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Abstract. The W3C recently released the XQuery Update Facility 1.0, a Can-
didate Recommendation for an XML update language. It appears likely that this
proposal will become standard. XQuery has been equipped with a formal seman-
tics and sound type system, but there has been little work on static analysis or
typechecking of XML updates, and the typing rules in the current W3C proposal
are unsound for “transform” queries that perform embedded updates. In this pa-
per, we investigate the problem of schema alteration, or synthesizing an output
schema describing the result of an update applied to a given input schema. We
review regular expression type systems for XQuery, present a core language and
semantics for W3C-style XML updates, and develop an effect analysis, schema
alteration, and sound typing rules for updates and “transform” queries.

1 Introduction

Query and transformation languages for XML data have been studied extensively, both
in the database and programming language communities. The World Wide Web Con-
sortium (W3C) has developed XQuery, a standard XML query language with a detailed
formal semantics and type system [8, 12]. Most real-world data changes over time, and
so it is also important to be able to update XML documents and XML-based data. How-
ever, query languages such as XQuery, and transformation languages such as XSLT,
provide support only for “functional” computation over immutable data, and are awk-
ward for writing transformations that update part of the data “in-place” while leaving
most of the document alone.

There have been a number of proposals and prototype implementations for XML
update languages (see for example [3, 10, 13, 24]). While no clear winner has emerged
so far, the W3C has introduced the XQuery Update Facility [9], combining features
from several proposals; this is now supported by many XML database implementations.
However, the typechecking and static analysis problems for XQuery Update (and for
XML updates more generally) remain ill-understood. In contrast to XQuery, there is no
formal semantics; moreover, the proposed typing rules for XQuery Update only ensure
that updates are minimally well-formed, and do not show how to compute the type of
the document after an update is performed. In fact, as we shall see, the proposed typing
rules in the current W3C proposal are unsound.

In this paper we develop a sound type and effect system for XQuery Update based
on regular expression types [15]. Regular expression types are closely related to tree
automata [22] and have been employed in a number of other settings [11]. We show



how to infer safe over-approximations for the results of both queries and updates. This
is nontrivial because we must consider destructive update at the schema/type level.

A complication is that XQuery Updates have a somewhat involved “snapshot” se-
mantics. An update expression is first evaluated, yielding a sequence of atomic up-
date operations; then the atomic update sequence is sanity-checked and finally applied.
Moreover, updates are not applied in the order they were generated (as a programmer
might expect) but instead are applied in several phases: insertions and renamings first,
then replacements, then deletions.

Example 1. Consider the update:

for $y in $x//a delete $y,
for $y in $x//a, $z in $x//d return (insert $z before $y)

This deletes all nodes matching $x//a and inserts copies of all nodes matching $x//d
before the deleted nodes. Suppose the input $x has type3 doc[a[], b[], c[d[]]]. One might
expect that the a node will be deleted first, so that the second update has no effect, yield-
ing result type doc[b[], c[d[]]]. However, the informal semantics in the W3C proposal re-
orders insert operations before deletions, so the actual result type is doc[d[], b[], c[d[]]].

Secondly, XQuery Update includes a new “transform” query expression that per-
forms updates in the middle of a query. The “transform” expression copies data into
new variables and then modifies the copied data. This complicates typechecking be-
cause the modified values may be used in subsequent queries. The W3C proposal’s
typing rules for “transform” do not take this into account, and are unsound:

Example 2. A typical W3C “transform” expression is of the form

copy $y := $x modify delete $y/c return $y

This expression behaves as follows: First we copy the value of $x and assign it to
$y; then we evaluate the modifying expression delete $y/c and apply the resulting
updates; finally, we return $y. Suppose $x : a[b[], c[]]. Thus, initially $y will have the
same type. According to the typing rules given in the W3C proposal [9], the return
expression will be typechecked with $y still assigned type a[b[], c[]], so the result of the
query will be assigned type a[b[], c[]], but the return value will be of the form a[b[]].

To recover soundness for “transform” expressions it is necessary to adjust the types of
updated variables after the updates are performed. One trivial, but unsatisfying way to
do so is to set updated variables’ types to Any, a type that matches any XML document.
A more appealing alternative is to calculate accurate types for the updated variables,
using the same techniques as are needed to predict the results of updates.

Uses of ancestor or sibling XPath axes further complicate typechecking:

Example 3. Consider the update expression:

for $y in $x//a/following::b/parent::c return delete $y

3 For brevity, we use compact, XDuce-style notation [15] for XML trees and types.



Intuitively, this deletes all c nodes that are parents of b nodes that follow some a node
in the document. If the input $x has type doc[b[c[]∗, a[]∗]] then this update has no
effect; if $x : doc[a[], c[b[]∗]] then the output will always have type doc[a[], c[]?]; if
$x : doc[(c[b[]], a[])∗] then the output will always have type $x : doc[(c[b[]], a[]+)?].

In the XQuery standard, however, the typing rules for axes such as following
and parent are very conservative: they assume that the result of a query might be any
part of the document. This would be disastrous from the point of view of typechecking
updates such as the above, however, since we would have to assume that any part of the
input could be the target of an update.

As these examples illustrate, it is easy to find pathological updates for which “good”
output schemas appear difficult to predict. In fact, in general there may be no schema
(based on regular expression types) that exactly captures the output of a query, because
the range of a query or update over a regular input language may not be regular [19].
Nevertheless, it is worthwhile to find sound, static overapproximations to the result of
an XML query or update. We are more interested in developing a pragmatic approach
that demonstrates reasonable behavior on common cases. It is already difficult just to
develop a nontrivial sound analysis for the W3C proposal, however, and experimental
validation of the practical utility of our approach is beyond the scope of this paper.

Prior work has been done on typechecking and other static analyses for UpdateX [3,
4] and FLUX [10], and other XML update proposals [13]. However, no prior work ap-
plies directly to the W3C’s current XQuery Update proposal. While Benedikt et al. [3,
4] considered a language similar to XQuery Update, they did not investigate typecheck-
ing. Cheney [10] studied regular expression typechecking for FLUX, an XML update
language that is simpler, but also less expressive, than XQuery Update. Ghelli et al.
studied commutativity analysis for an update language whose semantics differs sub-
stantially from the current version [13].

In this paper, we consider these related problems for XQuery Updates:
– effect analysis: given a schema and an update, approximate the possible atomic

updates (“effect”) generated by the update.
– schema alteration: given a schema and an update effect, find an output schema that

approximates the results of applying atomic updates described by the effect.
Prior work on typechecking of queries has not handled upward axes, since they use
regular expression types that specify only the hedge or subtree structure of returned
nodes, not their position within a larger schema. To handling the interaction of schemas
and updates, we develop a type and effect system that can record this information.
Hence our approach applies to a language that contains all XPath axis steps.

In many XML processing settings (particularly databases) we can assume a fixed
input schema and type declarations for the free variables of the expression, so we do
not consider the (likely harder) schema inference problem of inferring types for both
input variables and results.

For ease of exposition, we first consider type and effect analysis and schema alter-
ation separately in the absence of “transform” queries; in their presence, these problems
are mutually dependent. We also leave out the “replace value of” operation [9]. We omit
proofs and standard definitions; these are placed in an appendix [5].



Outline The rest of this paper is structured as follows: Section 2 reviews core XQuery
and schema languages we will use, and Section 3 introduces the atomic update and
XQuery Update languages, along with their operational semantics. Section 4 defines
an effect analysis for update expressions and proves its soundness. Section 5 presents
a schema alteration algorithm that applies a static effect to a schema. Section 6 shows
how to extend these results to handle “transform” queries. We discuss a prototype im-
plementation in Section 7. Section 8 discusses related and future work and Section 9
concludes.

2 Background

W3C XQuery Update 1.0 extends XQuery, which is already a large language. Even
restricting attention to a core language, we must present a great deal of background ma-
terial. In this section we review XML stores, regular expression types, XPath steps, and
queries. Whenever possible we omit standard definitions that can be found in previous
work or the appendix.

XML stores Let Loc be a set of locations l. A location sequence L is a list of locations;
we write () for the empty location sequence and L ·L′ for sequence composition. A store
σ is a mapping from locations to constructors k, defined as follows:

k ::= text[s] | a[L]

where s is a string, a is an element node label and L is a list of locations. A well-formed
store corresponds to an acyclic forest of XML trees.

We introduce a copying judgment σ, L
copy7→ σ′, L′ that, intuitively, extends σ to a

store σ′ by copying the subtree under each label L to a fresh subtree, collecting the
resulting labels in list L′. This judgment is defined formally in the appendix.

Regular expression types Following previous work [15, 11, 10], we employ regular ex-
pression types τ for XML queries and updates:

τ ::= () | T | a[τ ] | δ | τ, τ ′ | τ |τ ′ | τ∗

Here, δ is the base type of “data” (e.g. strings), and T, T′, . . . ∈ TName are type names.
We consider schemas S mapping type names to types. In order to ensure regularity,
we forbid uses of top-level type names in S(T) ; for example, both the type definitions
T 7→ a[], T, b[]|() and T′ 7→ a[T′], T′|() are forbidden, whereas T′ 7→ a[T′]∗ is allowed
(and is equivalent to T′ 7→ a[T′], T′|()). Such schemas are called regular. A type whose
type names are drawn from S is called an S-type.

Regular schemas are very general and flexible, but they are awkward for our pur-
poses. There are two reasons for this. First, we want to be able to typecheck queries and
updates involving navigation axes such as descendant, ancestor and following
more accurately than the default XQuery approach. Second, it is non-obvious how to
apply the effects of updates to general regular schemas.

Both problems can be ameliorated using flat schemas:



σ(l) = a[L] σ |=S L : τ

σ |=S l : a[τ ]

σ(l) = text[s]

σ |=S l : δ σ |=S () : ()

σ |=S L1 : τ1 σ |=S L2 : τ2

σ |=S L1 · L2 : τ1, τ2

σ |=S L : τ1

σ |=S L : τ1|τ2
σ |=S L : τ2

σ |=S L : τ1|τ2
σ |=S L : () | τ, τ∗

σ |=S L : τ∗
σ |=S L : S(T)

σ |=S L : T

Fig. 1. Validation rules

Definition 1. A flat type is a regular expression over type names. A flat schema is a
schema in which all type definitions are either of the form T 7→ δ, or T 7→ a[τ ] where τ
is a flat type.

In a flat schema, a type name is mapped to either a single element a[τ ] (with flat content
type τ ) or δ. For example, X, (Y∗, Z)∗ is a flat type and X 7→ a[X, (Y∗, Z)∗] is a flat schema
rule. Flat schemas provide an explicit type name for each “part” (e.g. element or data
type) in the schema corresponding to a “part” of a document. This makes them more
suitable for updating.

Flat schemas are syntactically more restrictive than general schemas, and hence
they are less convenient for users. Fortunately, it is always possible to translate a regular
schema S to an equivalent flat schema S′, as follows: First introduce new type definitions
T 7→ a[τ ] for each type of the form a[τ ] occurring in the original schema, rewriting
the existing definitions and un-nesting nested element constructors. Then, “inline” all
occurrences of the original type names in the schema with their new definitions. Other
S-types in a context Γ can also be translated to S′-types in this way. As an example,
the flat schema S′ corresponding to Y 7→ a[Y]∗ is Z 7→ a[Z∗], and the flat S′-type
corresponding to the S-type Y is Z∗.

