
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Simple nominal type theory

James Cheney 1

Laboratory for Foundations of Computer Science
University of Edinburgh

Edinburgh, United Kingdom

Abstract

Nominal logic is an extension of first-order logic with features useful for reasoning about abstract syntax with
bound names. For computational applications such as programming and formal reasoning, it is desirable to
develop constructive type theories for nominal logic which extend standard type theories for propositional,
first- or higher-order logic. This has proven difficult, largely because of complex interactions between
nominal logic’s name-abstraction operation and ordinary functional abstraction. This difficulty already
arises in the case of propositional logic and simple type theory. In this paper we show how this difficulty
can be overcome, and present a simple nominal type theory which enjoys properties such as type soundness
and strong normalization, and which can be soundly interpreted using existing nominal set models of
nominal logic. We also sketch how recursion combinators for languages with binding structure can be
provided. This is an important first step towards understanding the constructive content of nominal logic
and incorporating it into existing constructive logics and type theories.

Keywords: nominal terms, type systems

1 Introduction

Nominal logic [13] is a variant of first-order logic that axiomatizes name-binding
and alpha-equivalence using permutative renamings, or swappings. So far, nominal
logic has been studied primarily using classical model theory [2,13] or proof the-
ory [1,5] to formalize explicit reasoning about equational and freshness properties.
While this analysis lends itself to implementations within theorem proving systems
based on classical logic [26], nominal logic has resisted incorporation into construc-
tive systems based on typed lambda-calculi. This is unfortunate, because nominal
logic seems promising as a foundation for inductive reasoning about name-binding
in a variety of settings, and constructive logics have many advantages due to the
propositions-as-types and proofs-as programs principles: a constructive proof of a
formula can be viewed as a program for performing a computation of the corre-
sponding type. In particular, we would like a type theory for nominal logic to
internalize the freshness reasoning about name-abstractions that currently needs

1 Email: jcheney@inf.ed.ac.uk

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:jcheney@inf.ed.ac.uk

Cheney

to be performed explicitly to justify recursion and induction for nominal abstract
syntax (for example, in [9,16,24]).

Although proof theories for intuitionistic nominal logic has been considered al-
ready in work by Gabbay and Cheney [5,1,4], those systems consider only provabil-
ity, not proof terms. The proof trees available in such systems could themselves be
viewed as proof terms, but doing so does not immediately yield a well-behaved type
theory with nice properties. Moreover, both systems involve significant amounts of
explicit reasoning about equality and freshness.

Nominal type theory has also been investigated by Schöpp and Stark [19,20],
who have developed a family of type theories based on categorical models of nomi-
nal logic. Their approach to nominal dependent type theory is very expressive, but
motivated primarily by semantics. Computationally important syntactic properties
such as strong normalization and the decidability of typechecking have not been
studied, and seem difficult to obtain due to the complexity of the system. Thus,
the problem of identifying type theoretic presentations of nominal logic with com-
putational properties that make them suitable for use in automatic reasoning and
programming remains open.

In this paper, we consider a simple case of this problem. Specifically, we intro-
duce an extension of the simply-typed lambda calculus which incorporates names
and name-abstraction types 〈α〉A with introduction form 〈a:α〉M (abstraction) and
elimination form M @ a (concretion). Moreover, our approach can also be extended
with recursion combinators for object languages in a syntactically and semantically
sound way.

A key difficulty encountered in this approach is the interaction of name-abstraction
with ordinary functional (λ-) abstraction. Specifically, at a semantic level, the
name-concretion operation requires that the name passed as an argument to an
abstraction is not already free in the body of the abstraction. Thus, the term
M1 = (〈a:α〉(a, b))@b is ill-defined — it applies the partial function M2 = 〈a:α〉(a, b)
to a value not in its domain. Similarly, the term M3 = (λx:α.(〈a:α〉(a, x)) b)@b is ill-
defined, since it β-reduces to M1. And more subtly, the term M4 = (〈a:α〉λx.x@a)
is also ill-defined, since (M4)@b (〈a:α〉(a, b)) also reduces to M1.

Previous systems have dealt with this by requiring explicit reasoning about
swapping, freshness and equality (cf. [1,5,9,16,19,20,24,26]). However, as pointed
out by a number of authors, the name-abstraction type constructor 〈α〉A can be
interpreted in two isomorphic ways: as the quotient of the set of pairs, with respect
to an α-equivalence relation (α × A)/≡α , or as a (partial) function space, α −◦ A,
consisting of functions that may only be applied to a “fresh” name, similar to the
“magic wand” connective/type constructor in the logic of bunched implications (BI)
and its type theories [11]. Schöpp and Stark’s type theory takes the approach that
name-abstractions have the introduction and elimination forms of both quotiented-
pair and partial-function presentations, using BI-style bunched contexts. (Their
system also considers dependent product and sum types, which add further compli-
cations.) In this paper, we consider the consequences of designing a “simple” nom-
inal type theory with name-abstractions corresponding only to the partial-function
presentation, using a simpler form of bunched contexts that is specialized to this
situation.

2

Cheney

The introduction form of the name-abstraction type is then a name-abstraction
term 〈a:α〉M , where a is bound in M (in the same sense as x is bound in M in a
λ-abstraction λx:A.M). The elimination form is the “concretion” operation M @ a,
familiar from some versions of FreshML. This leads naturally to typing rules:

Γ#a:α `M : A (a 6∈ Γ)
Γ ` 〈a:α〉M : 〈α〉A

Γ `M : 〈α〉A Γ ` a : α

Γ `M @ a : B
(∗)

However, the second typing rule (∗) fails to express the freshness constraint on
concretions; it permits all of the ill-defined terms M1–M4 above.

In order to obtain a type theory that defines only expressions that make sense in
the universe of nominal sets, the typing rule for concretions M @ a must ensure that
a cannot appear in M , no matter how M is instantiated. The basic idea is to use
a context with additional structure expressing freshness information, as previously
explored in [1] for full nominal logic and in [20,19] in more generality. We consider
contexts Γ that may have ordinary variable bindings Γ, x:A, where A is an arbitrary
type, as well as “fresh name bindings” Γ#a:α, where α is a base type of names.
When we typecheck a concretion M @ a, we must be able to use the information in
the context to prove that a is fresh for all of the symbols present in M . This leads
to a rule

Γ ` a : α \ Γ′ Γ′ `M : 〈α〉A
Γ `M @ a : B

(∗∗)

This rule uses an auxiliary judgment Γ ` a : α \ Γ′ which, intuitively, removes a:α
from Γ to produce Γ′, and also removes all variables that could be substituted with
something containing a. The abstraction subterm M is typechecked with respect
to this diminished context Γ′. This ensures that the concretion is well-defined.

