⇓⋆
W σ

(h2)
2 , L′

2

σ(h), x ∈ L1 ⊕ L2, e ⇓⋆
W σ1 ⊎σ σ

(h1⊎hh2)
2 , L′

1 ⊕ L′
2

σ(h), l′ ← e[l/x] ⇓W σ′(h′) l′ fresh

σ(h), x ∈ {l : m}, e ⇓⋆
W σ′(h′), {l′ : m}

Figure 15. Where-provenance, operationally

h, l← t W h[l := where(t, h)]

h, T1 W h′ h′, T2 W h′′

h, T1; T2 W h′′

h, l← proji(l
′, l′′) W h[l := h(l′′)]

h, T W h′

h, condl(l
′, b, T) W h′

h, Θ ⋆
W h′

h, l← comp(l′,Θ) W h′[l := ⊥]

h, Θ ⋆
W h′

h, l← sum(l′,Θ) W h′[l := ⊥]

h, ∅ ⋆
W h

h, Θ1
⋆
W h1 h, Θ2

⋆
W h2

h, Θ1 ⊕Θ2
⋆
W h1 ⊎h h2

h, T W h′

h, {[l]T : m} ⋆
W h′

Figure 16. Extracting where-provenance

In Figure 15, we introduce an equivalent operational formula-

tion. We define judgments σ(h), l ← e ⇓W σ′(h′) for expression

evaluation and σ(h), x ∈ L, e ⇓⋆
W σ′(h′), L′ for iteration, both

with where-provenance propagation.
It is straightforward to prove by induction that:

Theorem 8.

1. Suppose Γ ⊢ e : τ and Ψ ⊢ σ, γ : Γ. Then σ(h), l ← γ(e) ⇓W

σ′(h′) if and only if W JeK(σ(h) ↑A⊥

Γ γ) = σ′(h′) ↑A⊥
τ l.

2. Suppose Γ, x : τ ⊢ e : τ ′ and Ψ ⊢ σ, γ : Γ. Then σ(h), x ∈
L, γ(e) ⇓⋆

W σ′(h′), L′ if and only if {W JeKγ[x := v] | v ∈

σ(h) ↑A⊥

{τ} L} = σ′(h′) ↑A⊥

{τ ′} L′.

The where-provenance extraction relation is shown in Fig-
ure 16; we define judgment h, T W h′, which takes input anno-
tations h and propagates them through T to yield output annota-
tions h′, and judgment h, Θ ⋆

W h′ which propagates annotations
through a set of traces. Where-provenance extraction can be shown
correct relative to the operational where-provenance semantics, as
follows:

Theorem 9. 1. Suppose σ, l ⇐ e ⇓ σ′, T and h : dom(σ) →

A⊥ is given. Then σ(h), l ← e ⇓W σ′(h′) holds if and only if
h, T W h′ holds.

12 2008/9/18

D
R

A
FT

A B D

1 2 7

1 3 7

Output table Q1(A,B, D)

⊥

⊥

⊥

r11 r12 s23

r21 r22 s23

C D

42 7

42 7

Output table Q2(C, D)

⊥

⊥

⊥

⊥ ⊥

r32 r31

Figure 17. Where-provenance extraction examples

2. If σ, x∈L, e ⇓⋆ σ′, L′, then σ(h), x ∈ L, e ⇓⋆
W σ′(h′), L′ if

and only if h, Θ ⋆
W h′.

Example 4 Figure 17 shows the results of where-provenance ex-
traction for Examples 1–2. For the inputs and results in Figure 1,
the field values copied from the input have provenance links to
their sources, whereas values computed from several values have
no where-provenance (⊥).

Definition 2 A copy with source l′ and target l is a trace of either
the form l ← l′ or l ← proji(l

′′, l′). A chain of copies from l0
to ln is a sequence of trace steps T1; . . . ; Tn where each step Ti is
a copy from li−1 to li. We say that a trace T contains a chain of
copies from l′ to l if there is a chain of copies from l′ to l all of
whose operations are present in T .

Let idσ : dom(σ)→ dom(σ)⊥ be the (lifted) identity function
on σ.

Proposition 4. Suppose σ, l ⇐ e ⇓ σ′, T and idσ, T W h.
Then for each l′ ∈ dom(σ′), h(l′) 6= ⊥ if and only if there is a
chain of copies from h(l′) to l′ in T .

Moreover, where-provenance can easily be extracted from a
trace for a single input or output label rather than for all of the
labels simultaneously, simply by traversing the trace. Though this
takes time O(|T |) in the worst case, we could do much better if the
traces are represented as graphs rather than as syntax trees.

5.2 Dependency provenance

We next consider extracting the dependency provenance introduced
in our previous work (Cheney et al. 2007). Dependency provenance
is motivated by the concepts of dependency that underlie program
slicing (Venkatesh 1991) and noninterference in information flow
security, as formalized, for instance, in the Dependency Core Cal-
culus (Abadi et al. 1999). We consider NRC values annotated with
sets of tokens and define an annotation-propagating semantics.