Validation We define a validation relation σ |=S L : τ that states that in store σ and
schema S, location sequence L matches type τ . The rules in Figure 1 define validation.

Aliasing We say that T and T′ may alias4 (with respect to S) provided that for some σ
and l ∈ dom(σ), we have σ |=S l : T and σ |=S l : T′.

A sufficient (but not necessary) condition to establish that T and T′ do not alias
is that the languages corresponding to the two types are disjoint, that is, no tree can
match both T and T′. Disjointness is decidable for regular languages, and for restricted
expressions (e.g. 1-unambiguous), tractable procedures are known [23, 20]. An exact
algorithm for determining disjointness is also possible, via reduction to tree automata
nonemptiness. For the purposes of this paper we assume that we are given sound alias
sets aliasS(T) such that if T and T′ may alias we have T′ ∈ aliasS(T).

4 Aliasing means that two names refer to the same thing. In pointer analysis, aliasing usually
means that two variable names refer to the same memory location. Here, aliasing means two
type names may match the same store location.



XPath axes XPath is an important sublanguage of both XQuery and XQuery Update.
XPath steps are expressions of the form:

step ::= ax::φ φ ::= ∗ | n | text
ax ::= self | child | descendant | parent | ancestor | · · ·

The semantics and static analysis problems for XPath have been well-studied [6, 22].
We will abstract away from the details of XPath in this paper, by introducing judgments
σ |= l/ax ::φ

step⇒ L to model XPath step evaluation and S ` T/ax ::φ
step⇒ τ to model

static typechecking for XPath steps. For the purposes of this paper, we assume that these
relations satisfy the following soundness property:

Lemma 1. If S ` T/ax ::φ
step⇒ τ and σ |= l/ax ::φ

step⇒ L and σ |=S l : T then
σ |=S L : τ .

Environments and type contexts We employ (dynamic) environments γ mapping vari-
ables x, y, . . . ∈ Var to location sequences L, and type contexts (also known as static
environments) Γ mapping variables to regular expression types. We write • for an empty
environment or type context, and write γ[x := L] for the result of updating a context by
binding x to L.

A type context is flat if its types are flat. An S-context is a context whose types are
S-types. We also write σ |=S γ : Γ to indicate that ∀x ∈ dom(Γ). σ |=S γ(x) : Γ(x).

Queries We introduce a core XQuery fragment, following Colazzo et al. [11].

q ::= x | () | q, q′ | a[q] | s | x/step
| if q then q1 else q2 | let x := q in q′ | for x ∈ q return q′

The empty sequence (), element constructor a[q], sequential composition q, q′ and
string s expressions build XML values. Variables and let-bindings are standard; con-
ditionals branch depending on whether their first argument is nonempty. The expres-
sion x/step performs an XPath step starting from x. The iteration expression for x ∈
q return q′ evaluates q to L, and evaluates q′ with x bound to each location l in L,
concatenating the results in order.

We model the operational semantics of queries using a judgment σ, γ |= q ⇒ σ′, L.
Note that the store σ may grow as a result of allocation, for example in evaluating
expressions of the form a[q] and s. We employ an auxiliary judgment σ, γ |= q

copy⇒ σ′, L
that is used for element node construction and later in the semantics of inserts (see
Section 3) and transforms (see Section 6). The rules defining these judgments are given
in an appendix; here are two illustrative rules:

σ, γ |= q ⇒ σ0, L0 σ0, L0
copy7→ σ′, L

σ, γ |= q
copy⇒ σ′, L

σ, γ |= q
copy⇒ σ′, L l 6∈ dom(σ′)

σ, γ |= a[q]⇒ σ′[l := a[L]], l



3 Core XQuery Updates

Atomic updates We consider atomic updates of the form:

ι ::= ins(L, d, l) | del(l) | repl(l, L) | ren(l, a)
d ::=← | → | ↓ | ↙ | ↘

Here, the direction d indicates whether to insert before (←), after (→), or into the child
list in first (↙), last (↘) or arbitrary position (↓). Moreover, we consider sequences of
atomic updates ω with the empty sequence written ε and concatenation written ω;ω′.

Updating expressions We now define the syntax of updating expressions, based roughly
on those of the W3C XQuery Update proposal.

u ::= () | u, u′ | if q then u1 else u2 | for x ∈ q return u | let x := q in u

| insert q d q0 | replace q0 with q | rename q0 as a | delete q0

The XQuery Update proposal overloads existing query syntax for updates. The () ex-
pression is a “no-op” update, expression u, u′ is sequential composition, and let-bindings,
conditionals, and for-loops are also included. There are four basic update expressions:
insertion insert q d q0, which says to insert a copy of q in position d relative to
the value of q0; deletion delete q0, which says to delete the value of q0; renam-
ing rename q0 as a, which says to rename the value of q0 to a and replacement
replace q0 with q, which says to replace the value of q0 with a copy of q. In each
case, the target expression q0 is expected to evaluate to a single node; if not, evaluation
fails.

Semantics Updates have a multi-phase semantics. First, the updating expression is eval-
uated, resulting in a pending update list ω. We model this phase using an update evalua-
tion judgment σ, γ |= u⇒ σ′, ω, along with an auxiliary judgment σ, γ, x ∈ L |=? u⇒
σ′, ω that handles for-loops. The rules for these judgments are presented in Figure 2.
Note that again the store may grow as a result of allocation, but the values of existing
locations in σ do not change in this phase. Next, ω is checked to ensure, for example,
that no node is the target of multiple rename or replace instructions. We do not model
this sanity-check phase explicitly here; instead we simply introduce an abstract predi-
cate sanitycheck(ω) that checks that ω is a valid update sequence. Finally, the pending
updates are applied to the store. The semantics of atomic updates is defined using the
judgment σ |= ι σ′ presented in Figure 3.

One natural-seeming semantics for update application is simply to apply the updates
in ω in (left-to-right) order. However, this naive semantics is not what the W3C proposal
actually specifies [9]. Instead, updates are applied in the following order: (1) “insert
into” and rename operations, (2) “insert before, after, as first” and “as last” operations,
(3) “replace” operations, and finally (4) “delete” operations. (There is an extra stage for
“replace value of” operations in [9], which we omit.) Subject to these constraints, the
order of application within each stage is unspecified. To model this behavior we intro-
duce a judgment σ |= ω  σ′ along with an auxiliary function stage(ι) and judgment



σ |=i ω  σ′ for stages i ∈ {1, 2, 3, 4}. The rules defining these judgments are shown
in Figure 3. Note that the rule for sequential composition permits arbitrary reordering
of update sequences (which are also identified up to associativity). Static analyses for
the W3C semantics are not in general valid for the naive, “in-order” semantics and vice
versa.

The final rule in Figure 4 defines the judgment σ, γ |= u  σ′, which evaluates
an update, checks that the resulting pending update list is valid, and then applies the
updates to the store.

Inferring Types For functional programs (i.e., queries) on documents, the notion of a
valid type for an expression is fairly clear: given a schema S and expression e, a typing
is a representation (e.g. by a regular expression type) of a set of trees; it is valid if
it represents all of the possible hedges of subtrees returned by the query. Since XML
updates modify the input store but do not return a value, the appropriate notion of a
valid typing is less familiar. Our goal is to define a typing judgment S, Γ ` u  S′, Γ′

that relates an update u, input schema S and a S′-context Γ to a new schema S′ and a
new S′-context Γ′ in which the types of variables in Γ have been adjusted to account
for the changes made by the update. The basic correctness criterion we expect for this
judgment is that if the initial store satisfies Γ with respect to S, then the final store
resulting from applying u satisfies the type context Γ′ with respect to S′. This property
(Corollary 1) is the main result of the paper. Typically, the initial store will consist of a
single tree and the environment γ will map a single variable $doc to the root of the tree.
In this case our correctness property guarantees that the portion of the output reachable
from this root will satisfy the new schema S′.

4 Type and effect analysis

Query result type analysis First, for queries we would like to define a typechecking
judgment S; Γ ` q : τ that calculates return type τ for q when run in context Γ. Previous
work on type systems for XML queries has been based on general regular-expression
types [8, 11]; here, however, we want to infer flattened types. To do this in the presence
of element-node constructor expressions, we may need to add rules to the schema, so we
employ a judgment S; Γ ` q : τ ; S′. The rules are mostly straightforward generalizations
of those in Colazzo et al. [11] and so are relegated to an appendix. The key new rules
with respect to previous work are those for node construction and XPath axis steps,
respectively:

S; Γ ` q : τ ; S′ T 6∈ dom(S′)
S; Γ ` a[q] : T; S′[T := a[τ ]]

S ` Γ(x)/ax :: φ
step⇒ τ

S; Γ ` x/ax :: φ : τ ; S

Theorem 1 (Type Soundness). If S; Γ ` q : τ ; S′ then for all σ, γ, L, σ′, if σ |=S γ : Γ
and σ, γ |= q ⇒ σ′, L then σ′ |=S′ L : τ .

Update effect analysis We next turn to the problem of statically approximating the
pending update list generated by an update. We use the following effect expressions:

Ω ::= ε | Ω;Ω′ | Ω|Ω′ | Ω∗ | ins(τ, d, T) | del(T) | ren(T, a) | repl(T, τ)



σ, γ |= ()⇒ σ, ε

σ1, γ |= u1 ⇒ σ2, ω1 σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= u1, u2 ⇒ σ3, ω1;ω2

σ1, γ |= q ⇒ σ2, l · L σ2, γ |= u1 ⇒ σ3, ω1

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω1

σ1, γ |= q ⇒ σ2, () σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω2

σ1, γ |= q ⇒ L, σ2 σ2, γ[x := L] |= u⇒ σ3, ω

σ1, γ |= let x = q in u⇒ σ3, ω

σ1, γ |= q ⇒ L, σ2 σ2, γ, x ∈ L |=? u⇒ σ3, ω

σ1, γ |= for x ∈ q return u⇒ σ3, ω

σ1, γ |= q1
copy⇒ σ2, L1 σ2, γ |= q2 ⇒ σ3, l2

σ1, γ |= insert q1 d q2 ⇒ σ3, ins(L1, d, l2)

σ1, γ |= q ⇒ σ2, l

σ1, γ |= delete q ⇒ σ2, del(l)

σ1, γ |= q1 ⇒ σ2, l1 σ2, γ |= q2
copy⇒ σ3, L2

σ1, γ |= replace q1 with q2 ⇒ σ3, repl(l1, L2)

σ1, γ |= q ⇒ σ2, l

σ1, γ |= rename q as a⇒ σ2, ren(l, a)

σ, γ, x ∈ () |=? u⇒ σ, ε

σ1, γ[x := l] |= u⇒ σ2, ω1 σ2, γ, x ∈ L |=? u⇒ σ3, ω2

σ1, γ, x ∈ l · L |=? u⇒ σ3, ω1;ω2

Fig. 2. Rules for evaluating update expressions to pending update lists

σ(l′) = a[L1 · l · L2]