The main contributions of this paper are as follows. We introduce (Section 2)
a simple nominal type theory (here abbreviated SNTT) based on the (**) rule,
and prove type soundness (Section 2.1) and strong normalization (Section 2.2) for
SNTT. We also (Section 2.3) relate SNTT to nominal logic by showing how to
interpret it using nominal sets. In Section 3 we show how SNTT can be extended
with conditionals, name-equality, and primitive recursion combinators which can
be used to define functions such as capture-avoiding substitution. We conclude in
Sections 4 and 5 by relating SNTT to other systems and discussing future directions.

2 Simple nominal type theory

The basic syntactic classes of SNTT include countable, disjoint sets of variables
V = {x, y, z, . . .} and names (or atoms) A = {a, b, c, . . .}; atomic data-type symbols
δ, δ′, . . . and name-type symbols α, α′, . . .; and constant symbols c,d, Additional
syntactic classes include types A,B, terms M,N , contexts Γ, and substitutions θ,
whose abstract syntax is described by the following grammar rules:

A,B ::= 1 | A×B | A→ B | 〈α〉A | α | δ
M,N ::= c | x | () | (M,N) | πi(M) | λx:A.M |M N | a | 〈a:α〉M |M @ a

Γ ::= · | Γ, x:A | Γ#a:α θ ::= · | θ, M/x | θ, b/a

3

Cheney

FVN (()) = FVN (c) = ∅ FVN (z) = {z} (z ∈ V ∪ A)

FVN (λx.M) = FVN (M)− {x} FVN (πi(M)) = FVN (M @ a) = FVN (M)

FVN (〈a:α〉M) = FVN (M)− {a} FVN (M, N) = FVN (M N) = FVN (M) ∪ FVN (N)

FV (M) = FVN (M) ∩ V FN (M) = FVN (M) ∩ A
FVN (·) = ∅ FVN (θ, M/x) = FVN (θ) ∪ FVN (M) FVN (θ, b/a) = FVN (θ) ∪ {b}

Fig. 1. Free-variables and free-names functions

x[θ] = θ(x) a[θ] = a

c[θ] = c ()[θ] = ()

πi(M)[θ] = πi(M [θ]) (M, M ′)[θ] = (M [θ], M ′[θ])

(M M ′)[θ] = M [θ] M ′[θ] (λy:A.M)[θ] = λy:A.M [θ, y/y] (y 6∈ FV (θ))

(M @ a)[θ] = M [θ − a] @ θ(a) (〈a:α〉M)[θ] = 〈a:α〉M [θ, a/a] (a 6∈ FN (θ))

· − a = · (θ, M/x)− a = θ − a (θ, b′/b)− a =

(
θ (b = a)

(θ − a), b′/b (b 6= a)

Fig. 2. Capture-avoiding substitution/renaming and restriction operator

Many of the types (units, pairing and function types) and their associated introduc-
tion and elimination forms are standard. Names a are always of some name type
α; the abstraction type 〈α〉A is associated with introduction form 〈a:α〉M , called
name-abstraction, and elimination form M @ a, called name-concretion.

We define the sets of free names FN (M) and free variables FV (M) of a term
in Figure 1, treating a as binding in the abstraction operation 〈a:α〉M and x as
binding in λx:A.M . We also extend FV and FN to substitutions. We consider
terms equivalent modulo consistent renaming of bound names and variables; also, by
convention, we write contexts as x:A or a:α instead of ·, x:A or ·#a:α, respectively.
We write M [θ] for the result of applying a substitution θ to M ; this is defined
in Figure 2, using an auxiliary substitution restriction operation θ − a. We give
the full definitions to eliminate any risk of confusion: in particular, observe that
renamings and FN are syntactic operations only; they should not be confused with
the concepts of swapping and support in nominal sets, discussed in Section 2.3.

We assume a fixed signature Σ = {c : A, . . .} assigning unique types to the
constants of the language. The term well-formedness rules for SNTT are shown in
Figure 4. The judgment Γ ` a : α \ Γ′ intuitively means that a:α appears in Γ and
Γ′ is the result of removing all bindings from Γ whose values may depend on a. We
write a:α ∈ Γ or x:A ∈ Γ to say that a binding for a or x with the given type is
present in Γ and write a /∈ Γ or x 6∈ Γ to say that no such binding for a or x is
present respectively.

The rewriting rules for reducing and expanding the terms of SNTT include the
following rules, most of which are standard:

πi(M1, M2) .β Mi M : A1 ×A2 .η (π1(M), π2(M))

(λx.M) N .β M [N/x] M : A → B .η λx:A.M x (x 6∈ FV (M))

(〈a:α〉M) @ b .β M [b/a] M : 〈α〉B .η 〈a:α〉M @ a (a 6∈ FN (M))

M : 1 .η ()

Note that the β-rule for concretions requires that the name b does not occur free
in 〈a:α〉M . We write −→β, −→η for the rewriting relations generated by .β, .η

and write M ←→∗
βη N to indicate that M and N are βη-convertible to a common

4

Cheney

Γ#a:α ` a : α \ Γ

(a 6= b) Γ ` a : α \ Γ′

Γ#b:β ` a : α \ Γ′#b:β

Γ ` a : α \ Γ′

Γ, x:A ` a : α \ Γ′

Fig. 3. Context restriction judgment

c : A ∈ Σ

Γ ` c : A
con

Γ ` () : 1
unitI

Γ ` M1 : A1 Γ ` M2 : A2

Γ ` (M1, M2) : A1 ×A2
∧I

Γ ` M : A1 ×A2

Γ ` πi(M) : Ai
∧E

x : A ∈ Γ

Γ ` x : A
var

Γ, x:A ` M : B (x 6∈ Γ)

Γ ` λx:A.M : A → B
⇒I

Γ ` M : A → B Γ ` N : A
Γ ` M N : B

⇒E

a:α ∈ Γ

Γ ` a : α
name

Γ#a:α ` M : A (a 6∈ Γ)

Γ ` 〈a:α〉M : 〈α〉A absI
Γ ` a : α \ Γ′ Γ′ ` M : 〈α〉A

Γ ` M @ a : A
absE

Fig. 4. Simple nominal type theory: well-formedness

form. We write M ⇓β N to indicate that M converges to normal form N under
β-reduction and M ⇓β for ∃N.M ⇓β N .

