A Simpler Proof Theory for Nominal Logic

James Cheney

Abstract

Nominal logic is a variant of first-order logic which provides support for reasoning about bound names
in abstract syntax. A key feature of nominal logic is the new-quantifier, which quantifiefresemames
(names not appearing in any values considered so far). Previous attempts have been made to develop con-
venient rules for reasoning with the new-quantifier, but we argue that none of these attempts is completely
satisfactory.

In this paper we develop a new sequent calculus for nominal logic in which the rules for the new-
quantifier are much simpler than in previous attempts. We also prove several structural and metatheoretic
properties, including cut-elimination, consistency, and conservativity with respect to Pitts’ axiomatization
of nominal logic; these proofs are considerably simpler for our system.

1 Introduction

Nominal logic [8] is a variant of first-order logic with additional constructs for dealing wimesand
binding (or name-abstractionbased on the primitive notions of bijective renamisgvépping and name-
independencefieshness It was introduced by Pitts as a first-order and reasonably well-behaved fragment
of Fraenkel-Mostowski set thegrhe setting for Gabbay and Pitts’ earlier foundational work on formalizing
names, freshness, and binding using swapping [6].

One of the most interesting features of nominal logic is the presence of a novel form of quantification:
guantification oveffresh names The formulalla.o means, intuitively, “for fresh names ¢ holds”. The
intended semantics of nominal logic interprets expressions as valdiestéty-supported nominal seter
sets acted upon by name-swapping and such that each value depends on at most finitely many names. The
inspiration for the-quantifier is the fact that in the presence of infinitely many names, a fresh name can
be chosen for any finitely-supported value, whereas equally-fresh names are indistinguishable. As a result, a
propertyp(a) holds for a fresh name if and only if it holds for all fresh names; in either case, we say that
Wa.p holds.

Several formalizations of nominal logic have been investigated. Pitts introduced nominal logic as a
Hilbert-style axiomatic system. Gabbay [4] proposed Fresh Lagic)(an intuitionistic Gentzen-style nat-
ural deduction system. Gabbay and Cheney [5] presefifeg ,, a sequent calculus version of Fresh Logic.
Schpp and Stark have developed a dependent type theory of names and binding that contains nominal logic
as a special case [9].

However, none of these formalizations is ideal. Hilbert systems have well-known deficiencies for com-
puter science applications’L andF'Lg., rely on a complicated technical device callditesfor the rules
involving . Schopp and Stark’s system is much more powerful than seems necessary for many applications
of nominal logic, and there are many unresolved issues, such as proof normalization and the decidability of
the equality and typechecking judgments.

In this report we present a new and simpler sequent calculus for nominal logic (developed in the course of
the author’s dissertation research [3]). Its main novelty is the usdreShness contexb manage freshness
information needed in reasoning abdsguantified formulas, rather than the technically more cumbersome
slicesused inF'L and F'Lg.,. We prove basic proof-theoretic results such as cut-elimination, establishing
that this calculus is proof-theoretically sensible. In addition, we proveNHat is consistent and equivalent
to Pitts’ original axiomatization of nominal logic.

This report will be used as the basis of additional results, including an improved proof-theoretic semantics
of nominal logic programming and the development of a sound and complete embed#og\5f (another
logic with a self-dual “freshness” quantifier) into nominal logic.

Swapping

(CS1) Yaw,z:1. (aa) -z ~x
(CSs) Va,d v, x:7. (ad)-(ad) -z ~2x
(CS3) Va,d':v. (ad’)-a=d

Equivariance

(CEy) Va,d:v,bb:v x:7. (ad) - (bV) -z~ ((ad)-b(ad) V) -(ad) -z
(CE3) Va,a ., b . b# 2D (ad) - b# (ad)-x
(CEs) Va,d v, T:7. (ad') - f(T) = f((ad))
(CEy) Va,a' ., Z:7. p(x) D p((ad’) - T)

(CEs) Vb, o' av, it (b)) - ((a)z) = (DY) - a)((bY) - x)
Freshness

(CFy) Va,a'.v,x:r.a# chNd #xD(ad) -z~
(CFy) Va,a'.w.a # d <= azd

(CF3) Ya:v,a':v'. a # o

(CFy) VZ.T. Ja:v. a # T
W-quantifier

(CQ) vZ.(Na:v.) <= (Baw.a # T A)

whereFV (Wa.p) C {z}
Abstraction
(CAy) Va,ad':v,z,2':7. (a)x ~ (a')z’ T}

(CAs) Yy (V)T 3aw, 1.y

Figure 1: Axioms of Classical Nominal Logic

2 Background

2.1 Pitts’ axiomatization

As presented by Pitts, nominal logic consists of typed first-order logic with equality and with a number of
special types, type constructors, and function and relation symbols formalized by a collection of axioms. In
particular, the basic sort symbols of nominal logic are divided datia types), ' andatom types, v’ (which

we shall also preferentially catlame types In addition, whenever is a name type and is a type, there
exists another typ&/)r called theabstractionof = by v.

Besides possessing equality at every type, nominal logic includes a Hieahnesgelation symbol
fresh,. : v x 7 for each name type and typer. In addition, nominal logic includes two special function
symbolsswap,, : v X v x T — 7 andabs,, : v X T — (v)7, calledswappingandabstractionrespectively.
When there is no risk of confusion, we abbreviate formulas of the foresh, - (a, t) asa # t, and terms of
the formswap,, (a, b, t) andabs, . (a, t) as(a b) - t and{a)t respectively. In addition, besides the ordinsry
and3 quantifiers, nominal logic possesses a third quantifier, calleftébb-name quantifieand writtenlA.