σ |= ins(L,←, l) σ[l′ := a[L1 · L · l · L2]]

σ(l) = a[L′]

σ |= ins(L,↙, l) σ[l := a[L · L′]]
σ(l′) = a[L1 · l · L2]

σ |= ins(L,→, l) σ[l′ := a[L1 · l · L · L2]]

σ(l) = a[L′]

σ |= ins(L,↘, l) σ[l := a[L′ · L]]
σ(l) = a[L1 · L2]

σ |= ins(L, ↓, l) σ[l := a[L1 · L · L2]]

σ(l) = a[L]

σ |= ren(l, b) σ[l := b[L]]

σ(l′) = a[L1 · l · L2]

σ |= repl(l, L) σ[l′ := a[L1 · L · L2]]

σ(l′) = a[L1 · l · L2]

σ |= del(l) σ[l′ := a[L1 · L2]]

Fig. 3. Semantics of atomic updates

stage(ins( , ↓, )) = 1

stage(ren( , )) = 1

stage(ins( , d, )) = 2 (d ∈ {←,→,↙,↘})
stage(repl( , )) = 3

stage(del( )) = 4

σ0 |=1 ω  σ1 σ1 |=2 ω  σ2 σ2 |=3 ω  σ3 σ3 |=4 ω  σ4

σ0 |= ω  σ4 σ |=i ε σ

σ |=i ωj  σ′ σ′ |=i ωk  σ′′ {j, k} = {1, 2}
σ |=i ω1, ω2  σ′′

σ |= ι σ′

σ |=stage(ι) ι σ′
stage(ι) 6= i

σ |=i ι σ

σ, γ |= u⇒ σ′, ω sanitycheck(ω) σ′ |= ω  σ′′

σ, γ |= u σ′′

Fig. 4. Update application



σ |=S L : τ σ |=S l : T

σ |=S ins(L, d, l) : ins(τ, d, T)

σ |=S l : T

σ |=S del(l) : del(T)

σ |=S l : T

σ |=S ren(l, a) : ren(T, a)

σ |=S l : T σ |=S L : τ

σ |=S repl(l, L) : repl(T, τ)

Fig. 5. Effect validity rules (regular expression forms omitted)

S; Γ ` () : ∅; S
S; Γ ` u1 : Ω1; S1 S1; Γ ` u2 : Ω2; S2

S; Γ ` u1, u2 : Ω1;Ω2; S2

S; Γ ` q : τ ; S1 S1; Γ, x : τ ` u : Ω; S2

S; Γ ` let x := e in u : Ω; S2

S; Γ ` q : τ ; S0 S0; Γ ` u1 : Ω1; S1 S1; Γ ` u2 : Ω2; S2

S; Γ ` if q then u1 else u2 : Ω1|Ω2; S2

S; Γ ` q : τ ; S1 S1; Γ;x ∈ τ `? s : Ω; S2

S; Γ ` for x ∈ e return s : Ω; S2

S; Γ ` q : τ ; S1 S1; Γ ` q′ : T; S2

S; Γ ` insert q d q′ : ins(τ, d, T); S2

S; Γ ` q : T; S′ S′(T) = b[τ ]

S; Γ ` rename q as a : ren(T, a); S′

S; Γ ` q : T; S1 S1; Γ ` q′ : τ ; S2

S; Γ ` replace q with q′ : repl(T, τ); S2

S; Γ ` q : T; S′

S; Γ ` delete q : del(T); S′

S; Γ, x : T ` u : Ω; S′

S; Γ;x ∈ T `? u : Ω; S′ S; Γ;x ∈ () `? u : ε; S

S; Γ;x ∈ τ `? u : Ω; S′

S; Γ;x ∈ τ∗ `? u : Ω∗; S′

S; Γ;x ∈ τ1 `? u : Ω1; S1 S1; Γ;x ∈ τ2 `? u : Ω2; S2

S; Γ;x ∈ τ1, τ2 `? u : Ω1, Ω2; S2

S; Γ;x ∈ τ1 `? u : Ω1; S1 S1; Γ;x ∈ τ2 `? u : Ω2; S2

S; Γ;x ∈ τ1|τ2 `? u : Ω1|Ω2; S2

Fig. 6. Update effect-inference rules

The semantics of effects is defined by the judgment σ |=S ω : Ω in Figure 5; we leave
out standard rules for regular expression forms. Intuitively, σ |=S ω : Ω says that in
store σ and schema S, the atomic updates ω match the effect expression Ω.

We use judgments S; Γ ` u : Ω; S′ and S; Γ;x ∈ τ `? u : Ω; S′ to infer effects for
plain and iterative updates respectively, as defined in Figure 6. Note that typechecking
an update may also require adding rules to the result schema, because of embedded
node-construction (e.g. insert foo[] ↓ x).

Theorem 2 (Effect soundness). If S; Γ ` u : Ω; S′ then for all σ, γ, if σ |=S γ : Γ and
σ, γ |= u⇒ σ′, ω then σ′ |=S′ ω : Ω.

Type soundness only guarantees that the results of successful executions will match
the static type. Dynamic errors may still occur while evaluating a well-formed query.
Similarly, update effect soundness only guarantees that the results of a successful update
evaluation will match the computed effect, not that evaluation will be free of dynamic
errors. We believe our techniques can be modified to issue static warnings about possi-
ble dynamic errors in queries, but this is beyond the scope of this paper.



5 Schema Alteration

We now present an algorithm for schema alteration, that is, soundly over-approximating
the possible effects an update may have on a schema. Given input type context Γ,
schema S and effect Ω we want to infer a suitable output schema S′ and type context ∆.
The rough idea is as follows:

1. Augment the input schema S to S̃ by adding new temporary type names standing
for “places” where updates may occur.

2. Determine which type names may match the same store location at run time, using
alias analysis

3. Simulate the effects of each stage of atomic update application on S̃.
4. Finally, flatten the updated S̃ to S′ and update the type context Γ to Γ′.

We first illustrate the above algorithm by an example:

Example 4. Suppose we have effect Ω = ins((U, V),↙, T), del(T), ren(T, b), with
schema S given by rules S̃ 7→ doc[T], T 7→ a[U, V], U 7→ b[], V 7→ c[], and Γ = x : S.

Using the schema S we will form a new schema T̃ extending S with additional type
names and instrumented rules based on the rules of S. For example, for the single rule
T 7→ a[U, V] we generate three rules:

T̃ 7→ T̃←, T̃r, T̃→ T̃r 7→ a[T̃c] T̃c 7→ T̃↙, T̃↓, Ũ, T̃↓, Ṽ, T̃↓, T̃↘

Here, the five type names T̃↓, T̃←, T̃→, T̃↙, and T̃↘ stand for data inserted “into”,
“before”, “after”, “first into”, or “last into” T. The type name T̃r stands for the data
“replacing” T, and the type name T̃c stands for the “content” of T.

The rest of the auxiliary type names are all initially defined as (). Note therefore
that each type T̃ in the augmented schema S̃ initially is equivalent to T in S, in the sense
that they match the same subtrees.

Next, we simulate the static effects, in order of stage. In stage 1, we perform the
rename operation, by altering the definition of T̃r to a[T̃c]|b[T̃c]. In stage 2 we simulate
effect ins((U, V),↙, T) by setting T̃↙ to (U, V)∗. Here we refer to the original types U
and V in S, which have the same definitions as before. Stage 3 is inactive, and finally in
stage 4 we apply the deletion by setting T̃r to a[T̃c]|b[T̃c]|(). In this example, there are
no other type names that may alias T. Had there been, we would have applied the same
changes to the aliases of T.

Finally, we re-flatten the final schema. In this case consider the rule for T̃. Flattening
and simplifying yields S̃ 7→ doc[T̃1|T̃2|()], T̃1 7→ a[(U, V)∗, Ũ, Ṽ], T̃2 7→ b[(U, V)∗, Ũ, Ṽ].
Note that this type refers to both the old and new versions of U and V (they happen to be
the same in this case). We also modify the type context to x : S̃ to reflect the change.

Another, more elaborate example is shown in Figure 7. We now describe the schema
alteration algorithm more carefully.

Preprocessing We define the augmented schema S̃ as follows. For each rule T 7→ a[τ ]
in S, we introduce rules

T̃ 7→ T̃←, T̃r, T̃→ T̃r 7→ a[T̃c] T̃c 7→ T̃↙, h(τ), T̃↓, T̃↘



Initial augmented schema:

S 7→ doc[T] S̃ 7→ S̃←, S̃r, S̃→ S̃r 7→ a[S̃c] S̃c 7→ S̃↙, S̃↓, T̃, S̃↓, S̃↘

T 7→ a[U, V] T̃ 7→ T̃←, T̃r, T̃→ T̃r 7→ a[T̃c] T̃c 7→ T̃↙, T̃↓, Ũ, T̃↓, Ṽ, T̃↓, T̃↘

U 7→ b[] Ũ 7→ Ũ←, Ũr, Ũ→ Ũr 7→ b[Ũc] Ũc 7→ Ũ↙, Ũ↓, Ũ↘

V 7→ c[] Ṽ 7→ Ṽ←, Ṽr, Ṽ→ Ṽr 7→ c[Ṽc] Ṽc 7→ Ṽ↙, Ṽ↓, Ṽ↘

All other new type names are initialized to ().
Effect:

|Ω| = {ins(V,←, U), ren(U, d), repl(V, U∗), del(T)}

Schema changes:


Phase 1: Phase 2: Phase 3: Phase 4:
Ũr 7→ b[Ũc]|d[Ũc] Ũ← 7→ V∗ Ṽr 7→ c[Ṽc]|U∗ T̃r 7→ a[T̃c]|()

Result schema (after some equational simplifications):

S 7→ doc[T] S̃ 7→ S̃r, S̃r 7→ a[S̃c] S̃c 7→ T̃,

T 7→ a[U, V] T̃ 7→ T̃r T̃r 7→ a[T̃c]|() T̃c 7→ Ũ, Ṽ

U 7→ b[] Ũ 7→ Ṽ∗, Ũr Ũr 7→ b[Ũc]|d[Ũc] Ũc 7→ ()

V 7→ c[] Ṽ 7→ Ṽr Ṽr 7→ c[Ṽc]|U∗ Ṽc 7→ ()

Re-flattened schema:

S 7→ doc[T] T 7→ a[U, V] U 7→ b[] V 7→ c[]

S̃ 7→ a[T̃|()] T̃ 7→ a[V∗, (Ũ1|Ũ2), (Ṽ0|U∗)] Ũ1 7→ b[] Ũ2 7→ d[] Ṽ0 7→ c[]

Fig. 7. Detailed example

where h is the (unique) regular expression homomorphism satisfying h(U) = T̃↓, Ũ for
all U in S. We map all other new type names in S̃ to ().

Alias analysis Before proceeding, we pre-compute sound aliasing information for S,
defining sets alias(T) = {U | aliasS(T)}.

Effect application We now apply the effects to the augmented schema. The behavior of
an effect is applied to the effect’s target type name and all of its aliases. We will ignore
the regular expression structure of effects and just consider the set of atomic effects,
written |Ω|. Similarly, we write |τ | for the set of all type names mentioned in τ . We
also write

∨
{τ1, . . . , τn} for the regular expression τ1| · · · |τn.