Besides arbitrary signatures involving higher-order constants, we also consider
nominal signatures (following [16,25]). These are signatures in which all constants
c have types A → δ, where A is first-order (i.e., does not use →) and δ is a data
type. We also define a sublanguage of the terms of SNTT called ground nominal
terms, which are essentially the same as the ground nominal terms of [16,25]:

M0, N0 ::= () | c M0 | (M0, N0) | 〈a:α〉M0 | a

SNTT includes all of the rules of simply-typed lambda calculus with unit and
product types (which we call simple type theory or STT), so any well-typed pure λ-
term can be typechecked in SNTT with the same type. Also any well-typed ground
nominal term can be typechecked in SNTT with respect to its nominal signature
and a context consisting only of names. We will later show (Corollary 2.13) that
SNTT is a conservative extension of both systems.

Examples. Before proceeding to the formal results, we show some illustrative
examples (Figure 5) of well- and ill-formed terms involving both name-abstraction
and λ-abstraction. Examples (a) illustrates a term whose type corresponds to a
“weakening” law A → 〈α〉A for name-abstraction types. Example (b) shows how
to typecheck the term λx:〈α〉A.〈a:α〉x@a, which is the fully η-expanded identity
function at type 〈α〉A. Examples (c) and (d) provide partial derivations of non-
typeable terms; in (d), there is no name that can be filled in for ?? that will make
the term typecheck. Examples (e)–(i) shows additional properties of the name-
abstraction type, omitting derivations. Example (e) gives a term that proves a
“name-exchange” law; this is one direction of an isomorphism of types 〈α〉〈α′〉A and
〈α′〉〈α〉A. Example (f) shows the failure of a “contraction” law for name-abstraction;
(h) shows that we can push name-abstraction inside function types; (i) shows that
the converse fails in SNTT; and (j) and (k) show that name-abstractions can be
pushed into and pulled out of pairs. Again, (j) and (k) witness an isomorphism of
the types 〈α〉(A×B) and 〈α〉A× 〈α〉B.

5

Cheney

(a)

x:A#a:α ` x : A

x:A ` 〈a:α〉x : 〈α〉A
· ` λx:A.〈a:α〉x : A → 〈α〉A

(b)

x:〈α〉A#a:α ` a : α \ x:〈α〉A x:〈α〉A ` x : 〈α〉A
x:〈α〉A#a:α ` x@a : A

x:〈α〉A ` 〈a:α〉x@a : 〈α〉A
· ` λx:〈α〉A.〈a:α〉x@a : 〈α〉A → 〈α〉A

(c)

a:α ` a : α \ ·
a:α, x:〈α〉A ` a : α \ ·

stuck
· ` x : 〈α〉A

a:α, x:〈α〉A ` x @ a : A

a:α ` λx:〈α〉A.x @ a : 〈α〉A → A

` 〈a:α〉λx:〈α〉A.x @ a : 〈α〉(〈α〉A → A)

(d)

stuck since no name a:α is known
x:〈α〉A ` x @?? : A

· ` λx.x @?? : 〈α〉A → A

(e) ` λx.〈a〉〈b〉x @ b @ a : 〈α〉〈α′〉A → 〈α′〉〈α〉A

(f) 6` λx.〈a〉x @ a @ a : 〈α〉〈α〉A → 〈α〉A

(g) ` λx.λy.〈a〉(x @ a) (y @ a) : 〈α〉(A → B) → 〈α〉A → 〈α〉B

(h) 6` λx.〈a〉λy.(x ??) @ a : (〈α〉A → 〈α〉B) → 〈α〉(A → B)

(i) ` λx.(〈a〉π1(x @ a), 〈a〉π2(x @ a)) : 〈α〉(A×B) → 〈α〉A× 〈α〉B

(j) ` λx.〈a〉(π1(x) @ a, π2(x) @ a) : (〈α〉A× 〈α〉B) → 〈α〉(A×B)

Fig. 5. Example derivations and non-derivations

2.1 Formal properties

To simplify the following discussion, we introduce a “well-formedness” judgment for
substitutions:

Γ ` · : ·
Γ ` M : A Γ ` θ : Γ′

Γ ` θ, M/x : Γ′, x:A

Γ ` b : α \ Γ0 Γ0 ` θ : Γ′

Γ ` θ, b/a : Γ′#a:α

For example, note that we may not re-use a name in a substitution once it has
been used to replace some other name; that is, θ = a/b, a/c and θ = (a, b)/x, b/c

are ill-formed. This is because the third rule requires us to typecheck θ, b/a by
typechecking θ after removing b and all variables that may depend on b from the
context. Moreover, substitutions can only perform injective renamings.

We write idΓ for the identity substitution on Γ. We abbreviate M [idΓ, N/x] as
M [N/x] and M [idΓ, b/a] as M [b/a], provided Γ is clear from context. We say that
a context Γ is contained in another context Γ′ (written Γ � Γ′) if Γ′ ` idΓ : Γ. For
example, y:B#a:α, x:A � x:A, y:B#a:α, z:C.

First, we can establish weakening using relatively straightforward techniques.
The proof is not completely trivial because we need to prove weakening for the con-
text restriction judgment as well, which requires proving several auxiliary properties
which we omit here.

Lemma 2.1 (Weakening) If Γ � Γ′ and Γ `M : A then Γ′ `M : A.

Next, we can prove a general substitution lemma:

Lemma 2.2 (General substitution) If Γ′ ` θ : Γ and Γ ` M : A then Γ′ `
M [θ] : A.

More traditional substitution and renaming properties follow immediately by
suitable choices of θ.

6

Cheney

Lemma 2.3 (Substitution) Suppose x does not appear in Γ. If Γ ` M : A and
Γ, x:A ` N : B then Γ ` N [M/x] : B.

Lemma 2.4 (Renaming) Suppose b does not appear in Γ. If Γ#a:α ` M : A

then Γ#b:α `M [b/a] : A.

We will also need a few properties of the context restriction judgment that are
easy to prove by induction:

Lemma 2.5 (Restriction) If Γ ` a : α \ Γ′ then a 6∈ Γ′ and Γ′#a:α � Γ.

We conclude by showing the local soundness and completeness properties which
are the interesting cases in the subject-reduction theorem.