Dependency provenance annotations are viewed as correct
when they link each part of the input to all parts of the output
that may change if the input part is changed. This is similar to
non-interference. The resulting links can be used to “slice” the in-
put with respect to the output and vice versa. Cheney et al. (2007)
established that, as with minimal program slices, minimal depen-
dency provenance is not computable, but gave dynamic and static
approximations. Here, we will show how to extract the dynamic
approximation from traces.

Dependency provenance can be modeled using values v ∈
Val (P(A)) annotated with sets of tokens from A. We introduce
an auxiliary function dep(t, h) for calculating the dependences of

σ(h), l← t ⇓D σ[l := t](h[l:=dep(t,h)])

σ(h), l′ ← e1 ⇓D σ′(h′) σ′(h′), l← e2[l′/x] ⇓D σ′′(h′′) l′ fresh

σ(h), l← let x = e1 in e2 ⇓D σ′′(h′′)

σ(l′) = (l1, l2)

σ(h), l← πi(l′) ⇓D σ[l := σ(li)](h[l:=h(li)∪h(l′)])

σ(l′) = b σ(h), l← eb ⇓D σ′(h′)

σ(h), l← if l′ then et else ef ⇓D σ′(h′ [l:=h′(l)∪h′(l′)])

σ(h), x ∈ σ(l), e ⇓⋆
D σ′(h′), L′(a)

σ(h), l←
S

{e | x ∈ l′} ⇓D σ′[l :=
F

σ′[L′]](h
′[l:=h′(l′)∪a])

σ(h), x ∈ σ(l), e ⇓⋆
D σ′(h′), L′(a)

σ(h), l←
P

{e | x ∈ l′} ⇓D σ′[l :=
P

σ′[L′]](h
′[l:=h′(l′)∪a])

σ(h), x ∈ ∅, e ⇓⋆
D σ(h), ∅(∅)

σ(h), x ∈ L1, e ⇓⋆
D σ

(h1)
1 , L

′(a1)
1 σ(h), x ∈ L1, e ⇓⋆

D σ
(h2)
2 , L

′(a2)
2

σ(h), x ∈ L1 ⊕ L2, e ⇓⋆
D σ1 ⊎σ σ

(h1⊎hh2)
2 , (L′

1 ⊕ L′
2)

(a1∪a2)

σ(h), l′ ← e[l/x] ⇓D σ′(h′) l′ fresh

σ(h), x ∈ {l : m}, e ⇓⋆
D σ′(h′), {l′ : m}(h

′(l′))

Figure 19. Dependency-provenance, operationally

basic terms t relative to annotation functions h : Lab → P(A).

dep(i, h) = dep(b, h) = dep(∅, h) = ∅

dep({l}, h) = dep(¬l, h) = dep(l, h) = h(l)

dep(empty(l), h) = h(l)

dep(l1 + l2, h) = dep(l1 ≈ l2, h) = h(l1) ∪ h(l2)

dep(l1 ∧ l2, h) = dep((l1, l2), h) = h(l1) ∪ h(l2)

dep(l1 ∪ l2, h) = h(l1) ∪ h(l2)

Essentially, dep simply takes the union of the annotations of all
labels mentioned in a term.

Cheney et al. (2007) defined dynamic provenance-tracking de-
notationally as a function DJeK mapping contexts γ : Var →
Val (P(A)) to P(A)-annotated values. We present this definition in

Figure 18. Note that we use an auxiliary notation v+a to indicate
adding an annotation to the toplevel of a P(A)-annotated value.

That is, (wb)+a = wb∪a.
Next we introduce an operational version. We define judgments

σ(h), l ← e ⇓D σ′(h′) for expression evaluation and σ(h), x ∈

L, e ⇓⋆
D σ′(h′), L′(a) for comprehension evaluation, both with

where-provenance propagation. Note that the iteration rules main-
tain an annotation set a collecting the top-level annotations of the
elements of L′.

It is straightforward to prove by induction that:

Theorem 10.

1. Suppose Γ ⊢ e : τ and Ψ ⊢ σ, γ : Γ. Then σ(h), l ← e ⇓D

σ′(h′) if and only if DJeK(σ(h) ↑
P(A)
Γ γ) = σ′(h′) ↑

P(A)
τ l.

2. Suppose Γ, x : τ ⊢ e : τ ′ and Ψ ⊢ σ, γ : Γ. Then σ(h), x ∈
L, e ⇓⋆

D σ′(h′), L′(a) if and only if {DJeKγ[x := v] | v ∈

σ(h) ↑P(A)
{τ} L} = σ′(h′) ↑P(A)

{τ ′} L′ and a = ∪{σ(l′) | l′ ∈

L′}.