Phase 1: To simulate insert–into operations, for each type name T, we define the set
I↓(T) = {U | ∃T′ ∈ alias(T). ∃τ. ins(τ, ↓, T′) ∈ |Ω|, U ∈ |τ |}. We then replace rule
T̃↓ 7→ () with T̃↓ 7→ (

∨
I↓(T))∗ in S̃. To simulate renamings, for each type name T, we

define the set N(T) = {b | ∃T′ ∈ alias(T). ren(T′, b) ∈ |Ω|}, and replace rule T̃r 7→ τ0
with T̃r 7→ τ0 |

∨
{b[T̃c] | b ∈ N(T)}.

Phase 2: To simulate the remaining insert operations, we define the set Id(T) =
{τ | ∃T′ ∈ alias(T). ∃τ. ins(τ, d, T′) ∈ |Ω|} and then replace rule T̃d 7→ () with
T̃d 7→ (

∨
Id(T))∗ for each type name T and direction d ∈ {←,→,↙,↘}.



Phase 3: To simulate replacement operations, we construct the set R(T) = {τ |
∃T′ ∈ alias(T). ∃τ. repl(T′, τ) ∈ |Ω|} of possible replacements for each T, and replace
the rule T̃r 7→ τ0 with T̃r 7→ τ0 |

∨
R(T).

Phase 4: To simulate deletions, for each T, if del(U) ∈ |Ω| for some U ∈ alias(T),
replace the rule T̃r 7→ τ0 with T̃r 7→ τ0 | ().

Postprocessing Once we have finished symbolically updating S̃, we also update Γ to
Γ̃ by replacing each binding x : τ in Γ with x : τ̃ , where τ̃ is the regular expression
obtained by replacing each T with T̃. We also flatten S̃ and Γ̃ to obtain S′ and Γ′.

We will write S, Γ ` Ω  S′, Γ′ to indicate that given input schema S and typ-
ing context Γ, symbolically evaluating Ω yields flattened output schema S′ and typing
context Γ′. We also define S, Γ ` u  S′, Γ′ as meaning that S; Γ ` u : Ω; S′′ and
S′′, Γ ` Ω  S′, Γ′ hold for some S′′ and Ω.

Correctness The main correctness properties (proved in the appendix) are:

Theorem 3. Suppose S, Γ ` Ω  S′, Γ′. If σ |=S γ : Γ and σ |=S ω : Ω and
σ |= ω  σ′ then σ′ |=S′ γ : Γ′.

Corollary 1. Suppose S, Γ ` u  S′, Γ′ and σ |=S γ : Γ and σ, γ |= u  σ′. Then
σ′ |=S′ γ : Γ′.

6 Transform queries

In this section, we sketch how to extend the above semantics and type system to handle
“transform” queries. We extend the syntax of queries as follows:

q ::= · · · | copy θ modify u return q θ ::= θ, x := q | •

Here, • is an empty binding list. The transform expression copy θ modify u return q
first evaluates the queries in θ and binds them to their corresponding variables in the
environment, then runs the update u and applies the results, and finally returns the value
of q. Only copied nodes bound to the variables in θ may be updated. The semantics of
transforms is given by the rules in Figure 8, where we introduce an auxiliary judgment
σ, γ |= θ ⇒ σ′, δ for evaluating the θ-bindings. We use an auxiliary function target(ω)
to check that ω only updates freshly copied nodes.

Typing rules for transform queries are shown in Figure 9. It is crucial that the op-
erational semantics rules forbid modifying nodes in σ. The soundness of the typing
rules rely on this fact since they assume data reachable from Γ is immutable. Using
Theorem 3, we can prove Theorem 1, Theorem 2 and Corollary 1 in the presence of
transforms. There are some subtleties, due partly to the fact that transforms must only
modify copied nodes; these are detailed in the appendix.



σ, γ |= θ ⇒ σ1, δ σ1, γ ] δ |= u⇒ σ2, ω
sanitycheck(ω) target(ω) ⊆ dom(σ1)− dom(σ)

σ2 |= ω  σ′2 σ′2, γ ] δ |= q
copy⇒ σ3, L

σ, γ |= copy θ modify u return q ⇒ σ4, L

σ, γ |= • ⇒ σ, •
σ, γ |= θ ⇒ σ′, δ σ′, γ ] δ |= q

copy⇒ σ′′, L

σ, γ |= θ, x := q ⇒ σ′′, δ[x := L]

Fig. 8. Semantics of transform queries

S; Γ ` θ : ∆; S1 S1; ∆ ` u : Ω; S2 S2, ∆ ` Ω  S′2, ∆
′ S′2; Γ, ∆

′ ` q : τ ; S3

S; Γ ` copy θ modify u return q : τ ; S3

S; Γ ` • : •; S
S; Γ ` θ : ∆; S1 S1; Γ, ∆ ` q : τ ; S2

S; Γ ` θ, x := q : ∆, x : τ ; S2

Fig. 9. Typechecking rules for transform queries

7 Implementation

We have developed a prototype implementation in OCaml, to demonstrate feasibility
of the approach. We have tested the implementation on a number of examples from the
XQuery Update Use Cases [16]. For these small updates and schemas, schema alteration
takes under 0.1s. Space limitations preclude a full discussion of examples; we discuss
the accuracy of the resulting schemas in an appendix.

However, there are several possible avenues for improvement:

– Currently flattening produces large numbers of temporary type names, increasing
the size of output and limiting readability. An obvious approach would be to do
flattening only “on demand”, when further navigation effect application requires
exploration of the schema below a certain type name.

– Both effect application and flattening can produce redundancy in type expressions.
Currently we simplify the regular expression types in the output schema using basic
rules such as (), τ ≡ τ ≡ τ, () and (τ∗)∗ ≡ τ∗. Post-processing using full-fledged
regular expression simplification might be more useful [25].

– We have implemented a simple, but inaccurate alias analysis: we assume that two
types alias if they have the same root element label. For the examples in the ap-
pendix, this naive analysis is reasonably accurate. However, for more complex up-
dates and schemas, we may need more sophisticated alias analysis to produce useful
results. We envision using ideas from region inference [14] or more advanced shape
analysis techniques [21] to obtain more accurate alias information.

– Type and effect inference appears to be worst-case exponential in the presence of
nested for-loops. In practice, typical queries and updates are small and of low nest-
ing depth, so we expect the size of the schema to be the dominant factor. The type,
effect and schema alteration algorithms appear to be polynomial in the size of the
schema for fixed expressions. Further study of the complexity of our analysis in the
worst case or for typical cases may be of interest.



8 Related and future work

There is a great deal of related work on static analysis of fragments of XPath [6], regular
expression types and schema languages [15, 17], and XML update language designs [3,
10, 13, 24, 9]. We restrict attention to closely related work.

Cheney developed a typed XML update language called FLUX [10], building on the
XQuery type system of Colazzo et al. [11]. FLUX differs significantly from XQuery
Update and handles only child and descendant axes.

Static analysis problems besides typechecking have also been studied for XML or
object query/update languages. Bierman [7] developed an effect analysis that tracks
object-identifier generation side-effects in OQL queries. Benedikt et al. [3, 4] presented
static analyses for optimizing updates in UpdateX, a precursor to XQuery Update.
Ghelli et al. [13] present a commutativity analysis for an XML update language. Roughly
speaking, two updates u1, u2 commute if they have the same side-effects and results no
matter which order they are run. Their update language also differs from XQuery Up-
date in important ways.

There is also prior work on typechecking for XML transformations (see e.g. Møller
and Schwartzbach [18] for an overview). Much of this work focuses on decidable sub-
problems where both input and output schemas are given in advance, whereas we focus
on developing sound, practical schema alteration techniques for general queries and up-
dates. Also, there is no obvious mapping from (sublanguages of) XQuery Updates to
transducers.

Balmin [1] and Barbosa et al. [2] present efficient dynamic techniques for check-
ing that atomic updates preserve a fixed schema. These techniques are exact, but im-
pose run-time overhead on all updates, and do not deal with changes to schemas.
Raghavachari and Shmueli [20] give efficient algorithms for revalidating data after up-
dates to either the data or schema, but their approach places stronger restrictions on
schemas. It would be interesting to combine static and dynamic revalidation techniques.

In ongoing work, building partly on the type effect analyses in this paper, we are de-
veloping a schema-based independence analysis for XML queries and updates. A query
q and update u are statically independent if, roughly speaking, for any initial store, run-
ning q yields the same results as applying u and then running q. Static independence
checking would be useful for avoiding expensive recomputation of query results and
for managing safe concurrent access to XML databases.

As stated in the introduction, we have prioritized soundness, accessibility and ease
of implementation over technical sophistication, but it would be desirable to develop
more sophisticated techniques (as outlined in Section 7).

9 Conclusions

XML update languages are an active area of study, but so far little is known about
typechecking and static analysis for such languages. In this paper we have given an op-
erational semantics for the W3C’s XQuery Update Facility 1.0 and developed the first
(to our knowledge) sound type system for this language. As a Candidate Recommen-
dation, XQuery Update is still a work in progress and we hope that our work will help
improve the standard as well as provide a foundation for future study of XML updates.
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A Examples

In this Appendix we give a few examples showing that our update typechecker produces
reasonable results on real examples, drawn from the W3C’s XQuery Update Use Cases.

We focus on thee first collection of queries, involving “relational” XML documents
defining users, items and bids, as might be needed in an online auction. There is no
DTD specified in the W3C Use Cases recommendation, so we defined our own schema
that matches their example data.

type Doc = doc[Items,Users,Bids]
and Items = items[Item_tuple*]
and Users = users [User_tuple*]
and Bids = bids [Bid_tuple*]
and Item_tuple = item_tuple [Itemno,

Description,
Offered_by,
Start_date,
End_date,
Reserve_price]

and User_tuple = user_tuple [Userid,
Name,
Rating?]

and Bid_tuple = bid_tuple [Userid,
Itemno,
Bid,
Bid_date]

and Itemno = itemno [string]
and Description = description [string]
and Offered_by = offered_by [string]
and Start_date = start_date [string]
and End_date = end_date [string]
and Reserve_price = reserve_price [string]
and Userid = userid [string]
and Name = name [string]
and Rating = rating[string]
and Bid = bid [string]
and Bid_date = bid_date [string]

We skip queries Q3, Q5, Q8 and Q9. Q3 is similar to Q2, from the point of view
of typechecking. Queries 5, 8 and 9 illustrate constraint checking facilities that are not
part of the W3C XQuery Update proposal or our model. We will illustrate our approach
using the remaining queries in the relational data use case.

In several of the examples, we observe that the result schema appears to be “equiva-
lent” to the input schema, or that the input schema is “preserved”. By this we mean that
the type assigned to $doc in the input is equivalent (as a regular tree language) to the
type inferred for $doc in the result. Formally, we define:



Definition 2 (Schema equivalence). Let (S, Γ), (S′, Γ′) be pairs each consisting of
schema and static environment. We say that (S, Γ) is equivalent to (S′, Γ′) provided:

1. dom(Γ) = dom(Γ′), and
2. For each x ∈ dom(Γ), the regular tree language denoted by Γ(x) in S is the same

as that denoted by Γ′(x) in S′.