Lemma 2.6 (Local soundness) If Γ `M : A and M .β N then Γ ` N : A.

Proof. Proof is by induction on the structure of the derivation and the form of
the rewriting step. The key cases are those involving beta-reductions. For the
case of name-abstraction, the reduction step is straightforward using renaming and
weakening:

Γ ` b : α \ Γ′
Γ′#a:α ` M : A

Γ′ ` 〈a:α〉M : 〈α〉A absI

Γ ` (〈a:α〉M) @ b : A
absE

=⇒
Γ′#a:α ` M : A

Γ′#b:α ` M [b/a] : A
R

Γ ` M [b/a] : A
W

since by Lemma 2.5, b:α 6∈ Γ′ and Γ′#b:α � Γ. 2

Lemma 2.7 (Local completeness) If M .η N then Γ ` M : A if and only if
Γ ` N : A.

Proof. Again, the only new case is for name-abstraction. If we have M : 〈α〉A .η

〈a:α〉M @ a for some a 6∈ FN (M), then

Γ `M : 〈α〉A ⇐⇒
Γ#a:α ` a : α \ Γ Γ ` M : 〈α〉A

Γ#a:α ` M @ a : A
absE

Γ ` 〈a:α〉M @ a : 〈α〉A absI

2

Theorem 2.8 (Subject reduction) If ` M : A and M −→β N or M −→η N

then ` N : A.

We have formalized everything up to this point of the development using the
Isabelle/HOL-Nominal system [26]; the formalization is available on the author’s
web page. 2

2.2 Strong normalization and canonicalization

In this section we wish to show that SNTT enjoys the properties of strong normaliza-
tion and canonicalization (existence of β-normal η-long canonical forms). Both the
Church-Rosser and Strong Normalization theorems can be proved using essentially
the same arguments as for the λ-calculus.

2 http://homepages.inf.ed.ac.uk/jcheney/publications/drafts/SNTT.thy

7

Cheney

Theorem 2.9 (Church-Rosser) If M −→β M1 and M −→β M2 then there exists
N such that M1 −→∗

β N and M2 −→∗
β N .

Theorem 2.10 (Strong Normalization) If M : A then M ⇓β V for a unique
V : A.

Strong normalization has several useful consequences: we can obtain unique β-
normal, η-long canonical forms by first η-expanding each subterm once according to
its type and then β-normalizing. This gives a decision procedure for βη-equivalence.

Corollary 2.11 (Canonicalization) If M : A then M has a unique βη-canonical
form.

Corollary 2.12 (Decidability) Both β- and βη-equivalence are decidable.

Moreover, SNTT is a conservative extension of both ordinary simple type theory
(STT) and the language of ground nominal terms.

Corollary 2.13 (Conservativity) A judgment ` M : A of STT is derivable if
and only if `M : A is derivable in SNTT. Moreover, given a nominal signature Σ,
M is a well-formed ground nominal term of type δ with names a1:α1, . . . , an:αn if
and only if a1:α1# · · ·#an:αn `M : δ is derivable in SNTT.

2.3 Nominal set semantics

Although the subject reduction and strong normalization theorems imply that
SNTT is a consistent equational theory, it does not make clear how SNTT relates
to nominal abstract syntax. In this section we show how the judgments and equa-
tions of SNTT can be interpreted using nominal sets [13]. This means that SNTT
is sound for reasoning about names, name-abstractions, and functions in ordinary
nominal logic. We leave the issues of expressiveness and completeness (for example,
with respect to a suitable generalization of cartesian closed categories) for future
work.

In this section, we consider the special case where there is a single name-type α,
which shall correspond to the set A of all names. Generalizing to multiple name-
types is straightforward but notationally burdensome.

We recapitulate some of the basic definitions concerning permutations, group
actions and nominal sets needed for the semantics (introduced in prior work by
Gabbay and Pitts [6,13,16]). We write Pfin(A) for the set of all finite sets of names
and G = FSym(A) for the group of all (finite) permutations π on A; that is,
invertible functions such that π(a) = a for all but finitely many a ∈ A. We often
write π · a for π(a) and π · S for {π · x | x ∈ S} if S ∈ Pfin(A). A G-set is a
structure X = (|X|, ·X) consisting of a set X equipped with a permutation action
·X : G×|X| → |X|, satisfying id ·x = x and π ·π′ ·x = (π ◦π′) ·x. We write S /x to
indicate that S ∈ Pfin(A) supports x ∈ |X|; that is, that ∀a, b ∈ A−S. (a b)·Ax = x.
A nominal set is a G-set in which every element has a finite support (there is then
necessarily a unique least finite support). If an element x of a nominal set has empty
support, it is called equivariant, and clearly π · x = x for any π ∈ G.

8

Cheney

It has been established in previous work [6] that nominal sets form a category 3

Nom, which includes a terminal nominal set 1Nom, standard constructions in-
cluding Cartesian products X ×Nom Y and function spaces X →Nom Y , and a
name-abstraction construction 〈A〉X. We briefly review these constructions.

Definition 2.14 The terminal nominal set 1Nom is defined by taking |1Nom| =
{?}. The swapping action is defined by π · ? = ?.

Definition 2.15 The cartesian product of two nominal sets X, Y is defined by
taking |X ×Nom Y | = |X| × |Y | and defining the action by the rule π · (x, y) =
(π · x, π · y).

Definition 2.16 The nominal set X →Nom Y of (finitely-supported) functions
from X to Y is defined by taking |X →Nom Y | = {f : |X| → |Y | | ∃S ∈ Pfin(A). S /

f} where the swapping action is defined as (π · f)(x) = π · (f(π−1 · x)).

Definition 2.17 The set of names A is a nominal set with π ·A a = π(a).

Definition 2.18 Given nominal set X, the set of abstractions of X is called 〈〈A〉〉X
and defined by taking |〈〈A〉〉X| = (A × |X|)/≡α , where ≡α is the least equivalence
relation satisfying

(a 6∈ supp(x) ∧ x = (a b) ·X y)⇒ (a, x) ≡α (b, y) .

The swapping action is defined as (b b′) · [(a, x)]α = [((b b′) · a, (b b′) · x)]α. We
often abbreviate [(a, x)]α as 〈〈a〉〉x. Moreover, if y ∈ 〈〈A〉〉X and a 6∈ supp(y) then
we define y @ a as y(a), viewing y as a partial function.