We define the dependency-provenance extraction judgments
h, T D h′ and h, Θ ⋆

D h′ in Figure 21. As usual, we have

13 2008/9/18

D
R

A
FT

W JxKγ = γ(x)

W Jlet x = e1 in e2K = W Je2Kγ[x := W Je1Kγ]

W JiKγ = i⊥

W Je1 + e2Kγ = (⌊W Je1Kγ⌋+ ⌊W Je2Kγ⌋)
⊥

W J
P

{e | x ∈ e0}Kγ = (
P

{⌊W JeKγ[x 7→ v]⌋ | v ∈ ⌊W Je0Kγ⌋})
⊥

W JbKγ = b⊥

W J¬eKγ = (¬⌈W JeKγ⌉)⊥

W Je1 ∧ e2Kγ = (⌈W Je1Kγ⌉ ∧ ⌈W Je2Kγ⌉)
⊥

W J(e1, e2)Kγ = (W Je1Kγ, W Je2Kγ)⊥

W Jπi(e)Kγ = πi(⌊W JeKγ⌋)

W J∅Kγ = ∅⊥

W J{e}Kγ = {W JeKγ}⊥

W Je1 ∪ e2Kγ = (⌊W Je1Kγ⌋ ∪ ⌊W Je2Kγ⌋)
⊥

W J
S

{e | x ∈ e0}Kγ = (
F

{⌊W JeKγ[x 7→ v]⌋ | v ∈ ⌊W Je0Kγ⌋})
⊥

W Jif e0 then e1 else e2Kγ =



W Je1Kγ if ⌊W Je0Kγ⌋ = t
W Je2Kγ if ⌊W Je0Kγ⌋ = f

W Je1 ≈ e2Kγ =



t⊥ if ⌊W Je1Kγ⌋ = ⌊W Je2Kγ⌋
f⊥ if ⌊W Je1Kγ⌋ 6= ⌊W Je2Kγ⌋

W Jempty(e)Kγ =



t⊥ if ⌊W JeKγ⌋ = ∅
f⊥ if ⌊W JeKγ⌋ 6= ∅

Figure 14. Where-provenance, denotationally

FD({wa1

1 : m1 . . . , wan

n : mn})
a = (

F

({w1 : m1, . . . , wn : mn}))
a∪a1∪···∪an

PD({wa1

1 : m1 . . . , wan
n : mn})

a = (
P

({w1 : m1, . . . , wn : mn}))
a∪a1∪···∪an

DJxKγ = γ(x)
DJlet x = e1 in e2K = DJe2Kγ[x := DJe1Kγ]

DJiKγ = i∅

DJe1 + e2Kγ = DJe1Kγ +D DJe2Kγ wa1

1 +D wa2

2 = (w1 + w2)
a1∪a2

DJ
P

{e | x ∈ e0}Kγ =
PD{DJeKγ[x 7→ v] | v ∈ DJe0Kγ}

DJbKγ = b∅

DJ¬eKγ = ¬DDJeKγ ¬D(wa) = (¬w)a

DJe1 ∧ e2Kγ = DJe1Kγ ∧
D DJe2Kγ wa1

1 ∧
D wa2

2 = (w1 ∧ w2)
a1∪a2

DJ(e1, e2)Kγ = (DJe1Kγ, DJe2Kγ)∅

DJπi(e)Kγ = πi(⌊DJeKγ⌋)+⌈DJeKγ⌉

DJ∅Kγ = ∅∅

DJ{e}Kγ = {DJeKγ}∅

DJe1 ∪ e2Kγ = DJe1Kγ ∪
D DJe2Kγ wa1

1 ∪
D wa2

2 = (w1 ∪ w2)
a1∪a2

DJ
S

{e | x ∈ e0}Kγ =
FD{DJeKγ[x 7→ v] | v ∈ DJe0Kγ}

DJif e0 then e1 else e2Kγ =



DJe1Kγ
+⌈DJe0Kγ⌉ if Je0Kγ = t

DJe2Kγ
+⌈DJe0Kγ⌉ if Je0Kγ = f

DJe1 ≈ e2Kγ = DJe1Kγ ≈
D DJe2Kγ wa1

1 ≈
D wa2

2 = (w1 ≈ w2)
a1∪a2

DJempty(e)Kγ = emptyD(DJeKγ) emptyD(wa) = (empty(w))a

Figure 18. Dependency-provenance, denotationally

14 2008/9/18

D
R

A
FT

A1 = {r, s, r1, r2, r3, s1, s2, s3, r13, s11, r23, s21, r33, s31}

A2 = {r, s, r1, r2, r3, s1, s2, s3, r12, r22, r32}

A3 = {s11, s12, s21, s22, s31}

A B D

1 2 7

1 3 7

Output table Q1(A,B, D)

A1

∅

∅

r11 r12 s22

r21 r22 s22

C D

42 7

42 7

Output table Q2(C, D)

A2

∅

∅

∅ A3

r32 r31

Figure 20. Dependency provenance extraction examples

h, l← t D h[l := dep(t, h)]

h, T1 D h′ h′, T2 D h′′

h, T1;T2 D h′′

h, l← proji(l
′, li) D h[l := h(l′) ∪ h(li)]

h, T D h′

h, condl(l
′, b, T) D h′[l′ := h′(l′) ∪ h′(l)]

h, Θ ⋆
D h′(a)

h, l← comp(l, Θ) D h′[l := h′(l′) ∪ a]

h, Θ ⋆
D h′(a)

h, l← sum(l, Θ) D h′[l := h′(l′) ∪ a]

h, ∅ ⋆
D h(∅)

h, T D h′

h, {[l]T} ⋆
D h′(h′(out(T)))

h, Θ1
⋆
D h

(a1)
1 h, Θ2

⋆
D h

(a2)
2

h, Θ1 ⊕Θ2
⋆
D (h1 ⊎h h2)(a1∪a2)

Figure 21. Extracting dependency provenance

two judgments, one for traversing traces and another for traversing
trace sets.