If Γ and Γ′ are obvious from context, we just say that S and S′ are equivalent.

Example 5 (Q1). The first query is:

insert nodes
<user_tuple>

<userid>U07</userid>
<name>Annabel Lee</name>

</user_tuple>
into $doc/users

Effect analysis yields the effect

ins(user tuple[Userid,Name], ↓, Users) .

Schema alteration produces an output schema that is the same as the input schema
except that it redefines:

Users -> users[user_tuple[Userid, Name]*,
user_tuple[Userid, Name, Rating?]*,
user_tuple[Userid, Name]*]

This is equivalent to the original schema.

Example 6 (Q2). Query 2 is:

let $uid :=
$doc/users/user_tuple[name="Annabel Lee"]/userid
return

insert nodes
<bid_tuple>

<userid>{data($uid)}</userid>
<itemno>1001</itemno>
<bid>60</bid>
<bid_date>1999-02-01</bid_date>

</bid_tuple>
into $doc/bids

The result schema we obtain after typechecking this update is identical to the input
schema except for the change:

Bids -> bids[bid_tuple[userid[string**],Itemno,Bid,Bid_date]*,
bid_tuple[Userid,Itemno,Bid,Bid_date],
bid_tuple[userid[string**],Itemno,Bid,Bid_date]*]



It is worth noting that string∗∗ = string, so the above rule is equivalent to:

Bids -> bids[bid_tuple[Userid,Itemno,Bid,Bid_date]*]

hence, the result schema is equivalent to the input schema.

Example 7 (Q4). Query 4 is:

let $user := $doc/users/user_tuple[name="Annabel Lee"]
return

if ($user/rating)
then replace value of node $user/rating with "B"
else insert node <rating>B</rating> into $user

In our implementation, we translate the ”replace value of” subexpression to
replace node $user/rating with <rating>B</rating>
The result schema we obtain after typechecking this update is identical to the input

schema except for the change:

User_tuple -> user_tuple[Rating*,Userid,
Rating*,Name,
Rating*,(Rating|Rating?),
Rating*]

Because the “insert into” operation is used, we have to assume that a rating element
could be inserted anywhere in the child sequence of user_tuple. Also, our analysis
cannot detect that the insert and replace operations are mutually exclusive.

If we add the clause as last to the insert in Q4, we get a more precise type:

User_tuple -> user_tuple[Userid,
Name,
(Rating|Rating?),
Rating*]

which is equivalent to

User_tuple -> user_tuple[Userid,
Name,
Rating*]

The query (modified with “as last”) does preserve the schema, but our analysis can-
not certify this, since it does not keep track of the fact that the insert and replace are
mutually exclusive.

Example 8 (Q6). Query 6 tests deletion behavior, It deletes tuples having to do with a
specific user.

let $user := $doc/users/user_tuple[name="Dee Linquent"]
let $items := $doc/items/item_tuple[offered_by=$user/userid]
let $bids := $doc/bids/bid_tuple[userid=$user/userid]
return (



delete nodes $user,
delete nodes $items,
delete nodes $bids

)

Our typechecker verifies that this update preserves the schema.

Example 9 (Q7). Query 7 inserts a comment:

insert nodes
<comment>This is a bargain !</comment>

as last into $doc/items/item_tuple[itemno=1002]

Our analysis produces a result schema that differs from the input schema only as fol-
lows:

Item_tuple -> item_tuple[Itemno,
Description,
Offered_by,
Start_date,
End_date,
Reserve_price,
comment[string]*]

Note again that we do not know how many comments will be added by the insert.
A more precise type would have comment[string?] instead of comment[string]∗.
However, the comment must be optional because it may not be added to some item
tuples.

B Proofs

For expository purposes, the rules given in the main body of the paper left out a number
of details. In this appendix, we present the full system, including rules omitted from
the main body of the paper. The modified definitions are more restrictive since we take
more care to distinguish between mutable and immutable parts of the store. The main
changes are in Figure 10, Figure 13, Figure 14, and and Figure 15 and are discussed
further below.

We consider stores in which each location is annotated with a mutability annotation:

m ::= ro | rw

Here, ro stands for read-only data and rw for read-write data. We consider stores to be
maps σ from locations to pairs of constructors k and mutability annotationsm. We often
write such pairs as km, e.g. σ(l) = a[L]ro means that l points to a[L] and is read-only.

We write annot(m,σ, γ) for the result of setting the annotations in locations reach-
able from γ in σ to m. We will set data to be read-write immediately before applying
updates and we re-set it to be read-only after update application finishes. See Figure 15
and Figure 14 for these changes.



The reason we introduce annotations is to ensure that source data referenced from
update sequences ω is immutable, and thus neither its structure nor its type can change
while applying updates. The update sequence validity rules (Figure 12) are adjusted
to require that all input data in insert and replace update instructions is annotated ro.
The update application rules Figure 13 are adjusted so that it is only possible to modify
labels that are annotated rw.

We introduce read-only versions of the validity judgments σ |=ro
S L : τ and σ |=ro

S

ω : Ω that require all relevant data to be read-only (see Figure 10 for example; the rules
for update sequences are similar). We write σ v σ′ to mean that dom(σ) ⊆ dom(σ′)
and that σ agrees with σ′ on all read-only locations.

We write S ≤ S′ to indicate that dom(S) ⊆ dom(S′) and for every X, we have
LS(X) ⊆ LS′(X), where LS(X) is the set of trees matching X in S.

Since many judgments modify or extend the state or extend the schema, we need
the following monotonicity properties:

Lemma 2. If σ |= ω  σ′ then σ v σ′.

Proof. Immediate since atomic update evaluation only modifies nodes labeled rw.

Lemma 3 (Monotonicity). If σ v σ′ then:

1. σ |=ro
S L : τ implies σ′ |=ro

S L : τ
2. σ |=ro

S γ : Γ implies σ′ |=ro
S γ : Γ

3. σ |=ro
S ω : Ω implies σ′ |=ro

S ω : Ω

Lemma 4 (Schema monotonicity). If S ≤ S′ then:

1. σ |=S L : τ implies σ |=S′ L : τ
2. σ |=S γ : Γ implies σ |=S′ γ : Γ
3. σ |=S ω : Ω implies σ |=S′ ω : Ω

B.1 Soundness of schema alteration

We will first prove Theorem 3 and then prove the type and effect soundness theorems
simultaneously for the query and update languages (including transform queries).

First, let S̃0 be the initial augmented schema for S, and let Γ̃ be the type context
obtained by replacing each type name T with T̃. Since S ⊆ S̃0, it is trivial to see that:

Lemma 5. S ≤ S̃0.

We prove the soundness of schema alteration in four stages, corresponding to the
four stages of update application. Recall that we defined

alias(T) = aliasS(T) .

We also introduce the following definitions:



σ(l) = a[L]ro σ |=ro
S L : τ

σ |=ro
S l : a[τ ]

σ(l) = text[s]ro

σ |=ro
S l : δ

σ |=ro
S L : S(T)

σ |=ro
S L : T

σ |=ro
S () : ()

σ |=ro
S L1 : τ1 σ |=ro

S L2 : τ2

σ |=ro
S L1, L2 : τ1, τ2

σ |=ro
S L : τi

σ |=ro
S L : τ1|τ2

σ |=ro
S L : () | τ, τ∗

σ |=ro
S L : τ∗

Fig. 10. Read-only validity rules

σ(l) = a[L]m σ |=S L : τ

σ |=S l : a[τ ]

σ(l) = text[s]m

σ |=S l : δ

σ |=S L : S(T)

σ |=S L : T

σ |=S () : ()

σ |=S L1 : τ1 σ |=S L2 : τ2

σ |=S L1, L2 : τ1, τ2

σ |=S L : τi

σ |=S L : τ1|τ2
σ |=S L : () | τ, τ∗

σ |=S L : τ∗

Fig. 11. Validity rules

σ |=ro
S L : τ σ |=S l : T

σ |=S ins(L, d, l) : ins(τ, d, T)

σ |=S l : T

σ |=S del(l) : del(T)

σ |=S l : T

σ |=S ren(l, a) : ren(T, a)

σ |=S l : T σ |=ro
S L : τ

σ |=S repl(l, L) : repl(T, τ)

σ |=S ε : ε

σ |=S ω1 : Ω1 σ |=S ω2 : Ω2

σ |=S ω1, ω2 : Ω1, Ω2

σ |=S ω : Ωi

σ |=S ω : Ω1|Ω2

σ |=S ω : ε|Ω;Ω∗

σ |=S ω : Ω∗

Fig. 12. Effect validity rules

σ(l′) = a[L1 · l · L2]
rw

σ |= ins(L,←, l) σ[l′ := a[L1 · L · l · L2]
rw]

σ(l) = a[L′]rw

σ |= ins(L,↙, l) σ[l := a[L · L′]rw]

σ(l′) = a[L1 · l · L2]
rw

σ |= ins(L,→, l) σ[l′ := a[L1 · l · L · L2]
rw]

σ(l) = a[L′]rw

σ |= ins(L,↘, l) σ[l := a[L′ · L]rw]

σ(l) = a[L1 · L2]
rw

σ |= ins(L, ↓, l) σ[l := a[L1 · L · L2]
rw]

σ(l) = a[L]rw

σ |= ren(l, b) σ[l := b[L]rw]

σ(l′) = a[L1 · l · L2]
rw

σ |= repl(l, L) σ[l′ := a[L1 · L · L2]
rw]

σ(l′) = a[L1 · l · L2]
rw

σ |= del(l) σ[l′ := a[L1 · L2]
rw]

Fig. 13. Semantics of atomic updates



stage(ins( , ↓, )) = 1

stage(ren( , )) = 1

stage(ins( , d, )) = 2 (d ∈ {←,→,↙,↘})
stage(repl( , )) = 3

stage(del( )) = 4

σ0 |=1 ω  σ1 σ1 |=2 ω  σ2 σ2 |=3 ω  σ3 σ3 |=4 ω  σ4

σ0 |= ω  σ4 σ |=i · σ

σ |=i ωj  σ′ σ′ |=i ωk  σ′′ {j, k} = {1, 2}
σ |=i ω1, ω2  σ′′

σ |= ι σ′

σ |=stage(ι) ι σ′
stage(ι) 6= i

σ |=i ι σ

σ, γ |= u⇒ σ′, ω sanitycheck(ω) annot(rw, σ′, γ) |= ω  σ′′

σ, γ |= u annot(ro, σ′′, γ)

Fig. 14. Update application

Definition 3. A type preservation map (or TP-map) h is a collection of functions

h : Loc → Loc∗

hr : Loc → Loc∗

hc : Loc → Loc∗

hd : Loc → Loc∗ (d ∈ {↙,↘,←,→}
h↓ : Loc → P(Loc)

A TP-map h is said to preserve types from σ, S to σ′, S̃ provided that:

1. For all l ∈ dom(σ), h(l) = h←(l) · hr(l) · h→(l).
2. For all l ∈ dom(σ), we must have:

(a) l ∈ dom(σ′) and σ′(l) = b[hc(l)]m for some b,m, and
(b) Suppose σ(l) = a[l1 · · · ln]m. Then hc(l) is of the form:

hc(l) = h↙(l) · L′0 · h(l1) · L′1 · · · L′n−1 · h(ln) · L′n · h↘(l)

where each L′i consists of locations from h↓(l).
3. If σ |=S l : T then

(a) σ′ |=
S̃
l′ : T̃↓ for all l′ ∈ h↓(l),

(b) σ′ |=
S̃
hd(l) : T̃d for d ∈ {↙,↘,←,→},

(c) σ′ |=
S̃
hc(l) : T̃c,

(d) σ′ |=
S̃
hr(l) : T̃r, and

(e) σ′ |=
S̃
h(l) : T̃.