Semantic name-abstractions satisfy analogues of the beta-reduction and eta-
expansion laws for SNTT name-abstractions. We need the following key properties
of name-abstraction and concretion:

Proposition 2.19 (i) If 〈〈a〉〉x ∈ 〈〈A〉〉X and b 6∈ supp(〈〈a〉〉x) then (〈〈a〉〉x) @ b =
(a b) · x and supp(〈〈a〉〉x) = supp(x)− {a}.

(ii) If y ∈ 〈〈A〉〉X and a 6∈ supp(y) then y = 〈〈a〉〉(y @ a) and supp(y @ a) ⊆
supp(y) ∪ {a}.

Suppose we are given an interpretation of the data types δ as nominal sets
T0[[δ]]. We interpret the other types of SNTT as nominal sets T [[A]] as shown in
Figure 6. We define the universe U of the interpretation as the disjoint union of all
interpretations of types

⊎
A T [[A]]. This is a nominal set.

A valuation is a function γ from a finite subset of V ∪ A (recall that V and A
are disjoint) to the universe U . We write [·] for the empty valuation and γ[x 7→ v]
or γ[a 7→ b] for the result of extending valuation γ with a binding for a variable
x 6∈ dom(γ) or name a 6∈ dom(γ), respectively. We define swappings to act on
valuations pointwise: (π · γ)(x) = π · (γ(x)) for all x ∈ dom(γ). This swapping
action makes valuations into a nominal set, isomorphic to the set of finite products
of U indexed by V ∪ A.

3 Nom is, as noted elsewhere [6,20,19], isomorphic to a well-known category called the Schanuel topos.

9

Cheney

T [[1]] = 1Nom

T [[δ]] = T0[[δ]]

T [[α]] = A
T [[A×B]] = T [[A]]×Nom T [[B]]

T [[A → B]] = T [[A]] →Nom T [[B]]

T [[〈α〉A]] = 〈〈A〉〉(T [[A]])

S[[·]]γ = [·]
S[[θ, M/x]]γ = E[[θ]][x 7→ E[[M]]γ]

S[[θ, b/a]]γ = E[[θ]][a 7→ γ(b)]

E[[x]]γ = γ(x)

E[[c]]γ = E0[[c]]

E[[a]]γ = γ(a)

E[[()]]γ = ?

E[[(M, N)]]γ = (E[[M]]γ, E[[N]]γ)

E[[πi(M)]]γ = Πi(E[[M]]γ)

E[[λx.M]]γ = Λv ∈ T [[A]]. E[[M]]γ[x 7→ v]

E[[M N]]γ = (E[[M]]γ)(E[[N]]γ)

E[[〈a〉M]]γ = 〈〈a′〉〉E[[M]]γ[a 7→ a′] (a′ /∈ supp(γ))

E[[M @ a]]γ =

(
E[[M]]γ @ γ(a) (γ(a) /∈ supp(E[[M]]γ))

⊥ otherwise

Fig. 6. Type, substitution, and expression interpretations

Now suppose equivariant interpretations E0[[c]] ∈ T [[A]] are fixed for each con-
stant c : A. Given valuation γ, we interpret expressions M as E [[M]]γ as shown
in Figure 6, if defined. This may fail to be defined in the case of name-concretion
M @ a, if [[M]]γ has the name a in its support. Note, however, that although there
is also a side-condition on the definition of name-abstraction, this condition can
always be satisfied by renaming the bound name a away from the support of γ, and
the result is uniquely determined. We also interpret substitutions θ as valuations
S[[θ]]γ. We have the following basic properties:

Proposition 2.20 (Semantic substitution) For any θ, M, γ, if both E [[M [θ]]]γ
and E [[M]](S[[θ]]γ) are defined then E [[M [θ]]]γ = E [[M]](S[[θ]]γ).

Proposition 2.21 (Equivariance) For any M the function E [[M]]− is equivari-
ant, in the sense that for any π, π·E [[M]]γ = E [[M]](π·γ). Moreover, supp(E [[M]]γ) ⊆
supp(γ).

Proof. The first part follows by induction on M . The second is immediate: for
any equivariant function f : X → Y on nominal sets X, Y , supp(f(x)) ⊆ supp(x).2

We define the set of valuations satisfying a context Γ as follows:

[[·]] = {[·]}
[[Γ, x:A]] = {γ[x 7→ v] | γ ∈ [[Γ]], v ∈ T [[A]]}
[[Γ#a:α]] = {γ[a 7→ b] | γ ∈ [[Γ]], b ∈ A− supp(γ)}

Intuitively a valuation satisfies a context Γ if it maps variables to values of the
appropriate types in Γ and satisfies all of the freshness constraints in Γ. Note, in
particular, that no two names in dom(γ) can be mapped to the same name if γ ∈ [[Γ]]
for some Γ.

Lemma 2.22 (Soundness of restriction) If γ ∈ [[Γ]] and Γ ` a : α \ Γ′ then
there exists γ′ ∈ [[Γ′]] such that γ(a) 6∈ supp(γ′) and γ′ agrees with γ on Γ′.

Theorem 2.23 (Semantic soundness) Let Γ,M,A, γ be given, such that and
γ ∈ [[Γ]]. Then (1) if Γ ` M : A then E [[M]]γ ∈ T [[A]], (2) if Γ ` θ : Γ′ then
S[[θ]]γ ∈ [[Γ′]], and (3) if Γ `M,N : A and M ←→∗

βη N then E [[M]]γ = E [[N]]γ.

10

Cheney

3 Extensions

By itself, SNTT is not very expressive. It cannot, for example, define the size, sub-
stitution, or free-variables functions for a nominal datatype representing the syntax
of a language such as the λ-calculus or π-calculus. To do so, we need booleans,
numbers, conditionals, name-equality tests, and perhaps additional type construc-
tions such as lists. More importantly, we need structural recursion over nominal
datatypes. In this section we show how these features can be accommodated soundly
in SNTT, by adding types, constants, and rewriting rules.

3.1 Conditionals and name-equality

Consider the type bool, constants true, false, and conditionals and equality tests:

if (−) then (−) else (−) : bool → A → A → A (=α) : α → α → bool

The reduction rules and denotational semantics for booleans and conditionals are
standard. For equality tests, we consider rules:

a =α a −→β true

a =α b −→β false
E [[M = N]]γ =

{
true (E[[M]]γ = E[[N]]γ)

false (E[[M]]γ 6= E[[N]]γ)

Note that in the reduction rules, we only consider names, not arbitrary terms, so
these rules are fairly weak, but they suffice for evaluation.