A W-quantified formuladAz:v.o may be constructed for any name-type

Pitts presented a Hilbert-style axiom system for nominal logic shown in Figure 1. The axioms are divided

into five groups:

e Swapping axiomg({S): describe the behavior of the swapping operation: swapping a name for itself
has no effect'S:), swapping is involutive.S>), and swapping exchanges namés}).

e Equivariance axiomg({ FE): prescribe thequivarianceproperty, namely that all relations are preserved
by and all function symbols commute with swapping. In particul@f() says that the swapping
function symbol itself is equivariant({F,) says that freshness is equivariadt Hs) says that all other
function symbols are equivariant, and¥,) says that all other relation symbols are equivariant. Also,
(CE5) says that abstraction is equivariant.

e Freshness axioms(F'): describe the behavior of the freshness relation (often in concert with swap-
ping). (CF}) says that two names fresh for a value can be exchanged without affecting the value.

(CF») says that freshness coincides with inequality for namésts) says that distinct name-types
are disjoint. Finally, C F) expresses thiseshness principlenamely, that for any finite collection of
values, a name fresh for all the values simultaneously may be chosen.

e M-quantifier axiom(C'Q): Pitts’ original formalization introduced no new inference rulesiforin-
stead 1 was defined using the axiom schef@ewhich assertsz.(Va.p <= Ja.a # T A p), where
FV(p) € {a,7}.

e Abstraction axiom$C A): These define special properties of the abstraction function symbol. Specif-
ically, (C A;) defines equality on abstractions as either structural equality or equality up to “safe” re-
naming of bound names. Gabbay and Pitts argued that this is a natural generalizatiequifalence
in, for example, the lambda-calculus [6]; we shall not repeat the argument here. AXidn) states a
surjectivity property for abstraction: any value of abstraction type can be written aga)x for some
nameq : v and valuer : 7.

2.2 Gentzen systems

While admirable from a reductionist point of view, Hilbert systems have well-known deficiencies: Hilbert-
style proofs can be highly nonintuitive and circuitous. Instead, Gentzenrstjleal deductiorandsequent
systems provide a more intuitive approach to formal reasoning in which logical connectives are explained
asproof-searchoperations. Gentzen systems are especially useful for computational applications, such as
automated deduction and logic programming. Such systems are also convenient for relating logics by proof-
theoretic translations.

Gentzen-style rules fdf have been considered in previous work. Pitts [8] proposed sequent and natural
deduction rules foW based on the observation that

Va.(a # 7 D ¢(a,7)) D Wa.p(a,Z) D Ja.(a # T A p(a,T)) .

These rules (see Figure 2(NL)) are symmetric, emphasidiagelf-duality. However, they are not closed
under substitution, which complicates proofs of cut-elimination or proof-normalization properties.

Gabbay [4] introduced an intuitionistic natural deduction calculus called Fresh LBdir dnd studied
semantic issues including soundness and completeness as well proving proof-normalization. Gabbay and
Cheney [5] presented a similar sequent calculus calléd.,. Both FL and FLg., had complex rules
for . In F'L, Gabbay introduced a technical device calfidesfor obtaining rules that are closed under
substitution Technically, a slice[a#u] of a formulay is a decomposition of the formula a$a, T)[u/z] for
fresh variables, such that: does not appear in any of the Slices were used in botAL and F'Lg., to
deal withl (see Figure 2{L,F' Ls.,)). The slice-based rules shown in Figuré“Z(s.,) are closed under
substitution, so proving cut-elimination for these rules is relatively straightforward once several technical
lemmas involving slices have been proved. Noting thatAle;., rules are structurally similar tgL and
IR, respectively, Gabbay and Cheney observed that alternate rules in Wliakas similar to3dL and
MR similar to VR were possible (see FigureIZLgeq)). These rules seem simpler and more deterministic;
however, they still involve slices.

Experience gained in the process of implementifRrolog, a logic programming language based on
nominal logic [1], suggests a much simpler readind/iats a proof-search operation than that implied by the
FL-style rules. InaProlog, when a1-quantifier is encountered (either in a goal or program clause), proof
search proceeds by generating a fresh nan®be used for th&l-quantified name. Besides satisfying a
syntactic freshness requirement (like eigenvariabl&simmtroduction or3-elimination rules), the fresh name
is also required to beemantically freshthat is, fresh for all values appearing in the derivation up to the
point at which it is generated. In contrast, the proof-search interpretation suggestdd-ftyle rules is to
search for a suitable slice of thequantified formula. This reading seems much less deterministic than that
employed inoProlog.

In this paper we present a simplified sequent calculus for nominal logic, dslled, in which slices are
not needed in the rules fof (or anywhere else). Following Urban, Pitts, and Gabbay [11, 4], we employ
a new syntactic class efame-symbols, b, Like variables, such hame-symbols may be boundlhy
but unlike variables, two distinct name-symbols are always regarded as denoting distinct name values. In

La#T=0,A (1) La#Z,0=A ()

I'= Na.p, A i I Na.p = A ML (NL)
' Wa.p Thu##t
Tu#t TFoplu/al () L,plu/al e (%)
TF Va.gp i = ¢ VE (FrL)
Dou#t=plu/al (%) NR U u#t plu/a] =P (%) L
T,u#t= WNayp T,u#t,WNa.p = (F'Lseq)
Da#t=p (%), () Ta#tp=¢ (%), ()
T = Vag &i T Vap = ¢ W (pL,,)
YHa:T=¢p (a¢X) S#Ha:T,p=¢ (a¢X)
SiT= Mg M S Te=o M (v

() =FV(I'\Vla.p,A) (%) ¢ = pla#tt] (+x) a ¢ FV(L,¢)

Figure 2: Evolution of rules fovl

place of slices, we introduce contexts that encode information about freshness as well as identifying the types
of variables and name-symbols. Specifically, cont&dsa:» may be formed by adjoining iesh name-
symbola which is also assumed to be semantically fresh for any value mentiongd @ur rules forliA

(Figure 2(VL™)) are in the spirit of the original rules and are very simple.