We say that initial types are preserved from initial configuration σ, S to updated
store σ′, S̃ provided that there exists a TP-map h that preserves types from σ, S to σ′, S̃.



The overall goal of the proof is to show that if σ |= ω  σ′ then initial types
are preserved from σ, S to σ′, S̃. To this end, we will make frequent use of another
monotonicity property:

Lemma 6. If initial types are preserved from σ, S to σ′, S̃ and S̃ ≤ S̃′ then initial types
are preserved from σ, S to σ′, S̃′.

Proof. Straightforward. If we have a TP-map h from σ, S to σ′, S̃ then conditions 1 and
2 still hold for σ′, S̃′, and conditions 3(a)-(e) can be established using monotonicity.

Here is an outline of the proof that schema alteration is sound:

1. We start by assuming σ |=S γ : Γ and σ |=S ω : Ω.
2. Show that initial types are preserved from σ, S to σ, S̃0 (Lemma 7).
3. Define S̃1, the augmented schema after the first phase, and observe S̃0 ≤ S̃1, so

initial types are preserved from σ, S to σ, S̃1. (Lemma 8)
4. Suppose that σ |=1 ω  σ1. Show that initial types are preserved from σ, S to
σ1, S̃1. (Lemma 9)

5. Define S̃2, the augmented schema after the second phase, and observe S̃1 ≤ S̃2, so
initial types are preserved from σ, S to σ1, S̃2. (Lemma 10)

6. Suppose that σ1 |=2 ω  σ2. Show that initial types are preserved from σ, S to
σ2, S̃2. (Lemma 11)

7. Define S̃3, the augmented schema after the third phase, and observe S̃2 ≤ S̃3, so
initial types are preserved from σ, S to σ2, S̃3. (Lemma 12)

8. Suppose that σ2 |=3 ω  σ3. Show that initial types are preserved from σ, S to
σ3, S̃3. (Lemma 13)

9. Define S̃4, the augmented schema after the fourth phase, and observe S̃3 ≤ S̃4, so
initial types are preserved from σ, S to σ3, S̃4. (Lemma 14)

10. Suppose that σ3 |=4 ω  σ4. Show that initial types are preserved from σ, S to
σ4, S̃4. (Lemma 15)

11. Conclude by observing that the preservation of initial types from σ, S to σ4, S̃4

implies that σ4 |=S̃4
γ : Γ̃. (Lemma 16)

Lemma 7. If σ |=S γ : Γ then initial types are preserved from σ, S to σ, S̃0.

Proof. We define a TP-map h as follows. For each l ∈ dom(σ) with σ(l) = a[L]m, we
define:

h(l) = l

hr(l) = l

hc(l) = L

h↓ = ∅
hd = () (d ∈ {↙,↘,←,→})

To establish that h preserves types from S(X) ≤ S̃0(X̃), parts (1) and (2) are immediate
by calculation. For part (3), part (a) follows using Lemma 5, and the other parts are
immediate.



Stage 1 We define S̃1, the augmented schema after phase 1, as follows:

I↓(T) = {U | ∃T′ ∈ alias(T). ∃τ. ins(τ, ↓, T′) ∈ |Ω|, U ∈ |τ |}}
N(T) = {b | ∃T′ ∈ alias(T). ren(T′, b) ∈ |Ω|}

S̃1(T̃↓) = (
∨
I↓(T))∗

S̃1(T̃r) = S̃0(T̃r) | (
∨
{b[T̃c] | b ∈ N(T)})

S̃1(X) = S̃0(X) otherwise

Lemma 8. S̃0 ≤ S̃1.

Proof. This is immediate for unmodified type names; for the modified names T̃↓ and T̃r
it is straightforward to see that the new definitions subsume the old ones. Specifically,
observe S̃0(T̃↓) = (), which is clearly contained in (

∨
I↓(T))∗, whereas S̃0(T̃r) is self-

evidently contained in S̃0(T̃r) | (
∨
{b[T̃c] | b ∈ N(T)}).

Lemma 9. Suppose that σ |=S ω : Ω and σ v σ0, and initial types are preserved from
σ, S to σ0, S̃1. If σ0 |=1 ω

′  σ1 where |ω′| ⊆ |ω| then σ v σ1 and initial types are
preserved from σ, S to σ1, S̃1.

Proof. Proof is by induction on the structure of the derivation of σ0 |= ω′  σ1 (see
Figure 13). The cases for the empty sequence and (commutative) sequential composi-
tion are straightforward, as is the case for the inactive update instructions for stages 2,
3 and 4. The only interesting cases are those for the insertions or renamings that take
effect in this stage.

– If the derivation is of the form

σ0(l) = a[L1 · L2]rw

σ0 |= ins(L, ↓, l) σ0[l := a[L1 · L · L2]rw]
σ0 |=1 ins(L, ↓, l) σ0[l := a[L1 · L · L2]rw]

then let σ1 = σ0[l := a[L1 · L · L2]rw]. First, to show that σ v σ1, observe that
σ v σ0 by assumption. If l′ is a read-only location in σ1, then it is not l because l
is read-write, so σ0(l′) = σo[l := a[L1 · L2]rw](l′) = σ1(l′). Hence, σ v σ0 v σ1.
Next we must show that types are preserved from σ to σ1. First, note that by as-
sumption, ins(L, ↓, l) ∈ |ω| and so (by induction on the derivation of σ |=S ω : Ω)
there must be some types τ, T such that σ |=S ins(L, ↓, l) : ins(τ, ↓, T) holds.
Moreover, since there is only one rule that can derive this validity judgment (Fig-
ure 12), we must also have the antecedents of that rule: σ |=ro

S L : τ and σ |=S l : T.
Sn addition, since σ v σ1, we also know that σ1 |=ro

S̃1
L : τ .

Now to prove types are preserved from σ to σ1, by assumption there must exist a
TP-map h from σ, S to σ0, S̃1. We show how to adjust h to a TP-map h′ so that the
latter is a TP-map from σ, S to σ1, S̃1. We define h′ to agree with h away from l,



and modify h′ at l as follows:

h′(l) = h(l) = l

h′r(l) = hr(l) = l

h′c(l) = L1 · L · L2

h′↓(l) = h↓(l) ∪ {l1, . . . , ln} where L = l1 · · · ln}
h′d(l) = hd(l) = () (d ∈ {↙,↘,←,→})

We must now show that h′ is indeed a TP-map from σ, S to σ1, S̃1. Part (1) is
immediate since the relevant parts of h′ are the same as for h. For part (2a), suppose
σ(l) = a[l1, . . . , ln]. It is immediate that L1 · L · L2 = h′↙(l) · h′c(l) = h′↘(l). For
(2b), we must have

hc(l) = L1 · L2 = (L′1 · h(l1) · · · L′i) · (L′′i · · ·h(ln) · L′n)

where each L′i mentions only labels in h↓(l). Also, h(l) = h′(l) = l so we must
have

h′c(l) = L1 · L · L2 = (L′1 · h′(l1) · · ·h′(li) · L′i) · L · (L′′i · h′(li+1) · h′(ln) · L′n)

that is, h′c(l) is of the required form (since h↙(l) = () = h↘(l)).
For part (3), the proof proceeds by induction from the leaf nodes in σ to the root.
Suppose that σ |=S l

′ : T′. By assumption, we know that parts (a-e) hold for σ0. If
l′ 6= l, then it is straightforward to show that parts (a-e) still hold, appealing to part
(2) and the induction hypothesis for part (c).
If l = l′, then part (a) is straightforward using the well-formedness of L and defi-
nition of h′↓(l). Part (b) is immediate since the hd(l) = () for d 6= ↓. For part (c),
there is some work to do. By assumption, hc(l) is of the form

hc(l) = L1 · L2 = (L′1 · h(l1) · · · L′i) · (L′′i · · ·h(ln) · L′n)

where the sequences L′i use labels from h′↓(l). As shown above,

h′c(l) = L1 · L · L2 = (L′1 · h′(l1) · · ·h′(li) · L′i) · L · (L′′i · h′(li+1) · h′(ln) · L′n)

By part (a) we know that σ1 |=S̃1
l0 : T̃↓ for each l0 in h′↓(l). Moreover, l matches

both T̃ and T̃′, so T̃ and T̃′ may alias. This means that the type names from τ must
be included as possibilities in T̃′↓. Hence, the subsequence L′i · L · L′′i also matches
T̃′↓, so we can establish that σ1 |=S̃1

L1 · L · L2 : T̃c, as desired. Parts (d) and (e) are
then immediate.

– If the derivation is of the form

σ0(l) = a[L]rw

σ0 |= ren(l, b) σ0[l := b[L]rw]
σ0 |=1 ren(l, b) σ0[l := b[L]rw]

Following a similar line of reasoning to the above, we must have σ |=S ren(l, b) :
ren(T, b) for some type T. This case is relatively easy (compared to the case for



“insert into”) because we do not have to adjust the TP-map or worry about the
types of inserted nodes, only check that the TP-map h that works for σ0 still works
for σ1. This is the case because for any alternate type T′ for l in the initial store σ,
clearly T′ is an alias of T so the definition of T̃′r in S̃1 must include a case of the
form b[T̃′c].

Stage 2 We define S̃2, the augmented schema after the second stage, as follows:

Id(T) = {τ | ∃T′ ∈ alias(T). ∃τ. ins(τ, d, T′) ∈ |Ω|}
S̃2(T̃d) = (

∨
Id(T))∗

S̃2(X̃) = S̃1(X̃) otherwise

Lemma 10. S̃1 ≤ S̃2

Proof. Straightforward since S̃1(T̃d) = () which is contained in (
∨
Id(T))∗.

Lemma 11. Suppose that σ |=S ω : Ω and σ v σ1, and initial types are preserved
from σ, S to σ1, S̃2. If σ1 |=2 ω

′  σ2 where |ω′| ⊆ |ω| then σ v σ2 and initial types
are preserved from σ, S to σ2, S̃2.

Proof. Generally similar to the proof for stage 1. The proof cases for “insert first into”
(↙) and “insert last into” (↘) are essentially the same as for “insert into”, except that
we add the inserted sequences to the appropriate h′↙ or h′↘ as appropriate. Similarly,
the cases for “before” and “after” are essentially the same except that we add the in-
serted nodes to h′← or h′→ as appropriate. We show the case for← in detail.