Theorem 11. 1. Suppose σ, l ⇐ e ⇓ σ′, T and h : dom(σ) →

P(A). Then σ(h), l ← e ⇓D σ′(h′) holds if and only if
h, T D h′ holds.

2. If σ, x∈L, e ⇓⋆ σ′, L′, Θ and h : dom(σ) → P(A) then

σ(h), x ∈ L, e ⇓⋆
D σ′(h′), L′(a) holds if and only if h, Θ ⋆

D

h′(a) holds.

Example 5 Figure 20 shows the results of dependency provenance
extraction for Examples 1–2. The dependency-provenance is simi-
lar to the where-provenance for several fields such as l11. The rows
l′1, l

′
2 have no (immediate) dependences. The top-level labels l, l′

depend on many parts of the input — essentially on all parts at
which changes could lead to global changes to the output table.

5.3 Semiring provenance

Green et al. (2007) introduced the semiring-annotated relational
model. Recall that a (commutative) semiring is an algebraic struc-
ture (K, 0K , 1K , +K , ·K) such that (K, 0, +) and (K, 1, ·) are
commutative monoids, 0 is an annilhilator (that is, 0 ·x = 0−x ·0)
and · distributes over +. They considered K-relations to be ordi-
nary finite relations whose elements are annotated with elements
of K, and interpreted relational calculus queries over K-relations
such that many known variations of the relational model are a spe-
cial case. For example, ordinary set-based semantics corresponds to

the semiring (B, f, t,∨,∧), whereas the multiset or bag semantics
corresponds to the semiring (N, 0, 1, +, ·).

The most general instance of the K-relational model is obtained
by taking K to be the free semiring N[X] of polynomials with
coefficients in N over indeterminates X, and Green et al. (2007)
considered this to yield a form of provenance that they called how-
provenance because it provides more information about how a tu-
ple was derived from the input. Lineage and why-provenance can
also be obtained as instances of the semiring model (although the
initial paper glossed over some subtleties that were later clarified
by (Buneman et al. 2008)). Thus, if we can extract semiring prove-
nance from traces, we can also extract lineage and why-provenance.

Foster et al. (2008) extended the semiring-valued model to the
NRC, and we will work in terms of this version. Formally, given
semiring K, Foster et al. (2008) interpret types as follows:

KJintK = Z KJboolK = B

KJτ1 × τ2K = KJτ1K×KJτ2K

KJ{τ}K = {f : KJτK→ K | supp(f) finite}

where supp(f) = {x ∈ X | f(x) 6= 0K} provided f : X → K.
In other words, integer, boolean and pair types are interpreted nor-
mally, and collections of type τ are interpreted as finitely-supported
functions from KJτK to K. For example, finitely-supported func-
tions X → B correspond to finite relations over X, whereas
finitely-supported functions X → N correspond to finite multisets.
We overload the multiset notation {v1 : k1, . . .} for K-collections
over K-values v to indicate that the annotation of vi is ki. We write
K-Val for the set of all K-values of any type.

We writeK(X) for {f : X → K | supp(f) finite}. This forms
an additive monad with zero. To simplify notation, we define its
“return” (ηK), “bind” (•K), zero (0K), and addition (+K) operators
as follows:

ηK(x) = λy.if x = y then 1K else 0K

f •K g = λy.
P

x∈supp(f) f(x) ·K g(x)(y)

0K = λx.0K

f +K g = λx.f(x) +K g(x)

Moreover, if f : X → K and k ∈ K then we write k ·K f for the
“scalar multiplication” of v by k, that is, k · f = λx.k ·K f(x).

Foster et al. (2008) defined the semantics of NRC over K-
values denotationally. Figure 22 presents a simplified version of
this semantics in terms of the K monad operations; we interpret an
expression e as a function from environments γ : Var → K-Val
to results in K-Val . Note that Foster et al. (2008)’s version of
NRC excludes emptiness tests, integers, booleans and primitive
operations other than equality, but also includes some features we
do not consider such as a tree type used to model unordered XML.
Most of the rules are similar to the ordinary denotational semantics
of NRC; only the rules involving collection types are different.
A suitable type soundness theorem can be shown easily for this
interpretation.