Besides presenting the sequent calculus and proving structural properties such as cut-elimination, we
verify that NL= and Pitts’ axiomatizationlVL are equivalent. We also present a syntactic proof of the
consistency of the nonlogical rules, which together with cut-elimination implies consistency of the whole
system.

The structure of this paper is as follows: Section 3 presents the sequent calduiuslong with proofs
of structural properties. Section 4 discusses several applications, including proofs of consistency and of
conservativity ofN L= relative toN L. Section 5 concludes.

The sequent calculus in Section 3 is (except for minor changes) the one presented in Chapter 4 of the
author’s dissertation [3].

3 Sequent Calculus

3.1 Syntax
The typesr, termst, and formulasp of N L= are generated by the following grammar:
T = old|lv|Tt—=7 x| W7
t,u == cla|a|dmrt|tu|m(t)]| {Eu)| (ab)-t] (a)t
. = TIL[tleAY eV |eDy|Vee|Ire|Wap

The base types are the typef propositions, datatypesand name-types; additional types are formed using
the function and abstraction type constructors. Variablegsare drawn from a countably infinite sit also,
name-symbols, b are drawn from a countably infinite sdtdisjoint form V. The lettersa, b are typically
used for terms of some name-typeNote that\-terms with surjective pairing are included in this language
and are handled in a traditional fashion. In particular, terms are considered equal @g-émuivalence in
the conventional sense. Negation and logical equivalence are defined as follows:

p=(pDl) 9= P=(DY)A[WY Dy

The base type is used for formulas. However, quantification is limited to types not mentiominge
assume given a signature that maps constant symbimsgypesr, and containing at least the following

FV(z) = {z}
FV() = o
FV(Qut) = FV(t)—{a} (@€ {\V.3)
FV(Wa.p) = FV(t)
FN(z) = ©
FN@) = {a}
FN(Qzt) = FN(t) (Qe{\V,3})
FNWa.9¢) = FN(t)—{a}
Fa(c)=Fa(T)=Fa(l) = o
Fa(tu) = Fa({t,u)) = Fa(tou) = Fa(t)UFalu) (c€{A,V,D})
Fa(m;(t)) = Fa(t)
Fa((ab)-t) = Fa(a)UFa(b)UFa(t)
FVN(t) = FV(t)UFN(t)

Figure 3: Free variables and names (nbte stands for eitheF'V or F'N)

declarations:
eqr : TXT—o0 fresh, : vxT—o0

swap,; : VXUXT—T abs,: : vXT—= (V)T

for name-types and typesr. The subscripts are dropped when clear from context. The notatiens,

t # u, (a b) - t, and(t)u are syntactic sugar for the terrag(t, u), fresh(t,u), swap(a,b,t), andabs(t, u),
respectively. We writev for a term that may be either a name-symbot a variabler. The functionsF'V (+),

FN(-), FVN(-) calculate the sets of free variables, name-symbols, or both variables and name-symbols of
a term or formula (see Figure 3).

Remark 1. The inclusion ofA-terms and identification of terms and formulas with bound names up to
equivalence may be objectionable because it appears that we are circularly attempting to define binding in
terms of binding. This is not the case. A key contribution of Gabbay and Pitts’ approach is that it shows
how one can formally justify an informal (and traditional) approach to binding syntax by constructing syntax
trees modulax-equivalence as simple mathematical objects in a particularly clever way [6][3, Ch. 3—-4]. We
assume that this or some other standard technique for dealing with binding is acting behind the scenes.

Thefreshness contextsed inN L= are generated by the grammar:
You=- | X7 | XHaw

We often abbreviate x:7 and-#a:v to x:7 anda:v respectively. We writev: € ¥ if the bindingw:7 is
present irt. We writeX; ¥’ for the result of concatenating two contexts such itV (X) N FVN(Y) =
.

We writeX - ¢t : 7 or X F ¢ : o to indicate that is a well-formed term of type or ¢ is a well-
formed formula. From the point of view of typechecking, the additional freshness information in the context
is irrelevant. There are only two nonstandard rules for typechecking; the remaining rules (shown in Figure 4)
are standard. Terms viewed as formulas must, as usual, be ob.typaantification usingy and3 is only
allowed over types not mentioning -quantification is only allowed over name-types.

LetTmy = {t | £ ¢ : 7} be the set of well-formed terms in contéXt We associate a set of freshness
formulas|X| to each context as follows:

|-|=2 X,z 7] =% |Z,a:v|=Z|U{a#t|teTmx}

T YEt:og YFu:og Yt X1 w:i:TEY

Ykhe:T S {t,u): 01 X 09 YEmitw Yhrw:T
Yorbtio Sktir—0 Yhu:T Ehpio (e€{AV,D})
YEXt:T—o0o Yhtu:o YFT,L:0 Yhpoty:o
Yyzmhkp:o YH#alp:o

YV, dJrrp:o YEFEWawvp:o

Figure 4: Well-formedness rules

For examplea # z,b # a, andb # f x y € |x#a, y#b|. We say that'’ is stronger thart (X <) if
Tmy, C Tmsyy and|X| C |X'|. For examplea, z < x+#a,y. The following routine properties hold:

Lemma 2 (Term Weakening). If F ¢ : 7andX < X' thenX' + ¢ : 7.
Lemma 3 (Term Substitution). If X ¢ : 7 andX, z:7; X - w: 7/ thenX; X' b wft/x] : 7.