– If the derivation is of the form
σ1(l′) = a[L1 · l · L2]rw

σ1 |= ins(L,←, l) σ1[l′ := a[L1 · L · l · L2]rw]
σ1 |=2 ins(L,←, l) σ1[l′ := a[L1 · L · l · L2]rw]

then let σ2 = σ1[l′ := a[L1 · L · l · L2]]. First note that since σ v σ1 we also have
σ v σ2 since σ1 and σ2 differ only at l′, which is rw.
Next we must show that types are preserved from σ to σ1. First, note that by as-
sumption, ins(L,←, l) ∈ |ω| and so (by induction on the derivation of σ |=S ω :
Ω) there must be some types τ, T such that σ |=S ins(L,←, l) : ins(τ,←, T)
holds. Moreover, since there is only one rule that can derive this validity judgment
(Figure 12), we must also have the antecedents of that rule: σ |=ro

S L : τ and
σ |=S l : T. In addition, by monotonicity we also have σ2 |=ro

S̃2
L : τ .

Now to prove types are preserved from σ to σ2, by assumption there must exist a
TP-map h from σ, S to σ1, S̃2. We show how to adjust h to h′ so that the latter is a
TP-map from σ, S to σ2, S̃2. We define h′ to agree with h away from l and l′, and
define h′ as follows for l and l′:

h′(l′) = h(l)
h′r(l

′) = hr(l′)
h′c(l

′) = L1 · L · l · L2

h′d(l
′) = hd(l′) (d ∈ {↙,↘,←,→, ↓})

h′(l) = h←(l) · L · hc(l) · h→(l)
h′r(l) = hr(l) = l
h′c(l) = hc(l)
h′←(l) = h←(l) · L
h′d(l) = hd(l) (d ∈ {↓,↙,↘,→})



We must now show that h′ is indeed a TP-map from σ, S to σ′, S̃1.
For part (1), we just need to check that the desired property still holds for l and l′

in h′. For l′ there is nothing to prove; for l the desired property is by definition of
h′.
For part (2a), the proof is straightforward (for both l and l′) by definition of h′. For
(2b), there is nothing to prove for l. For l′, suppose σ1(l) = l1 · · · l · · · ln. Since l
was present in σ(l′) originally, we can assume that:

hc(l′) = L1 · l · L2 = (h↙(l) · L′1 · h(l1) · · · L′i) · h(l) · (L′i+i · · ·h(ln) · L′n · h↘(l))

where each L′i mentions only labels in h↓(l). Also, h(l) = h←(l) · l · h→(l), since
hr(l) = l (there haven’t yet been any updates that can replace or delete l). So, we
must have

L1 = h↙(l) · L′1 · h(l1) · · · L′i · h←(l)
L2 = h→(l) · L′i+i · · ·h(ln) · L′n · h↘(l)

we reason as follows:

h′c(l
′) = L1 · L · l · L2

= h↙(l) · L′1 · h(l1) · · · L′i · h←(l) · L · l · h→(l) · L′i+i · · ·h(ln) · L′n
= L′1 · h(l1) · · · L′i · h′(l) · L′i+i · · ·h(ln) · L′n · h↘(l)

as desired.
For part (3), the proof proceeds by induction from the leaf nodes in σ to the root,
and from left to right siblings within a child sequence. Suppose that σ |=S l

′′ : T′′.
By assumption, we know that parts (a-e) hold for σ1. If l′′ is neither l nor l′, then
it is straightforward to show that parts (a-e) still hold, appealing to the induction
hypothesis for part (c).
If l′′ = l, then part (a) is immediate. Part (b) is also immediate except for the case
for h←. For h←, we need to show that σ2 |=S̃2

h′←(l) : T̃′′←, and we already know
that σ1 |=S̃2

h←(l) : T̃′′←. By induction we also have σ2 |=S̃2
h←(l) : T̃′′←. We

know that h′←(l) = h←(l) · L and σ2 |=S̃2
L : τ . Moreover, since l matches both

T and T′′ we know that these two types alias and so τ must have been added as a
possibility to T̃′′←; so, we can also derive σ2 |=S̃2

h←(l) · L : T̃′′←, as desired. Part
(c) and (d) are immediate since nothing has changed and part (e) is straightforward
using parts (c,d,e) and the definition of T̃′′.
If l′′ = l′ then parts (a) and (b) are immediate since nothing has changed. Part
(c) requires work since the content of l′ has changed, but using part (2) and the
induction hypothesis, we can show that hc(l′) still has type T̃′′c . Again, parts (d,e)
are easy given part (c) since nothing relevant has changed.

Stage 3 We define S̃3, the augmented schema after the second stage, as follows:

R(T) = {τ | ∃T′ ∈ alias(T). ∃τ. repl(T′, τ) ∈ |Ω|}
S̃3(T̃r) = S̃2(T̃r) | (

∨
R(T))∗

S̃3(X̃) = S̃2(X̃) otherwise



Lemma 12. S̃2 ≤ S̃3.

Proof. Straightforward since S̃2(T̃r) ≤ S̃2(T̃r) | (
∨
R(T))∗.

Lemma 13. Suppose that σ |=S ω : Ω and σ v σ2, and initial types are preserved
from σ, S to σ2, S̃3. If σ2 |=3 ω

′  σ3 where |ω′| ⊆ |ω| then σ v σ3 and initial types
are preserved from σ, S to σ3, S̃3.

Proof. The proof is generally similar to the proofs for the previous stages; the reasoning
dealing with replacement operations is similar to that for insert before and after in the
previous phase, except that we adjust hr instead of h← or h→.

Stage 4 We define S̃4, the augmented schema after the fourth stage, as follows:

S̃4(T̃r) =
{

S̃3(T̃r) | () if ∃T′ ∈ alias(T).del(T′) ∈ |Ω|
S̃3(T̃r) otherwise

S̃4(X̃) = S̃3(X̃) otherwise

Lemma 14. S̃3 ≤ S̃4.

Proof. Straightforward since S̃3(T̃r) ≤ S̃3(T̃r) and S̃3(T̃r) ≤ S̃3(T̃r) | ().

Lemma 15. Suppose that σ |=S ω : Ω and σ v σ3, and initial types are preserved
from σ, S to σ3, S̃4. If σ3 |=4 ω

′  σ4 where |ω′| ⊆ |ω| then σ v σ4 and initial types
are preserved from σ, S to σ4, S̃4.

Proof. Essentially the same as the previous phase; a deletion is basically the same as
replacing with ().

Postprocessing

Lemma 16. If σ |=S γ : Γ and initial types are preserved from σ, S to σ′, S̃ then
σ′ |=

S̃
γ : Γ̃.

Proof. Let x be a variable in Γ. Then σ |=S γ(x) : Γ(x). Hence (by induction on
location sequences, and using the type preservation assumption), we have σ′ |=S γ(x) :
Γ̃(x) for each x. This completes the proof.

Theorem 4. Suppose S, Γ ` Ω  S′, Γ′. If σ |=S γ : Γ and σ |=S ω : Ω and
σ |= ω  σ′ then σ′ |=S′ γ : Γ′.

Proof. Straightforward, chaining the above lemmas.



σ, γ |= x⇒ σ, γ(x) σ, γ |= ()⇒ σ, ()

σ, γ |= q1 ⇒ σ2, L1 σ2, γ |= q2 ⇒ σ3, L2

σ, γ |= q1, q2 ⇒ σ3, L1 · L2

σ, γ |= q
copy⇒ σ2, L l 6∈ dom(σ2)

σ, γ |= a[q]⇒ σ2[l := a[L]], l

σ, γ |= q ⇒ σ2, l · L σ2, γ |= q1 ⇒ σ3, L1

σ, γ |= if q then q1 else q2 ⇒ σ3, L1

σ, γ |= q ⇒ σ2, () σ2, γ |= q2 ⇒ σ3, L2

σ, γ |= if q then q1 else q2 ⇒ σ3, L2

σ, γ |= q1 ⇒ σ2, L σ2, γ[x := L] |= q2 ⇒ σ3, L
′

σ, γ |= let x = q1 in q2 ⇒ σ3, L
′

σ, γ |= q1 ⇒ σ2, L σ2, γ, x ∈ L |=? q2 ⇒ σ3, L
′

σ, γ |= for x ∈ q1 return q2 ⇒ σ3, L
′

σ |= γ(x)/ax ::φ
step⇒ L

σ, γ |= x/ax :: φ⇒ σ, L

σ, γ |= q ⇒ σ0, L0 σ0, L0
copy7→ σ′, L

σ, γ |= q
copy⇒ σ′, L

σ, γ, x ∈ () |=? q ⇒ σ, ()

σ, γ[x := l] |= q ⇒ σ2, L1 σ, γ, x ∈ L |=? q ⇒ σ3, L2

σ, γ, x ∈ l · L |=? q ⇒ σ3, L1 · L2

σ, γ |= θ ⇒ σ1, δ annot(rw, σ1, δ), γ ] δ |= u⇒ σ2, ω
sanitycheck(ω)

σ2 |= ω  σ′2 annot(ro, σ′2, δ), γ ] δ |= q ⇒ σ3, L

σ, γ |= copy θ modify u return q ⇒ σ4, L

σ, γ |= • ⇒ σ, ∅
σ, γ |= θ ⇒ σ′, δ σ′, γ ] δ |= q

copy⇒ σ′′, L

σ, γ |= θ, x := q ⇒ σ′′, δ[x := L]

Fig. 15. Query evaluation rules

σ, γ |= ()⇒ σ, ε

σ1, γ |= u1 ⇒ σ2, ω1 σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= u1, u2 ⇒ σ3, ω1;ω2

σ1, γ |= q ⇒ σ2, l · L σ2, γ |= u1 ⇒ σ3, ω1

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω1

σ1, γ |= q ⇒ σ2, () σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω2

σ1, γ |= q ⇒ L, σ2 σ2, γ[x := L] |= u⇒ σ3, ω

σ1, γ |= let x = q in u⇒ σ3, ω

σ1, γ |= q ⇒ L, σ2 σ, γ, x ∈ L |=? u⇒ σ3, ω

σ1, γ |= for x ∈ q return u⇒ σ3, ω

σ1, γ |= q1
copy⇒ σ2, L1 σ2, γ |= q2 ⇒ σ3, l2

σ1, γ |= insert q1 d q2 ⇒ σ3, ins(L1, d, l2)

σ1, γ |= q ⇒ σ2, l

σ1, γ |= delete q ⇒ σ2, del(l)

σ1, γ |= q1 ⇒ σ2, l1 σ2, γ |= q2
copy⇒ σ3, L2

σ1, γ |= replace q1 with q2 ⇒ σ3, repl(l1, L2)

σ1, γ |= q ⇒ σ2, l

σ1, γ |= rename q as a⇒ σ2, ren(l, a)

σ, γ, x ∈ () |=? u⇒ σ, ε

σ1, γ[x := l] |= u⇒ σ2, ω1 σ2, γ, x ∈ L |=? u⇒ σ3, ω2

σ1, γ, x ∈ l · L |=? u⇒ σ3, ω1;ω2

Fig. 16. Update expression evaluation



σ(l) = text[s] l′ 6∈ dom(σ)

σ, l
copy7→ σ[l′ := text[s]ro], l′

σ(l) = a[L] σ, L
copy7→ σ′, L′ l′ 6∈ dom(σ′)

σ, l
copy7→ σ′[l′ := a[L′]ro], l′

σ, ()
copy7→ σ, ()

σ, L1
copy7→ σ′, L′1 σ′, L2

copy7→ σ′′, L′2

σ, L1 · L2
copy7→ σ′′, L′1 · L′2

Fig. 17. Copying rules

B.2 Type and effect soundness

The full inference rule systems for query result type and update effect analysis are
shown in Figure 18 and Figure 19, respectively.