Semiring-valued relations place annotations only on the ele-
ments of collections. To model these annotations correctly using
stores, we annotate labels of collections with K-collections of la-
bels K(Lab). As a simple example, consider store [l1 := 1, l2 :=
2, l3 := 1, l := {l1 : 2, l2 : 3, l3}] and annotation function h(l) =
[l1 := k1, l2 := k2, l3 := k3]. Then l can be interpreted as the K-
value {1 : 2k1+k3, 2 : 3k2}. The reason for annotating collections
with K(Lab) instead of annotating collection element labels di-
rectly is that due to sharing, a label may be an element of more than
one collection in a store (with different K-annotations). For exam-
ple, consider [l1 := 1, l2 := 2, l := {l1 : 2, l2}, l

′ := {l1 : 42}].
If we annotate l with [l1 7→ k1, l2 7→ k2] and l′ with [l1 := k3]
then we can interpret l as {1 : 2k1, 2 : k2} and l′ as {1 : 42k3}

15 2008/9/18

D
R

A
FT

KJxKγ = γ(x)

KJlet x = e1 in e2Kγ = KJe2Kγ[x 7→ KJe1Kγ]

KJbKγ = b

KJ¬eKγ = ¬KJeKγ

KJe1 ∧ e2Kγ = KJe1Kγ ∧KJe2Kγ

KJ(e1, e2)Kγ = (KJe1Kγ, KJe2Kγ)

KJπi(e)Kγ = πi(KJeKγ)

KJ∅Kγ = 0K

KJ{e}Kγ = ηK(KJeKγ)

KJe1 ∪ e2Kγ = KJe1Kγ +K KJe2Kγ

KJ
S

{e | x ∈ e0}Kγ = KJe0Kγ •K (λv.KJeKγ[x 7→ v])

KJif e0 then e1 else e2Kγ =



KJe1Kγ if KJe0Kγ = t
KJe2Kγ if KJe0Kγ = f

KJe1 ≈ e2Kγ =



t if KJe1Kγ = KJe2Kγ
f if KJe1Kγ 6= KJe2Kγ

Figure 22. Semiring provenance, denotationally

respectively. If the annotations were placed directly on l1, l2 then
this would not be possible.

We will consider annotation functions h : Lab → K(Lab)⊥
such that if l is the label of a collection, then h(l) maps the
elements of l to their K-values. Labels of pair, integer, or boolean
constructors are mapped to ⊥. In what follows, we will use an
auxiliary function semiring(l, h) to deal with the basic operations:

semiring(l, h) = h(l)
semiring(∅, h) = 0K

semiring({l}, h) = ηK(l)
semiring(l1 ∪ l2, h) = h(l1) +K h(l2)

semiring(t, h) = ⊥ (otherwise)

As before, we consider an operational version of the denota-
tional semantics of NRC over K-values. This is shown in Fig-
ure 23. As usual, there are two judgments, one for expression eval-
uation and one for iterating over a set. Many of the rules not in-
volving collections are standard. The semiring function handles
the cases for ∅, ∪, and {e}.

There is a mismatch between the denotational semantics on K-
values and the operational semantics. The latter produces annotated
stores, and we need to translate these to K-values in order to be able
to relate the denotational and operational semantics. The desired
translation is different from the ones we have needed so far. We
define

σ(h) ⇑K
int l = σ(l)

σ(h) ⇑K
bool l = σ(l)

σ(h) ⇑K
τ1×τ2

l = (σ(h) ⇑K
τ1

l1, σ
(h) ⇑K

τ1
l1) (σ(l) = (l1, l2))

σ(h) ⇑K
{τ} l = λx.

P

{h(l)(l′)

| l′ ∈ dom(σ(l)), σ(h) ⇑K
{τ} l′ = x}

The translation steps for the basic types and pairing are straight-
forward. For collection types, we need to construct a K-collection
corresponding to l; to do so, given an input x we sum together the
values h(l)(l′) for each label l′ in dom(σ(l)) such that the K-value

of l′ in σ(h) is x. In particular, note that we ignore the multiplicity
of l′ in σ(l) here.

We can now show the equivalence of the operational and deno-
tational presentations of the semiring semantics:

σ(h), l← t ⇓K σ[l := t](h[l:=semiring(t,h)])

σ(h), l′ ← e1 ⇓K σ′(h′) σ′(h′), l← e2[l′/x] ⇓K σ′′(h′′) l′ fresh

σ(h), l← let x = e1 in e2 ⇓K σ′′(h′′)

σ(l′) = (l1, l2)

σ(h), l← πi(l′) ⇓K σ[l := σ(li)](h[l:=h(li))

σ(l′) = b σ(h), l← eb ⇓K σ′(h′)

σ(h), l← if l′ then et else ef ⇓K σ′(h′)

σ(h), x ∈ σ(l′)(h(l′)), e ⇓⋆
K σ′(h′), L′(k′)

σ(h), l←
S

{e | x ∈ l′} ⇓K σ′[l :=
F

σ′[L′]](h
′[l:=k′•Kh′])

σ(h), x ∈ ∅(k), e ⇓⋆
K σ(h), ∅(0K)

σ(h), x ∈ L
(k)
1 , e ⇓⋆

K σ
(h1)
1 , L

′(k1)
1 σ(h), x ∈ L

(k)
2 , e ⇓⋆

K σ
(h2)
2 , L

′(k2)
2

σ(h), x ∈ (L1 ⊕ L2)(k), e ⇓⋆
K (σ1 ⊎σ σ2)(h1⊎hh2), (L′

1 ⊕ L′
2)

(k1+Kk2)

σ(h), l′ ← e[l/x] ⇓K σ′(h′) l′ fresh

σ(h), x ∈ {l : m}(k), e ⇓⋆
K σ′(h′), {l′ : m}(k(l)·ηK(l′))

Figure 23. Semiring provenance, operationally

A B D

1 2 7

1 3 7

Output table Q1(A, B, D)

R1S3

R2S3

A D

1 7

Output table Q3(A, D)

R1S3 + R2S3

Figure 24. Semiring provenance extraction examples

Theorem 12.