3.2 The Rules

Judgments are of the ford : I' = A, whereX is a freshness context amd A are multisets of formulas.
We define classical and intuitionistic versionsf.=. ClassicalNL~ is based on the classical sequent
calculusG3c (see Figure 5), wheredstuitionistic NL= (INL7) is based on the multiple-conclusion
intuitionistic calculusG3im (see Figure 6). Both versions include two additiotuglical rules WL and
MR, shown in Figure 2§ L="). In addition,N L= includes severatonlogical rules(Figure 8) defining the
properties of swapping, equality, freshness and abstraction.

Many of the nonlogical rules correspond to first-order universal axioms of nominal logic (Figure 7),
which may be incorporated into sequent systems in a uniform fashion usingutiele without affecting
cut-elimination [7]. The remaining nonlogical rules are as follows. Rulexpresses an invertibility property
for abstractions: two abstractions are equal only if they are structurally equal or equal by vidye Af
says that all values of abstraction type are formed using the abstraction function symbBslrileexpresses
the freshness principle: that a name fresh for a given context may always be chosen. Finall, thie
allows freshness information to be extracted from the corfiext states that in context, any constraint in
|X] is valid.

The naming of the nonlogical rule groups corresponds to that used by Pitts: the axioms are divided into
groups for swappingsS), equivariance E), freshnesgF'), and abstractiofA). The (Q) axiom is replaced
by the logical ruleNL andVR.

Figure 9 lists some rules whose admissibilityNiL. = will be shown in the next section.

3.3 Structural Properties

We now list some routinely-verified syntactic properties\of.=. We writet,, J to indicate that judgment
J has a derivation of height at maost

Lemma 4 (Weakening). If -, ¥ : T' = Ais derivable then so is,, ¥ : ', o = A. Similarly,t, ¥ : T =
A, p.

Lemma 5 (Context Weakening).lf -, ¥ : T' = AandX < X' thent,, ¥’ : T = A.
Lemma 6 (Substitution). If -, ¥ ¢ : 7andX, z:7; ¥ : T' = Athent,, ;% : T[t/z] = Alt/x].

Proof. The interesting cases are for the new rules, specifically, nonlogical tdlesandR. All of the
nonlogical rules are closed under substitution; in particularyf#rwe havea # u € |X,z; Y| thena #
ult/z] € |Z; 2.
For F' we have a derivation
oY #Ha:I'= A
YooY = A

Z:Rpfépf,Ahyp
s ToT.Aa B > T, l=A
S:T=p,A Y: =9 A XD, 01,00 = A
Y:I= oA, A NE E:F,(pl/\gog#A/\L
X:I = 1,02, A Y:Tho=A T¢Yv=A
ST o venad VB S Tovi= A
>:Dp=9, A Y:I'=p,A Y:To=A
E:FjgoDlpw,A SR 2:9;,9031/)éi oL
Yo:T=p A (x¢Y) YkHt:o X:T,Vziop,e{t/z} = A
¥:I'=Vr.p A R Y :I\Wrio.p= A VL
Ykt:o X:T = Jziop,p{t/z}, A Yo:T,p=>A (x¢€Y)
¥:I'= dziop, A R Y:Idzp= A L
T:Ttat=A Y:T,t=u,P(t),Plu)= A
s Toa ~f S:TtrewPl) = A
Figure 5: Classical first-order equational sequent calcuaxc)
T p= Y:TeoDy = YTy = A
E:F:>ZD$,A oR wzzllp“,wgwﬁAw oL
Yo:T=¢p (€% Yrhtio X:I Voo, eft/z} = A
¥:I'=Vr.p A VR Y:[\Wxio.p= A VL
Yhtio X:T = 3Jziope{t/z},A YSo:T,p=>A (x¢%)
¥:I'= 3dzio.p, A Ik Y:Idrp= A 3L

Figure 6: Variant rules for the intuitionistic multiple-conclusion calculGs3{m)

By induction we havé; ¥/ #a : I'[t/x] = A[t/z], so we can us€ again to derive; X' : T'[t/z] = A[t/z].
This requires the observation that sirice- ¢ : 7, we must have ¢ F'N(¢). The proofs foML andUR are
similar, requiring the additional observation thieta.0)[t/x] = Wa.(p[t/x]) sincea & FN(t). O

The remaining structural transformations do not preserve the height of derivations. However, they do
preserve the logical height of the derivation, which is defined as follows.

Definition 7. Thelogical heightof a derivation is the maximum number of logical rules in any branch of the
derivation. We writé-!, J to indicate that/ has a derivation of logical height n.

Now we consider some nontrivial structural properties.

Lemma 8 (Admissibility of EV L, EVR). TheEV L and EV R rules

Y:T,(ab)-p=A Y:T=(ab):-p,A
S oA PVE S Top A LDVE

(S1) (aa)-z~x (Ey) (abd)-Ax.e[x] = Az.(ab)-e[(ad) -]
(S2) (ab)-(ad)-x~zx (Fy) a#rANbH#zD(ab) -z~
(Ss) (ab)-a=b (Fy) a#b (a:v,b: v v#£V)
(Ex) (@b)-c~c (Fs) a#adl

(B) (ab)- (tu)~ ((ab)-1) ((@b)-u) (Fy) a#bVanb

(Es) p(z) D p((ab)-x) (A1) a#yhzx(ab) -y (a)r= by

Figure 7: Equational and freshness axioms

YT, P,Q1=A - X:T,P,Q,=A

Az AP >\ Q anaxiom instance

>:I,P= A
Y:D{a)t = (hu,ax=bt~u=A E:F,(a)tz(b)u,a#u,t%(ab)'uéAA
ST, (a)t ~ (Byu = A ?
YHt:(v)o X awv,zio:Tt={a)xr= A (a,a:géE)A
¥:T=A 3
S#Ha:T=A (agY) S:TigusA (tHuclS)
YT = A F ST = A #
Figure 8: Nonlogical rules
. Y:T=p,A X:T, o= A
Y:I'=s A W hyp* ¥ : </f cut
X:p=A oo = ¢, A IV = A A
YT o,p= A X:T,(ab)-p=A >:T'=(ab)-p, A
Lpo '()w VI '()<p EVER
Y:To=A Y:To=A Y:T'=Ap

Figure 9: Some admissible rules dfL~

wherey is an arbitrary formula, are admissible.