In order for the Church-Rosser and semantic soundness properties to hold, it is
essential that the second β-rule a =α b −→β false is valid no matter how a and b are
interpreted. Thus, we need to ensure that two syntactically distinct names never are
identified as the result of a β-reduction. This is exactly what is accomplished by the
freshness conditions on concretion in β-reductions and typechecking. Furthermore,
at the denotational level, the equality reduction rule is sound for well-typed terms
precisely because if context Γ contains two distinct names a, b, then γ ∈ [[Γ]] must
satisfy γ(a) 6= γ(b).

3.2 Numbers and lists

Natural numbers, lists, and sets are standard type constructions that can be con-
verted into constructions over nominal sets in a straightforward way. Thus, we can
extend SNTT with the types nat and listA and constants:

zero : nat

succ : nat → nat

(+) : nat → nat → nat

[]A : listA

M :: N : A → listA → listA

append : listA → listA → listA

remove : 〈α〉listα → listα

The semantics of these operations are standard, except for remove, which we define
operationally as:

remove(〈a〉[]) −→β []
remove(〈a〉(a :: M)) −→β remove(〈a〉M)

remove(〈a〉(b :: M)) −→β remove(〈a〉M)

Note that, like name-equality, these rules rely on the fact that syntactically distinct
names always differ semantically.

11

Cheney

size = λx.recnat
Λ (λv.1) (λm, n.m + n) (λn.n + 1) x : Λ → int

subst = λx, f.recΛ
Λ (f) (app) (lam) x : Λ → (α → Λ) → Λ

subst1 = λx, y, v.subst (λw.if v = w then y else var(w)) x : Λ → Λ → α → Λ

fvs = λx.reclistα
Λ (λv.[v]) (∪) (λx.remove) x : Λ → listα

Fig. 7. Examples of recursive definitions.

3.3 Nominal recursion combinators

One of the main advertised benefits of nominal logic (and related approaches such
as binding algebras [3]) over other techniques has been the availability of principles
for inductive reasoning and recursive definitions that extend well-known principles
for induction and recursion for “first-order” languages without binding.

As one example, we consider a signature ΣΛ with constants that define the
syntax of lambda-terms modulo alpha-equivalence using nominal terms:

ΣΛ = {var : α→ Λ, app : Λ× Λ→ Λ, lam : 〈α〉Λ→ Λ}

It has been shown in several places (see e.g. [2,16]) that it is possible to model this
language using a least fixed point construction on nominal sets , since X 7→ 〈〈A〉〉X
is a continuous operator on nominal sets. The resulting nominal set Λ ∼= A+Λ×Λ+
〈〈A〉〉Λ is isomorphic to the set of all (open) lambda-terms modulo α-equivalence.

Unfortunately, existing approaches to recursion on nominal terms still seem more
complex than for ordinary datatypes, since additional reasoning about freshness
needs to be performed. For example, in the approaches of Norrish [9], Pitts [16]
and Urban and Berghofer [24], the function defining the lam case must satisfy a
“freshness condition on binders” (FCB) stating, informally, that bound names do
not escape.

In SNTT, this constraint is internalized into the implicit restrictions on names
and name-abstractions enforced by the type system. We can therefore (as in [20,19])
simply introduce a recursion combinator and associated βη-conversions for lambda-
term syntax as follows, by analogy with ordinary algebraic datatypes:

recB
Λ : (α → B) → (B ×B → B) → (〈α〉B → B) → (Λ → B) ∈ ΣΛ

recB
Λ fvar fapp flam (var M) −→β fvar M

recB
Λ fvar fapp flam (app M) −→β fapp (recB

Λ (π1(M)), recB
Λ (π2(M)))

recB
Λ fvar fapp flam (lam M) −→β flam (〈a〉recB

Λ (M @ a))

M : Λ −→η recΛ
Λ (var) (app) (lam) M

A few examples are shown in Figure 7, including the size function, capture-
avoiding substitution functions (for both simultaneous and single substitution), and
the free variables function. All of these examples typecheck, and this is all that is
necessary to ensure that they correspond to total, terminating functions on λ-terms.

As in (pure) FreshML, we cannot define a “bound variables function” bvs that
returns, for example, [a] given lam(〈a〉var(a)). No such “function” exists in the
nominal set semantics. Moreover, the type system prevents us from defining such a
function because given a variable of type 〈α〉A, there is no way to generate a name
of type α that we can return in the case for lam. Conversely, many (computable)

12

Cheney

functions exist in the nominal set semantics but cannot be defined using SNTT. In
particular, functions that rely on “well-behaved” use of local names, such as Pitts’
definition of normalization by evaluation [16], cannot be handled in SNTT.

As noted earlier, SNTT signatures and terms generalize the nominal signatures
and ground nominal terms considered in prior work [16,25]. Given any nominal sig-
nature Σ, it is straightforward to define recursion principles for all of its datatypes,
along with suitable β-reduction and η-expansion rules, to obtain an extended system
SNTT(Σ). Moreover, we conjecture that Theorems 2.8–2.23 continue to hold for
any such extension, but have not proved this; a complete investigation is deferred
to future work.

4 Related and Future Work

A great deal of research on both nominal and other techniques for abstract syntax
with binding informs and motivates this work; we cannot give a complete survey
here. We have discussed closely related research in the body of the paper, and for
the rest we refer to the papers [2,16].

Pottier [18] has recently revisited the problem of inferring freshness information
for “pure” FreshML [14]. This approach reduces freshness inference to set constraint
solving and is aimed towards practical programming rather than deduction.

Recursion for nominal abstract syntax has been studied by several authors [9,24,16].
Recursion principles for other techniques such as higher-order abstract syntax and
de Bruijn representations have also been studied by Fiore, Plotkin and Turi [3] and
Hofmann [7] using functor categories, Schürmann, Despeyroux and Pfenning [21]
using a modal type system and by Washburn and Weirich [27] using parametric-
ity. These approaches appear (subjectively) more difficult to use than recursion
in SNTT; previous nominal techniques involve checking freshness side-conditions
and previous higher-order techniques do not provide equality on names. However,
as an objective matter we do not know how these different approaches compare in
terms of expressiveness; it appears that SNTT’s simplicity may come at the cost of
expressiveness compared to the other nominal approaches [9,24,16].