1. Suppose Γ ⊢ e : τ and Ψ ⊢ σ, γ : Γ. Then σ(h), l ← e ⇓K

σ′(h′) if and only if KJeK(σ(h) ⇑K
Γ γ) = σ′(h′) ⇑K

τ l.
2. Suppose Γ, x : τ ⊢ e : {τ ′} and Ψ ⊢ σ, γ : Γ. Then

σ(h), x ∈ L, e ⇓⋆
K σ′(h′), L′ if and only if {KJeKγ[x := v] |

v ∈ σ(h) ⇑K
{τ} L} = σ′(h′) ⇑K

{τ ′} L′.

Our main result is that extraction semantics is correct with
respect to the operational semantics:

Theorem 13. 1. If σ, l ⇐ e ⇓ σ′, T then σ(h), l ← e ⇓K σ′(h′)

holds if and only if h, T K h′.

2. If σ, x∈L, e ⇓⋆ σ′, L′, Θ then σ(h), x ∈ L(k), e ⇓⋆
K σ′(h′), L′(k′)

if and only if h, k, Θ K h′, k′.

Example 6 Figure 24 shows the result of semiring-provenance
extraction on Q1. Here, we write R1, S1, etc. for the annotations
of r1 in r, s1 in s, etc. respectively. The second query Q2 involves
P

expressions, which are not handled by the semiring model.
Instead, the second part of Figure 24 shows the result of semiring
provenance extraction on Q3 = {(A : x.A, D : x.D) | x ∈ Q1},
where we have merged the two copies of the record (A : 1, D : 7)
together and added their K-values.

5.4 Discussion

The fact that several distinct forms of provenance can all be ex-
tracted from traces is a clear qualitative indication that traces are
very general. This generality is not surprising in light of the fidelity
property, which essentially requires that the traces accurately repre-

16 2008/9/18

D
R

A
FT

h, l← t K h[l := semiring(t, h)]

h, T1 K h′ h′, T2 K h′′

h, T1;T2 K h′′

h, l← proji(l
′, li) K h[l := h(li)]

h, T K h′

h, condl(l
′, b, T) K h′

h, h(l′), Θ ⋆
K h′, k′

h, l← comp(l′,Θ) K h′[l := k′ •K h′]

h, k, ∅ K h, 0K

h, k, Θ1 K h1, k1 h, k, Θ2 K h2, k2

h, k, Θ1 ⊕Θ2 K h1 ⊎h h2, k1 +K k2

h, T K h′

h, k, {[l]T : m} ⋆
K h′, k(l) ·K ηK(out(T))

Figure 25. Extracting semiring provenance

sent the query in all inputs. In fact, the provenance extraction rules
do not inspect the expression annotations x.e, e1, e2 in comprehen-
sion and conditional traces; thus, they all work correctly even with-
out these annotations. Also, the extraction rules do not have access
to the underlying store σ; nor do they need to reconstruct the in-
termediate store. The trace itself records enough information about
the store labels actually accessed.

6. Trace slicing

As noted above, traces are often large. Traces are also difficult to
interpret because they reduce computations to very basic steps, like
machine code. In this section, we consider slicing and other sim-
plifications for making trace information more useful and readable.
However, formalizing these techniques appears nontrivial, and is
beyond the scope of this paper. Here we only consider examples of
trace slicing and simplification techniques that discard some of the
details of the trace information to make it more readable.

Example 7 Recall query Q1. If we are only interested in how row
l1 in the output was computed, then the following backwards trace
slice answers this question.

l <- comp(r,{
[r1] x11 <- proj_C(r1,r13); x1 <- comp(s,{

[s3] x131 <- proj_C(s3,s31); x132 <- x11 = x131;
cond(x132,t,l11 <- proj_A(r1,r11);

l12 <- proj_B(r1,r12);
l13 <- proj_D(s3,s32);
l1 <- (A:l11,B:l12,D:l13);
x136 <- {l1})})})

Note that the slice refers only to the rows r1 and s3 that contribute
to the semiring-provenance of l1. Moreover, the where-provenance
and dependency-provenance of l1, l11, l12, and l13 can be extracted
from this slice.

To make the slice more readable, we can discard information
about projection and assignment steps and substitute expressions
for labels:

l <- comp(r,{
[r1] x1 <- comp(s,{

[s3] cond(r13 = s31,t,l1 <- (A:r11,B:r12,D:s32);
x136 <- {l1})})})

We can further simplify this to an expression {(A : r11, B :
r12, D : s32)} that shows how to calculate l1 from the original
input, but this is not guaranteed to be valid if the input is changed.

Example 8 In query Q2, if we are only interested in the value 7
labeled by l′12, its (simplified) backwards trace slice is:

l12’ <- sum(s,{[s1] cond(s11 = 2, t, x13 <- s12),

[s2] cond(s12 = 2, t, x23 <- s22),
[s3] cond(s13 = 2, f, x33 <- 0)});

and from this we can extract an expression such as s12 + s22 that
describes how the result was computed.