Proof. We proceed by induction to show that if the hypothesis of an instané8/df or EV R has a deriva-
tion then the conclusion of the respective rule has a derivation of the same logical height.

We first considel=V L. The only interesting cases are whinb) - ¢ is principal on the left, otherwise
the induction step is straightforward. Furthermore, only the caségjfoand> L are nontrivial.

If the derivation is of the form

I'(ab)- A= (ab)- AA

then we may deriv€, A = (a b) - A, A as follows:

Y:T,(ab)- A= (ab)- A A
Y:T,A= (ab)- A A

Ep

This derivation has the same logical height, 1, as the first.
If the derivation is of the form
Y:T,(ab)-PD(ab)-Q=(ab)-PLA ¥:T,(ab)-Q=A
X:I(ab)-PD(ab)-Q=A

DL

then using the admissibility df'V R and EV L on the left andE'V R on the right we obtain
Y:T,(ab)-PD(ab)-Q=(ab):-PA 2:T,(ad)- Q= A

S:I,PO>Q=PA BEVL,EVE
:ILPOQ=A

s T.0=Aa PVE
SL

This transformation is obviously logical height-preserving by induction.
For EV R, the interesting cases are those/gp and> R where(a b) - is principal on the right. Suppose
the derivation is of the form

I'y(ab)- A= (ab)- AA

Then we can derive

hyp

T,(ab)-(ab)- A= A,A z
T,(ab)-A= A A b

This derivation has the same logical height, 1, as the first.

If the derivation is of the form

Iy(ab)-P=(ab)-Q,A
I'=s(ab)-PD(ab)-Q,A

DR

then since’V L andE'V R are admissible for all subderivations of this derivation, by induction we can derive

Iy(ab)-P=(ad)-Q,A
ILP=Q,A
'=sPDOQ,A

EVL,EVR

DR

This transformation is obviously logical height-preserving by induction. O
Lemma 9 (Swapping Fresh Names)Suppose&#a + ¢(a) : o. Then the rule

YSH#a#b : T, p(b) = A
S#a#b T p(a) = A

is admissible using nonlogical axioms only.
Proof. Let X = F'V(X). The derivation is roughly as follows:
S#a#b:Ta# T, b# 7T, 0(b) = A N
SHa#b:T,a#T,b#7, (ab)-pla) = A EmL
Z#a#b:F,a#f,b#i,¢(a):>AZ v
YS#Ha#b: T p(a) = A #

whereF; and equational reasoning is used repeatedly to showdhgt- ¢(a) D ¢(b). O

Lemma 10 (Admissibility of hyp*). Thehyp* rule

Y:To=p, A hyp

wherey is an arbitrary formula, is admissible.

Proof. The proof is by induction on the construction of The cases for the ordinary connectives of first-
order logic are standard. The case o= Na.P is as follows. By induction, we may assume thigta#b :
T, o(b) = ¢(b), A is derivable. We derive

S#a#b : I',p(b) = ¢(b), A

S#afth T, p(a) = p(b), A eMMad
Y#a:T,p(a) = Na. P, A I/IVILR

Y:T,Ma.P = Va.P,A

Using the induction hypothesis, the judgmei#ta#b : T', p(b) = ¢(b), A is derivable, since it is an
instance ofhyp* with a smaller principal formula. O

Lemma 11 (Inversion). TheAL, VL, DL, 3L, VR, L, andUR rules are invertible; that is,
1. IfFL $: T, oA = AthenFl S : T, ¢, ¢ = A.
2. fFL S T,V = Athentl ©:T o= Aorkl : T, ¢ = A,
3. IfFL 2T, ¢ D¢ = Athentl £ : T4 = A.
4. If-L ¥ T, 3z.0 = Athentl, Sy : T, ¢[y/z] = A.
5. IfFL ¥ : T = A, Va.p thentl, ¥,y : TA, ply/z].

6. If -l ¥ : T, Ua.p = Athenk. S#a: T, ¢ = A for fresha.
7. 1fFL ¥ T = A, UNa.pthenk, S#a: T = A, ¢ for fresha.

Proof. The proofs for the rules L, VL, DL, 3L, VR are similar to those for the systel@3c andG3im [7].

For L, the proof is by induction on the height of the derivation. Most cases are straightforward. Only
cases such agR, 1L, A3, F' that introduce variables or name-symbols ift@re exceptions. We show the
reasoning fol/ R.

If the derivation is of the form

S,x: T, Nap =
YT, Na.p = Va.op

then using the induction hypothesis, we haVier#b : T', ¢(b) = 1. Using structural weakening we have
S#a,x#b : T, p(b) = 1. Using equivariance and equational reasoning (and the fact tdak'V ()), we
can deriveX#a, z#b : T, p(a) = 1. Now b is not mentioned in the sequent so usifigandVR we can
deriveX#a : ', o(b) = Vz.1), as desired.

The proof for the invertibility o1 R is symmetric. O

Lemma 12 (Contraction). If -, ¥ : T, o, = Athensois-, ¥ : T, ¢ = A. Similarly, if-}, ¥ : T =
Ao, pthentl T = A .