Schürmann, Poswolsky, and Sarnat’s ∇-calculus [22] is a core language for the
Elphin programming language, a language for functional programming with simply-
typed higher-order abstract syntax. More recently Poswolsky and Schürmann [17]
have extended this approach in the language Delphin that permits functional pro-
gramming over arbitrary dependent LF signatures. Pientka [12] has developed a
related, but distinct approach to functional programming over LF specifications
using explicit contexts and context polymorphism.

Miller and Tiu’s FOλ∆∇ [8] extends first-order logic over higher-order lambda-
terms with a ∇-quantifier with similar (but not identical) properties to nominal
logic’s N-quantifier. FOλ∆∇ uses separate contexts for ordinary variables and ∇-
quantified parameters, and manages their interaction using lifting. Also, FOλ∆∇

has been studied only as an intuitionistic sequent calculus; proof terms or natural
deduction systems for FOλ∆∇ have not been investigated. More recently, Tiu [23]
introduced a logic LGω that incorporates the idea of equivariance from nominal
logic and drops the∇-contexts. In both FOλ∆∇ and LGω, definitions and induction

13

Cheney

over N can be used to perform induction and recursion over λ-terms; the recursion
principle one would use in these systems is similar to the one studied here. Perhaps
SNTT can be extended to a type theory for these systems.

An immediate direction for future work is extending SNTT to richer type the-
ories such as dependent or polymorphic types which could serve as proof systems
for larger fragments of nominal logic. We believe that SNTT addresses the main
obstacle to combining nominal terms with ordinary λ-calculi, but, as in the depen-
dent type theories of Schöpp and Stark [20,19], there may be complications arising
from the interaction of names and dependency or polymorphism.

One feature of nominal logic not presently reflected in SNTT is the equivari-
ance principle [13] stating that validity is preserved by bijective (or, equivalently,
injective) renaming. In SNTT, this would take the form of an explicit swapping
proof term π · M , where π is a permutation. We have omitted explicit permutation
terms because they seem to complicate the presentation (for example, by making
the Church-Rosser property more difficult to prove) without contributing much;
nevertheless, they may be necessary to model full nominal logic.

Another direction for future work is developing a type-theoretic version of nom-
inal logic’s freshness principle, which says that we may always obtain a fresh name.
In SNTT, a natural way to model the freshness principle is to incorporate a name-
generation term νa:α.M . By analogy with the ν construct in the π-calculus, and
with FreshML’s let fresh construct, such an operator would permit us to obtain
a fresh name a and use it within M . However, the behavior of νa:α.M as a proof
term is problematic. Similar name-generation operators has been studied indepen-
dently of name-binding by Pitts and Stark [15] and Odersky [10]. Pitts and Stark’s
semantics for ν is, like FreshML’s let fresh, generative; conversely, Odersky’s ap-
proach is purely functional but it admits well-formed, “stuck” terms such as νa.a

that are not considered to be values. Neither approach seems compatible with a
denotational reading of proof terms as pure functions, at least without making the
system considerably more complex to prevent ν-generated names from “escaping”.
Resolving the tension between νa.M ’s intuitive generative reading and the needs of
a pure type theory seems a significant challenge, which we hope to tackle next.

Of course, we are also interested in completely formalizing and verifying the
metatheory of SNTT itself; we have already formalized the key syntactic properties
(up to subject reduction) using Isabelle/HOL-Nominal system [26].

5 Conclusion

Although proof systems for classical nominal logic have been studied extensively,
constructive techniques have received less attention. This paper develops a simple
type theory for nominal terms, called SNTT, that combines ordinary unit, pair,
and function types with the names and name-abstractions of nominal logic. SNTT
is sound and strongly normalizing, can be interpreted using nominal sets, and can
easily be extended with recursion combinators for languages with binding that are
simpler, albeit less expressive, than in previous systems. Extensions to richer type
theories or larger fragments of nominal logic remain to be investigated.

14

Cheney

References

[1] J. Cheney. A simpler proof theory for nominal logic. In FOSSACS 2005, volume 3441 of LNCS, pages
379–394. Springer-Verlag, 2005.

[2] J. Cheney. Completeness and Herbrand theorems for nominal logic. Journal of Symbolic Logic,
71(1):299–320, 2006.

[3] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In LICS 1999, pages
193–202. IEEE Press, 1999.

[4] M. J. Gabbay. Fresh logic: proof-theory and semantics for FM and nominal techniques. Journal of
Applied Logic, 5(2):356–387, June 2007.

[5] M. J. Gabbay and J. Cheney. A sequent calculus for nominal logic. In LICS 2004, pages 139–148.
IEEE, 2004.

[6] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2002.

[7] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Giuseppe Longo, editor,
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, pages 204–213,
Washington, DC, 1999. IEEE, IEEE Press.

[8] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. Comput. Logic,
6(4):749–783, 2005.

[9] M. Norrish. Recursive function definitions for types with binders. In TPHOLs, number 3223 in LNCS,
pages 241–256. Springer-Verlag, 2004.

[10] Martin Odersky. A functional theory of local names. In Proc. 21st ACM Symposium on Principles of
Programming Languages, pages 48–59, January 1994.

[11] P. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215–244,
June 1999.

[12] Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract syntax and
first-class substitutions. In POPL, pages 371–382, 2008.

[13] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
183:165–193, 2003.

[14] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names modulo renaming.
In MPC 2000, number 1837 in LNCS, pages 230–255. Springer-Verlag, 2000.

[15] Andrew Pitts and Ian Stark. Observable properties of higher order functions that dynamically create
local names, or: What’s new? In MFCS 1993, number 711 in LNCS, pages 122–141. Springer-Verlag,
1993.

[16] Andrew M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53(3):459–506, May
2006.

[17] Adam Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings and
dependent types. In ESOP, number 4960 in LNCS, pages 93–107, 2008.

[18] François Pottier. Static name control for FreshML. In LICS 2007, pages 356–365, Wroclaw, Poland,
July 2007.

[19] Ulrich Schöpp. Names and Binding in Type Theory. PhD thesis, University of Edinburgh, 2006.

[20] Ulrich Schöpp and Ian Stark. A dependent type theory with names and binding. In CSL 2004, number
3210 in LNCS, pages 235–249, Karpacz, Poland, 2004.

[21] Carsten Schürmann, Joelle Despeyroux, and Frank Pfenning. Primitive recursion for higher-order
abstract syntax. Theoretical Computer Science, 266:1–57, 2001.