7. Related and future work

Provenance has been studied for database queries under various
names, including “source tagging” and “lineage”. We have al-
ready discussed where-provenance, dependency provenance and
the semiring model. Wang and Madnick (1990) described an early
provenance semantics meant to capture the original and interme-
diate sources of data in the result of a query. Cui, Widom and
Wiener defined lineage, which aims to identify source data relevant
to part of the output. Buneman et al. (2001) also introduced why–
provenance, which attempts to highlight parts of the input that ex-
plain why a part of the output is the way it is. As discussed earlier,
lineage and why-provenance are instances of the semiring model.
Recently, Benjelloun et al. (2006) have studied a new form of lin-
eage in the Trio system. According to Green (personal communi-
cation), Trio’s lineage model is also an instance of the semiring
model, so can also be extracted from traces.

Buneman et al. (2006) and Buneman et al. (2007) investigated
provenance for database updates, an important scenario because
many scientific databases are curated, or maintained via frequent
manual updates. Provenance is essential for evaluating the scientific
value of curated databases (Buneman et al. 2008). We have not
considered traces for update languages in this paper. This is an
important direction for future work.

Provenance has also been studied in the context of (scientific)
workflows, that is, high-level visual programming languages and
systems developed recently as interfaces to complex distributed
Grid computation. Techniques for workflow provenance are sur-
veyed by Bose and Frew (2005) and Simmhan et al. (2005). Most
such systems essentially record call graphs including the names
and parameters of macroscopic computation steps, input and out-
put filenames, and other system metadata such as architecture, op-
erating system and library versions. Similarly, provenance-aware
storage systems (Muniswamy-Reddy et al. 2006) record high-level
trace information about files and processes, such as the files read
and written by a process.

To our knowledge formal semantics have not been developed for
most workflow systems that provide provenance tracking. Many of
them involve concurrency so defining their semantics may be non-
trivial. One well-specified approach is the NRC-based “dataflow”
model of (Hidders et al. 2007), who define an instrumented seman-
tics that records “runs” and consider extracting provenance from
runs. However, their formalization is incomplete and does not ex-
amine semantic correctness properties comparable to consistency
and fidelity; moreover, they have not established the exact relation-
ship between their runs and existing forms of provenance.

As discussed in the introduction, provenance traces are related
to the traces used in the adaptive functional programming lan-
guage AFL (Acar et al. 2006). The main difference is that AFL
traces are meant to model efficient self-adjusting computation im-
plementations, whereas provenance traces are intended as a model
of execution history that can be used to answer high-level queries
comparable to other provenance models. Nevertheless, efficiency is
obviously an important issue for provenance-tracking techniques.
The problem of efficiently recomputing query results after the in-
put changes, also called view maintenance, has been studied ex-
tensively for materialized views (cached query results) in relational
databases (Gupta and Mumick 1995). View maintenance does not
appear to have been studied in general for NRC, but provenance

17 2008/9/18

D
R

A
FT

traces may provide a starting point for doing so. View maintenance
in the presence of provenance seems to be an open problem.

Provenance traces may also be useful in studying the view up-
date problem for NRC queries, that is, the problem of updating the
input of a query to accommodate a desired change to the output.
This is closely related to bidirectional computation techniques that
have been developed for XML trees (Foster et al. 2007), flat rela-
tional queries (Bohannon et al. 2006), and text processing (Bohan-
non et al. 2008). Provenance-like metadata has already been found
useful in some of this work. Thus, we believe that it will be worth-
while to further study the relationship between provenance traces
and bidirectional computation.

There is a large body of related work on dynamic analysis
techniques, including slicing, debugging, justification, information
flow, dependence tracking, and profiling techniques, in which exe-
cution traces play an essential role. We cannot give a comprehen-
sive overview of this work here, but refer to (Venkatesh 1991; Arora
et al. 1993; Abadi et al. 1996; Field and Tip 1998; Abadi et al. 1999;
Ochoa et al. 2004) as sources we found useful for inspiration. How-
ever, to our knowledge, none of these techniques have been studied
in the context of database query languages, and our work reported
previously in (Cheney et al. 2007) and in this paper is the first to
connect any of these topics to provenance.

Trace semantics is also employed in static analysis; in particu-
lar, see (Rival and Mauborgne 2007). Cheney et al. (2007) defined
a type-and-effect-style static analysis for dependency provenance;
to our knowledge, there is no other prior work on using static anal-
ysis to approximate provenance or optimize dynamic provenance
tracking.

8. Conclusions

Provenance is an important topic in a variety of settings, partic-
ularly where computer systems such as databases are being used
in new ways for scientific research. The semantic foundations of
provenance, however, are not well understood. This makes it diffi-
cult to judge the correctness and effectiveness of existing proposals
and to study their strengths and weaknesses.

This paper develops a foundational approach based on prove-
nance traces, which can be viewed as explanations of the opera-
tional behavior of a query not on just the current input but also on
other possible (well-defined) inputs. We define and give traced op-
erational semantics and adaptation semantics for traces and prove
consistency and fidelity properties that characterize precisely how
traces produced by our approach record the run-time behavior of
queries. The proof of fidelity, in particular, involves subtleties not
evident in other trace semantics systems such as AFL (Acar et al.
2006) due to the presence of collection types and comprehensions,
which are characteristic of database query languages.