Proof. The proof is by induction on the logical height and secondary induction on the total height. That is,
the induction hypothesis applies to all derivations of smaller logical height and to all derivations of equal
logical height but smaller total height. Most cases are similar to any standard proof. The only new cases
involve nonlogical rules antfla.o. For the nonlogical rules it suffices to show that for each nonlogical rule
that has a contractable instance, there is a nonlogical rule corresponding to the contraction. The only such
rule is Fy. If the derivation is of the form

YS:Tia#z,a#z,(aa)-z=z= A P
YoTya# x,a#x= A !

then we can transform the derivation to

Y:Ta#z,(aa) - z=z=A g
S:Ta#z= A !

Most of the remaining cases are standard. The only interesting new case is when the contracted formula
is derived using/ L:
Yffa: T, p(a), Vb.o(b)
¥ T, Na.p(a), Nb.p(b)
Then using inversion we have,_; Y#a#b : T, ¢(a), (b) = A. Now using nonlogical rules we can

derivet-,,_1 Y#a#b : ', p(a), p(a) = A. Then using the induction hypothesis we haye ; Y#a#b :
T, ¢(a) = A. Finally we can derive

= A
:AML

SH#a#b T p(a) = A
S#a:T,p(a) = A
YT, Wa.p(a) = A

nNL
The proof for right-contraction is symmetric, using the invertibility/oR. O

3.4 Cut-Elimination

As usual for sequent systems, the most important property to check to verify that the system is sensible is
cut-elimination.

Lemma 13 (Admissibility of Cut). If =X :T = A,pand- X : TV, o = Athen- X : T,TV = A, A,

10

Proof. Following the proof of cut-elimination for similar systems such@8c or G3im of [7], we prove
the lemma by induction on the structure of the cut-formpland then by a sub-induction on the sizes of the
subderivationdl of ¥ : T' = A, p andIl’ of ¥ : TV, = A. Thus, for the induction hypothesis, we may

assume that the lemma holds for any instances with a less complex cut-formula or for all instances with the

same cut-formula but with a smaller derivation of one or the othé&r,a@t’.
As in other proofs of cut-elimination for similar systems, there are four categories of cases:

All cases involving first-order rules exclusively are standard, and are shown in any standard proof of cut-

Base cases in whicH or IT’ is an axiom or initial sequent.
Left-commuting cases in whicH starts with a rule in whickp is not principal.
Right-commuting cases in whidli’ starts with a rule in whickp is not principal.

Principal cases in whicll andII’ both start with a rule in whickp is principal.

elimination (e.g. [7] or [10]). In addition, Negri and von Plato [7] showed that nonlogical rules of the form
we consider can be added to sequent system&Jie or G3im without damaging cut-elimination. Hence,
it will suffice to consider only the new cases involving tiequantifier rules.

Base cases: There are no new base cases.

Left-commuting cases: There are two new cases in wHitdegins withR or L.
In the first case, we have
11
S#Ha: = Ap
YT Way = A e

wherea ¢ . We can weakefl’ to derivelV (IT') derivingX#a : I, o = A/, and by induction, we
haveX#a: T',¢y, IV = A, A’. Then we may deriv& : T, a.op, TV = A, A’ usingW L.

In the second case, we have

nrL

I
S#Ha:I'= Ay, o
Y:T'= A Nay, ¢

wherea ¢ 3. We can weakefil’ to getW (IT') derivingX#a : I' = A’ and then by induction obtain
S#a:T",T = A, A, 4. UsingR we can derivel : T, T' = A, A’, Na.yp.

R

Right-commuting cases. These cases are exactly symmetric to the left-commuting cases.
In the first case, we have
H/

YH#a TV o, = A’

YTV, p,Wap = A’
wherea ¢ ¥. We can weakeil to deriveWW (II) deriving ¥#a : I' = A, ¢, and by induction, we
haveX#a: T',¢, IV = A, A’. Then we may deriv& : ', Ma.op, TV = A, A’ usingW L.
In the second case, we have

VL

H/
S#a: TV, o= Ay
T, o= A Nanp
wherea ¢ 3. We can weakell to getW (II) derivingX#a : I' = A, ¢ and then by induction obtain
S#a:TV,T' = A, A, 4. UsingUR we can derivel : T, T = A, A’, Na.yp.

VR

Principal cases. In this case, bdtrandIl’ decompose the cut formula. The only new rule for decom-
posing formulas on the right 14 R, so the only new principal cut case is when we have

I 1’
S#a:T'= Ajp SH#Ha: TV, o= A L
¥:I'= A Vap YT Na.p = A/

11

forsomea ¢ X. By induction we hav&#a : I', TV = A, A’, and we may conclude : I', TV = A, A’
by an application of the freshness rule.

This completes the proof. O

Theorem 14. Any derivable sequent has a cut-free derivation; there is an algorithm for producing such
derivations.

Proof. Proof by induction on the number of cuts. Given a derivation using cut, we can always find an
uppermost use of cut in the derivation tree and remove it. This reduces the number of cuts by onel]

4 Applications

4.1 Syntactic Consistency

For pure first-order logic, cut-elimination immediately implies consistency, since by inspection of the rules
there can be no shortest proofef 1. However, in the presence of general nonlogical rules, only a weaker
result holds. We say that an atomic formula isoastraintif it is an equality or freshness formula, ahds a
constraint set of it contains only constraints.

Proposition 15. If = | has a derivation, then it has one using only nonlogical rules, in which each sequent
is of the forml" = |, wherel is a constraint set.

The proof is immediate by observing that only nonlogical rules are applicable to a derivalioa-of
wherel is a constraint set.

This means that nominal logic is consistent if and only if the nonlogical rules are consistent. To prove
the consistency of the nonlogical rules, it is necessary to exhibit a model. An appropriate semantics can be
defined in terms of the syntax of nominal terms.