Before proving soundness of these type and effect analyses, we prove a soundness
property for the copying judgment:

Lemma 17 (Copy Soundness). If σ |=ro
S L : τ and σ, L

copy7→ σ′, L′ then σ v σ′ and
σ′ |=ro

S L′ : τ .

Proof. Straightforward by induction on the structure of the derivation of σ, L
copy7→ σ′, L′,

using inversion as appropriate on validity assumptions.

We leave out the details of the semantics and static analysis judgments for XPath
steps, and just assume that they satisfy:

Proposition 1 (XPath soundness). If S ` T/ax ::φ
step⇒ τ and σ |= l/ax ::φ

step⇒ L and
σ |=ro

S l : T then σ |=ro
S L : τ .

We now prove soundness for the type and effect analysis. In this appendix we con-
sider the full query and update language, in which queries and updates are mutually
recursive. Similarly, the semantics and static analysis judgments for queries and update
are also mutually recursive, so we must prove soundness simultaneously:

Theorem 5 (Type and effect soundness).

1. If S; Γ ` q : τ ; S′ then for all σ, γ, L, σ′, if σ |=ro
S γ : Γ and σ, γ |= q ⇒ σ′, L then

σ v σ′ and S ≤ S′ and σ′ |=ro
S′ L : τ .

2. If S; Γ;x ∈ τ `? q : τ ′; S′ then for all σ, γ, L, L′, σ′, if σ |=ro
S γ : Γ and σ |=ro

S L : τ
and σ, γ, x ∈ L |=? q ⇒ σ′, L′ then σ v σ′ and S ≤ S′ and σ′ |=ro

S′ L′ : τ ′.
3. If S; Γ ` θ : ∆; S′ then for all σ, γ, δ, σ′, if σ |=ro

S γ : Γ and σ, γ, θ |=? σ′ ⇒ δ, then
σ v σ′ and S ≤ S′ and σ′ |=ro

S′ δ : ∆.
4. If S; Γ ` u : Ω; S′ then for all σ, γ, ω, σ′, if σ |=ro

S γ : Γ and σ, γ |= u⇒ σ′, ω then
σ v σ′ and S ≤ S′ and σ′ |=ro

S′ ω : Ω.
5. If S; Γ;x ∈ τ `? u : Ω; S′ then for all σ, γ, L, ω, σ′, if σ |=ro

S γ : Γ and σ |=ro
S L : τ

and σ, γ, u |=? σ′ ⇒ ω, then σ v σ′ and S ≤ S′ and σ′ |=ro
S′ ω : Ω.

Proof. By simultaneous inductions on the structure of derivations. The proof steps in-
volving queries are generally similar to those for Core µXQ [11], with the main differ-
ence being the extra schema result parameter and the handling of a[q] expressions.

For part (1), we show the cases for a[q] and transform queries in detail.



S; Γ ` x : Γ(x); S

S; Γ ` q1 : τ1; S1 S1; Γ, x : τ1 ` q2 : τ2; S2

S; Γ ` let x := q1 in q2 : τ2; S2 S; Γ ` () : (); S

S; Γ ` q1 : τ1; S1 S1; Γ ` q2 : τ2; S2

S; Γ ` q1, q2 : τ1, τ2; S2

S; Γ ` q : S′; τ T 6∈ dom(S′)

S; Γ ` a[q] : T; S′[T := a[τ ]]

S ` Γ(x)/ax :: φ
step⇒ τ

S; Γ ` x/ax :: φ : τ ; S

S; Γ ` q : τ ; S0 S0; Γ ` q1 : τ1; S1 S; Γ ` q2 : τ2; S2

S; Γ ` if q then q1 else q2 : τ1|τ2; S2

S; Γ ` q1 : τ1; S0 S0; Γ;x ∈ τ1 `? q : τ2; S
′

S; Γ ` for x ∈ e1 return q2 : τ2; S
′

S; Γ, x:T ` q : τ ; S′

S; Γ;x ∈ T `? q : τ ; S′ S; Γ;x ∈ () `? q : (); S

S; Γ;x ∈ τ `? q : τ ′; S′

S; Γ;x ∈ τ∗ `? q : (τ ′)∗; S′

S; Γ;x ∈ τ1 `? q : τ ′1; S1 S1; Γ;x ∈ τ2 `? q : τ ′2; S2

S; Γ;x ∈ τ1, τ2 `? q : τ ′1, τ
′
2; S2

S; Γ;x ∈ τ1 `? q : τ ′1; S1 S1; Γ;x ∈ τ2 `? q : τ ′2; S2

S; Γ;x ∈ τ1|τ2 `? q : τ ′1|τ ′2; S2

S; Γ ` θ : ∆; S1 S1;∆ ` u : Ω; S2 S2,∆ ` Ω  S′2,∆
′ S′2; Γ,∆

′ ` q : τ ; S3

S; Γ ` copy θ modify u return q : τ ; S3

S; Γ ` • : •; S
S; Γ ` θ : ∆; S1 S1; Γ,∆ ` q : τ ; S2

S; Γ ` θ, x := q : ∆,x : τ ; S2

Fig. 18. Query result-type analysis rules

S; Γ ` () : ∅; S
S; Γ ` u1 : Ω1; S1 S1; Γ ` u2 : Ω2; S2

S; Γ ` u1, u2 : Ω1;Ω2; S2

S; Γ ` q : τ ; S1 S1; Γ, x : τ ` u : Ω; S2

S; Γ ` let x := e in u : Ω; S2

S; Γ ` q : τ ; S0 S0; Γ ` u1 : Ω1; S1 S1; Γ ` u2 : Ω2; S2

S; Γ ` if q then u1 else u2 : Ω1|Ω2; S2

S; Γ ` q : τ ; S1 S1; Γ;x ∈ τ `? s : Ω; S2

S; Γ ` for x ∈ e return s : Ω; S2

S; Γ ` q : τ ; S1 S1; Γ ` q′ : T; S2

S; Γ ` insert q d q′ : ins(τ, d, T); S2

S; Γ ` q : T; S′ S′(T) = b[τ ]

S; Γ ` rename q as a : ren(T, a); S′

S; Γ ` q : T; S1 S1; Γ ` q′ : τ ; S2

S; Γ ` replace q with q′ : repl(T, τ); S2

S; Γ ` q : T; S′

S; Γ ` delete q : del(T); S′

S; Γ, x : T ` u : Ω; S′

S; Γ;x ∈ T `? u : Ω; S′ S; Γ;x ∈ () `? u : ε; S

S; Γ;x ∈ τ `? u : Ω; S′

S; Γ;x ∈ τ∗ `? u : Ω∗; S′

S; Γ;x ∈ τ1 `? u : Ω1; S1 S1; Γ;x ∈ τ2 `? u : Ω2; S2

S; Γ;x ∈ τ1, τ2 `? u : Ω1, Ω2; S2

S; Γ;x ∈ τ1 `? u : Ω1; S1 S1; Γ;x ∈ τ2 `? u : Ω2; S2

S; Γ;x ∈ τ1|τ2 `? u : Ω1|Ω2; S2

Fig. 19. Update effect-inference rules



– In this case the typing and operational derivations are of the forms:

S; Γ ` q : S′; τ T 6∈ dom(S′)
S; Γ ` a[q] : T; S′[T := a[τ ]]

σ, γ |= q ⇒ σ′, L l 6∈ dom(σ′)
σ, γ |= a[q]⇒ σ′[l := a[L]], l

Moreover, σ, γ |= q ⇒ σ′, L implies that σ, γ |= q ⇒ σ0, L0 and σ0, L0
copy7→ σ′, L.

So by induction we have that σ v σ0 and S ≤ S′. By monotonicity, σ0 |=ro
S′ L0 : τ .

In addition, using Lemma 17 we have that σ v σ′ and σ′ |=ro
S′ L : τ . To conclude

we need to show that σ v σ′[l := a[L]] (immediate since l is fresh) and σ′[l :=
a[L]] |=ro

S′[T:=a[τ ]] l : T, but this is immediate using the rules in Figure 1.
– For a transform query, suppose the typing derivation is of the form:

σ, γ |= θ ⇒ σ1, δ annot(rw, σ1, δ), γ ] δ |= u⇒ σ2, ω
sanitycheck(ω)

σ2 |= ω  σ′2 annot(ro, σ′2, δ), γ ] δ |= q ⇒ σ3, L

σ, γ |= copy θ modify u return q ⇒ σ4, L

and the operational derivation is of the form:

S; Γ ` θ : ∆; S1 S1;∆ ` u : Ω; S2 S2, ∆ ` Ω  S′2, ∆
′ S′2; Γ, ∆

′ ` q : τ ; S3

S; Γ ` copy θ modify u return q : τ ; S3

By induction (part (3)), we have that σ1 |=ro
S1
δ : ∆ and σ2 |=ro

S2
ω : Ω where σ v

σ1 v σ2 and S ≤ S1 ≤ S2. Moreover, by Theorem 3, we have that σ′2 |=ro
S′
2
δ : ∆′

where σ2 v σ′2 and S2 ≤ S′2. Finally, by induction we have that σ3 |=ro
S3

L : τ
where σ′2 v σ3 and S′2 ≤ S3, which completes the proof.

Parts (2) and (3) are straightforward.
For part (4), we show illustrative cases for basic updating expressions:

– If the derivations are of the form

S; Γ ` q : τ ; S1 S1; Γ ` q0 : T; S2

S; Γ ` insert q d q0 : ins(τ, d, T); S2

σ1, γ |= q
copy⇒ σ2, L1 σ2, γ |= q0 ⇒ σ3, l2

σ1, γ |= insert q d q0 ⇒ σ3, ins(L1, d, l2)

Then by part (1), we know that σ2 |=ro
S1

L1 : τ and σ3 |=ro
S2
l2 : T, where σ1 v σ2 v

σ3 and S ≤ S1 ≤ S2. So we can derive

σ2 |=ro
S1

L1 : τ

σ3 |=ro
S2

L1 : τ σ2 |=ro
S2
l2 : T

σ3 |=ro
S3

ins(L1, d, l2) : ins(τ, d, T)

– If the derivations are of the form:

σ1, γ |= q ⇒ σ2, l

σ1, γ |= delete q ⇒ σ2, del(l)
S; Γ ` q : T; S′

S; Γ ` delete q : del(T); S′

then by part (1), we have σ2 |=ro
S′ l : T where σ1 v σ2 and S ≤ S′. To conclude we

can derive:
σ2 |=ro

S′ l : T
σ2 |=ro

S′ del(l) : del(T)



Finally, part (5) is straightforward.

Corollary 2. Suppose S, Γ ` u  S′, Γ′ and σ |=ro
S γ : Γ and σ, γ |= u  σ′. Then

σ′ |=ro
S′ γ : Γ′.

Proof. Straightforward, combining Theorem 5 and Theorem 4.