Provenance traces are very general, as illustrated by the fact
that other forms of provenance information may be extracted from
them. For instance, we show how to extract where-provenance, de-
pendency provenance, and semiring provenance from traces. De-
pending on the needs of the application, these specialized forms
of provenance may be preferable to provenance traces due to ef-
ficiency concerns. As a further application, we informally discuss
how we may slice or simplify traces to extract smaller traces that
are more relevant to part of the input or output.

To our knowledge, our work is the first to formally investi-
gate trace semantics for collection types or database query lan-
guages and the first to relate traces to other models of provenance
in databases. There are a number of compelling directions for fu-
ture work, including formalizing interesting definitions of trace
slices, developing efficient techniques for generating and query-
ing provenance traces, and relating provenance traces to the view-
maintenance and view-update problems.

Acknowledgments We gratefully acknowledge travel support
from the UK e-Science Institute Theme Program on Principles of
Provenance for visits by Acar to the University of Edinburgh and
Cheney to Toyota Technological Institute, Chicago.

References

Martı́n Abadi, Butler Lampson, and Jean-Jacques Lévy. Analysis and
caching of dependencies. In ICFP, pages 83–91. ACM Press, 1996.

Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core
calculus of dependency. In POPL, pages 147–160. ACM Press, 1999.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional
programming. ACM Trans. Program. Lang. Syst., 28(6):990–1034,
2006.

Tarun Arora, Raghu Ramakrishnan, William G. Roth, Praveen Seshadri, and
Divesh Srivastava. Explaining program execution in deductive systems.
In Deductive and Object-Oriented Databases, pages 101–119, 1993.

Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom.
ULDBs: Databases with uncertainty and lineage. In VLDB, pages 953–
964, 2006.

Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Relational
lenses: a language for updatable views. In PODS, pages 338–347. ACM
Press, 2006.

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang: resourceful lenses for string
data. In POPL, pages 407–419. ACM, 2008.

Rajendra Bose and James Frew. Lineage retrieval for scientific data pro-
cessing: a survey. ACM Comput. Surv., 37(1):1–28, 2005.

Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon
Wong. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.

Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Princi-
ples of programming with complex objects and collection types. Theor.
Comp. Sci., 149(1):3–48, 1995.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where:
A characterization of data provenance. In ICDT, number 1973 in LNCS,
pages 316–330. Springer, 2001.

Peter Buneman, Adriane Chapman, and James Cheney. Provenance man-
agement in curated databases. In SIGMOD, pages 539–550, 2006.

Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressive-
ness of implicit provenance in query and update languages. In ICDT,
number 4353 in LNCS, pages 209–223. Springer, 2007.

Peter Buneman, James Cheney, Wang-Chiew Tan, and Stijn Vansummeren.
Curated databases. In PODS, pages 1–12, 2008.

James Cheney, Amal Ahmed, and Umut A. Acar. Provenance as depen-
dency analysis. In DBPL, volume 4797 of Lecture Notes in Computer

Science, pages 138–152. Springer, 2007.

Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM Trans. Database Syst.,
25(2):179–227, 2000.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data process-
ing on large clusters. Commun. ACM, 51(1):107–113, 2008.

John Field and Frank Tip. Dynamic dependence in term rewriting systems
and its application to program slicing. Information and Software Tech-
nology, 40(11–12):609–636, November/December 1998.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bidirectional tree transfor-
mations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst., 29(3):17, 2007.

J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated XML: queries
and provenance. In PODS, pages 271–280, 2008.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semir-
ings. In PODS, pages 31–40. ACM, 2007.

18 2008/9/18

D
R

A
FT

Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized
views: Problems, techniques and applications. IEEE Data Engineering

Bulletin, 18(2):3–18, 1995.

Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz, and
Jan Van den Bussche. A formal model of dataflow repositories. In DILS,
volume 4544 of LNCS, pages 105–121. Springer, 2007.

Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo
Seltzer. Provenance-aware storage systems. In USENIX Annual Techni-

cal Conference, pages 43–56. USENIX, June 2006.

Claudio Ochoa, Josep Silva, and Germán Vidal. Dynamic slicing based on
redex trails. In PEPM, pages 123–134. ACM Press, 2004.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data process-
ing. In SIGMOD, pages 1099–1110, New York, NY, USA, 2008. ACM.

Xavier Rival and Laurent Mauborgne. The trace partitioning abstract
domain. ACM Trans. Program. Lang. Syst., 29(5):26, 2007.

Yogesh Simmhan, Beth Plale, and Dennis Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31–36, 2005.

G. A. Venkatesh. The semantic approach to program slicing. In PLDI,
pages 107–119. ACM Press, 1991.

P. Wadler. Comprehending monads. Mathematical Structures in Computer

Science, 2:461–493, 1992.

Y. Richard Wang and Stuart E. Madnick. A polygen model for hetero-
geneous database systems: The source tagging perspective. In VLDB,
pages 519–538, 1990.

19 2008/9/18