Definition 16 (Syntactic Swapping, Equality and Freshness)Let T'm be the set of swapping-free nominal
terms generated by the grammar

ta=al O {tu)] @t]f(t)

We define thewapping functioron such terms as follows:

(ab)-a = b
(ab)-b = a
(ab)-c = ¢ (a,b#¢)
(@b)- =
(@ab)-(t,u) = ((ab)-t,(ab)-u)
(@ab)-f(t) = f((@ab)-1)
(ab)-{c)t = ((ab)-c,(ab)-t)
We define théreshnesselation on ground terms using the rules:
(a#b) a#t afF#t a#u a#t (a#b)

a#b a#() a#f(t) a#(tu) a#@t a# (bt
Thenominal equalityrelation is defined as follows:

t1 Rup t R ug t~u t~u t~(ab)-u af#u (a#b)
a~a (=) (tte) =(u,u) f(t) = flu) @t=(au (a)t ~ (b)u

Proposition 17. The nominal equality relation: is an equivalence relation. Henc&/T'm = Tm/ is
well-defined. Moreover, botls and# are equivariant relations ofi'm.

12

We now show how to interpret arbitrary nominal terms\ifi'm.

Definition 18. Letd : V — NT'm be a substitution of ground nominal terms for variables, called an
interpretation We lifté to a functiond : NT'm — NTm as follows:

f(a) = a
o) =
0((t1,t2)) = (0(t1),0(t2))
o(f(t)) = [f(O@)
0((ad)-t) = (0(a)0(b))-06(2)
0({a)t) (6(a))0(t)

We say that : FV(X) — NT'm satisfiess (writtend : X) if 0(x) : () for eachxz anda # 6(z) for
each constrainh # z € |X|.

We writed = ¢t ~ w or 0 F a # t to indicate thatd(t) ~ 6(u) or (a) # 6(t) respectively. Similarly,
0 E T"indicates that = A for each constraint in constraint sef’. We say that a constraint (or constraint
setl") is satisfiabldf there is an interpretatiord : X such that) = A (¢ £ ') holds inNT'm.

Proposition 19. The axioms listed in Figure 7 are valid fo¥T'm, in the sense that for each axiofpP >
\V Q, if 0 E Pthend E Q, for someQ); € Q.

Proof. For.S; andSs,, the proof is by induction on the definition of swapping for ground terms. The validity
of S3 is immediate.

For the equivariance axioms, the definition of swapping makes plain that unit, pairing, abstraction, and
other function symbols besides swapping itself are equivariant. In addition, it is not difficult to show that

(aa’)-(bb)-z=((ad’)-b(ad)-b)-(ad) =

that is, that the syntactic swapping function is equivariant. For the equivariance axioms for formulas, we only
need to consideE,, andE. But clearly equality is equivariant since

x~yD(ab)-x~(ab)-y
can be shown by induction on the derivatiomof y; similarly,
a#zD((bb)-a#(bb) x

can be shown valid by induction on the derivatioraof x.

For the axiomFy, we must show that f # x andb # z then(a b) - z = x. The proof is by induction on
the structure ofc. Forz = () the result is immediate; similarly, far = f(y) orz = (y1,y2) the induction
step is straightforward. Far = ¢, we havea,b # cso(a b) - ¢ = ¢ = c. Forz = (c)y, there are two cases.
If a,b # c then we have, b # y and

(ab)-(c)y =((ab)-c)(ab)-y=(c)y

since by inductior{a b) - y = y. Otherwise, without loss of generality suppdse: c (the case where = ¢
is symmetric). We need to show thatb) - (b)y =~ (b)y, or equivalently thata)(a b) - y =~ (b)y. If a = b,
this is trivial. Otherwise, it is sufficient to show th@t b) - y ~ (a b) - y (which is immediate) and # v.
But sincea # (b)y anda # b, we know that # y holds.

For F5, clearly any two name symbadsy andb:.’ of different sorts are distinct, so# b.

For F3, we need to show that# a is underivable. This is immediate from the definition of the freshness
relation.

For F,, we need to show that either# b ora = b is derivable. Ifa = b thena ~ b is derivable;
otherwisea # b soa # b is derivable.

Finally, for A; we need to show that if # y andz ~ (a b) - y then(a)x =~ (b)y. There are two cases. If
a # b then the last rule in the definition of nominal equality applies to sk@w =~ (b)y. Otherwisea = b
soz ~ (ab) -y =yandsoa)r ~ (b)y.

O

13

Proposition 20. If § E (a)z =~ (b)y theneitheW E a ~ b,z ~yorfEa# y,x ~ (ab)-y.

Proof. The proof is by case analysis of the possible derivation® @f)z) ~ 6((b)y). There are only two
cases, corresponding to the last two rules in the definition of structural equality. The result is immediate.

Proposition 21. If : ¥ thend k a # ¢ for eacha # ¢ € |X|.

Proof. The proof is by induction on the structure ©of The critical case is fot a variable; in this case, we
need to use the fact thét X only if a # 6(z) for eacha # x € |X|. O

Theorem 22. LetT" be a set of freshness and equality formulasXIf T' = L is derivable therl is
unsatisfiable.

Proof. Proof is by induction on the structure of the derivation. Note that the only applicable rules are non-
logical rules. There is one case for each nonlogical rule. Most cases are straightforward. We present some
interesting cases.

All of the axioms in Figure 7 hold iflNT'm, so the cases in which these axioms are used are straightfor-
ward. For example, for a derivation of the form

S:T,a#a= L s

clearlyT’, a # a is unsatisfiable.
For a derivation of the form

Y:Ta#b=1 Y:T,axb= 1L
Y:I'=> 1L

Fy

we havel', a ~ b andTl’, a # b unsatisfiable. 1P : X then eithed(a) ~ 6(b) or 8(a) # 6(b), in which case
6(a) # 0(b). In either casej cannot satisfy.
For a derivation ending witlt’,
Y#Ha:I'= L
X:I'=s L

if 6 : X, then without loss of generality we can assumg 0 so that? : ¥#a and so & I" by induction.