[22] Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The [triangle]-calculus. functional
programming with higher-order encodings. In Pawel Urzyczyn, editor, TLCA, volume 3461 of Lecture
Notes in Computer Science, pages 339–353. Springer, 2005.

[23] Alwen Tiu. A logic for reasoning about generic judgments. Electronic Notes in Theoretical Computer
Science, 174(5):3–18, 2007.

[24] C. Urban and S. Berghofer. A recursion combinator for nominal datatypes implemented in
Isabelle/HOL. In IJCAR, volume 4130 of LNCS, pages 498–512. Springer-Verlag, 2006.

[25] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science, 323(1–
3):473–497, 2004.

[26] Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning, 40(4):327–
356, 2008.

[27] G. Washburn and S. Weirich. Boxes go bananas: Encoding higher-order abstract syntax with parametric
polymorphism. In ICFP 2003, pages 249–262, 2003.

15

Cheney

A Proof of semantic soundness

Proof. For part (1), proof is by induction on the structure of derivations. The base
cases such as variables, constants and names are straightforward. The inductive
steps for unit, pairing and projection, and function application are also standard.
For function abstraction, suppose we have:

Γ, x : A `M : B

Γ ` λx:A.M : A→ B E [[λx.M]]γ = Λv ∈ T [[A]]. E [[M]]γ[x 7→ v]

By induction, we know that for any v ∈ T [[A]], we have E [[M]]γ[x 7→ v]. Thus,
Λv ∈ T [[A]]. E [[M]]γ[x 7→ v] is indeed a function from T [[A]] to T [[B]]. We must
show that this function is finitely-supported. We will show that supp(γ) / Λv ∈
T [[A]]. E [[M]]γ[x 7→ v]. Let π ∈ G fixing supp(γ) be given; it suffices to show that

π · (Λv ∈ T [[A]]. E [[M]]γ[x 7→ v]) = Λv ∈ T [[A]]. π · E [[M]]γ[x 7→ π−1 · v])
= Λv ∈ T [[A]]. E [[M]](π · (γ[x 7→ π−1 · v]))
= Λv ∈ T [[A]]. E [[M]](π · γ)[x 7→ π · π−1 · v])
= Λv ∈ T [[A]]. E [[M]]γ[x 7→ v])

For name-abstraction, suppose we have:

Γ#a:α `M : A

Γ ` 〈a:α〉M : 〈α〉A E [[〈a〉M]]γ = 〈〈a′〉〉E [[M]]γ[a 7→ a′] (a′ /∈ supp(γ))

Clearly γ[a 7→ a′] ∈ [[Γ#a:α]] since a′ 6∈ supp(γ). By induction, we know that
v = E [[M]]γ[a 7→ a′] ∈ T [[A]]. Since E [[〈a:α〉M]]γ = 〈〈a′〉〉v, it is immediate that
〈〈a〉〉v ∈ 〈〈A〉〉T [[A]] = T [[〈α〉A]].

For name-concretion, suppose we have

Γ ` a : α \ Γ′ Γ′ `M : 〈α〉A
Γ `M @ a : A

E [[M @ a]]γ =

 E [[M]]γ @ γ(a) (γ(a) /∈ supp([[M]]γ))

⊥ otherwise

By induction, we have that v = E [[M]]γ ∈ T [[〈α〉A]] = 〈〈A〉〉T [[A]]. Since γ ∈ [[Γ]],
we can (by Lemma 2.22) obtain a γ′ ∈ [[Γ′]] that agrees with γ on Γ′. Moreover,
γ(a) 6∈ supp(γ′) so we must have γ(a) 6∈ supp(E [[M]]γ′). But since γ and γ′ agree
on Γ′, we must have E [[M]]γ = E [[M]]γ′, so a 6∈ supp(E [[M]]γ) and we conclude that
v @ a is defined and in T [[A]].

For part (2), proof is by induction on the structure of θ. The only interesting
case is for θ, b/a, but in this case we just need to appeal to Lemma 2.22 again.

For part (3), many cases are standard or straightforward; we just consider
the cases for β-reductions/η-expansions involving name-abstractions. For a β-
reduction step involving name-abstraction, we need to show that E [[〈a:α〉M @ b]]γ =
E [[M [b/a]]]γ. First, since Γ ` 〈a:α〉M @ b : A holds, we must have that Γ ` b : α \ Γ′,
Γ′ ` M : 〈α〉A, and Γ′#a:α ` M : A, so by Lemma 2.5 we can obtain γ′ such that
γ(b) 6∈ supp(γ′) and γ agrees with γ′ on Γ′. Then E [[〈a:α〉M]]γ = E [[〈a:α〉M]]γ′ so
we know that γ(b) 6∈ supp(E [[〈a:α〉M]]γ) = supp(E [[〈a:α〉M]]γ′). This ensures that

16

Cheney

the semantics of the name-concretion is well-defined, so (using Proposition 2.19(1))
we may conclude:

E [[〈a:α〉M @ b]]γ = E [[〈a:α〉M]]γ @ γ(b) = E [[〈a:α〉M]]γ′ @ γ(b)
= (〈〈a′〉〉E [[M]]γ′[a 7→ a′])@ γ(b) = (a′ γ(b)) · (E [[M]]γ′[a 7→ a′])
= E [[M]](a′ γ(b)) · (γ′[a 7→ a′]) = E [[M]]((a′ γ(b)) · γ′)[a 7→ (a′ γ(b)) · a′]
= E [[M]]γ′[a 7→ γ(b)] = E [[M [b/a]]]γ′[b 7→ γ(b)] = E [[M [b/a]]]γ.

For an η-expansion step M −→η 〈a:α〉M @ a, we must show that E [[M]]γ =
〈〈a′〉〉(E [[M]]γ[a 7→ a′] @ a′), provided a′ 6∈ supp(γ) and a 6∈ FN (M), but this is
immediate from Proposition 2.19(2) once we observe that [[M]]γ[a 7→ a′] = [[M]]γ so
a′ /∈ supp(γ) ⊇ supp([[M]]γ) = supp([[M]]γ[a 7→ a′]). 2

17

	Introduction
	Simple nominal type theory
	Formal properties
	Strong normalization and canonicalization
	Nominal set semantics

	Extensions
	Conditionals and name-equality
	Numbers and lists
	Nominal recursion combinators

	Related and Future Work
	Conclusion
	References