For
YoTya#t=1

Y:I'= 1L

if 6:Xthend E a # ¢ foranya # t € |X|, by Proposition 21. Consequently? I
For A,,

H#

YTaxbr~y=1 Y:Ta#yz~(ab)-y= L A
ST (@ ~ By = L

2

suppose : 3. By inductiond ¥ I',a = b,z ~ y andd #,a # y,x ~ (a b) - y. There are three cases. If
O(a) ~ 0(b) andf(z) = H(y), thend & T'. Similarly, if 6(a) # 6(y) andf(x) ~ (0(a) (b)) - 6(y) then
6 & T. Otherwise, by the contrapositive of Proposition 2¢; (a)x ~ (b)y. In any cased # T, (a)x =~ (b)y.
For Az
St (v)yr Bya,z: T t=(a)x = L
YX:I'=s 1L

As

if 6 : X thend(t) = (a)v for somea : v andv : 7, so letd’ = Ola — a,z — v]. Clearlyd’ : X, a,z and
0’ E t ~ (a)x so by inductiord # T. O

Corollary 23 (Syntactic consistency).There is no derivation of> L.

Proof. This follows from Proposition 15 and Theorem 22, simcés a satisfiable constraint set. O

14

4.2 Separation

Using cut-elimination, we can also show that some parts of the equational theory are “orthogonal extensions”,
that is, derivable sequents not mentioning abstraction, pairink, @an be derived without using the special
properties of these symbols.

Theorem 24 (Separation). Suppose: : I' = A andT’, A have no subterms of the for()t (or Az.t or
(t,u)). Then there is a derivation & : I" = A that does not use any nonlogical rules involving abstraction
(or X or pairing).

Proof. We say that a context, formula, formula multiset, or sequent is abstraction-free if the abstraction func-
tion symbol and type constructor do not appear in it. A derivation is abstraction-free if thedrulds, A
do not appear in it. We write =4 for abstraction-free derivability.
The proofis by induction on the structure of cut-free derivations. We need a stronger induction hypothesis.
We sayTI is good if abstraction is only mentioned in equations and freshness formulas. Note that if
is abstraction-free and there are no constants whose types mention abstraction then the only well-formed
terms of type(v)r are of the form{(a)t. Hence, any equations among abstraction-typed terms are of the
form (a)t ~ (b)y; we call such formulas abstraction equations. Any context can be partitionedl,ifito
such thatl” contains all the abstraction equations. We say IHas redundantrelative toT" if whenever
(a)r =~ (b)y € I', we have either 4 X : ' = a~bandz ~yor-"4 % : ' = a # yandz ~ (ad) - y.
We will show that if:, A are abstraction-free add I is good and is redundant relative tb, then if
FY:I,IY= Athen-—4 ¥ : T' = A. An abstraction-fre& is obviously good and redundant relative to
o, so the separation theorem is a special case.
The proof is by structural induction on the derivation. The cases involving left or right rules are straight-
forward because such rules act onlylbrand do not affect goodness and redundancy. The cage;fois
easy since the hypothesis cannot b&'in
For A, we have
Y:Ta# x,x=(ab) -y, I {(a)r = (byy = A
Y:Ta#z,x=x(ab) -y, I"= A

Ay

Clearly,TV, (a)x = (b)y is redundant relative t6,a # x,2 ~ (a b) - y, (a)z. Also, goodness is preserved.
So by inductionwe havE : T',a # z, 2 =~ (a b) - y = A, as desired.
For A, we have

YO (a)z = (b)y,a~br~y=A Y:0IT (a)z={by,a#y,z~ (b -y=A
Y0,V (a)z = by = A

Ay

Sincel is redundant relative t&”, (a)x ~ (b)y there are two cases. B : I' = a ~ b andz = y, then
by induction we have a derivation &f : I';a ~ b,z = y = A, and using cut we can derive : I' = A
as desired. Otherwise, ¥ : I' = a # y andz =~ (a b) - y, then by induction we have a derivation of
Y:T,a# y,x~(ab)-y= A, and using cut we can derive: I' = A as desired. Cut-elimination does
not introduce uses of the abstraction rules, so the resulting derivations are abstraction-free.
For A3, we have
SHt: vyt Ya,z: T t=(a)z, "= A
I TV = A

SinceX has no variables of abstraction type, we must have (u)v for some terms& - w : v, v @ 7.
Therefore, we can substitute into the derivatdm, « : T',T",¢t = (a)z = A to getX : I',TV, (u)v =~
(uyv = A. ClearlyX : T" = u ~ v andv = v so by induction we have a derivationBf: I = A.

For the reflexivity rulexR, we have

As

SO tat= A
L:ILTV=>A T
If t = (a)x, then clearhy’ = a =~ a andz = z, soI”, (a)z ~ (a)z is redundant relative tb, and we have

¥ : ' = A by induction. Otherwisel',t ~ t is obviously still good and” redundant, so we can again
concludeX : I' = A by induction.

15

For ~S-derivations, we have
Y:Tt=u,P(t),Plu) = A
YL,V tru, P(t) = A

If P(u) is not an equation among abstraction-typed terms then the induction step is easy. There are many
cases depending on the structuregf), but in each case we can show ti#4t:) is also redundant relative
tol',t =~ u (if ¢ & u is not an abstraction equation) Br(if ¢ ~ u is an abstraction equation).

The remaining nonlogical rules do not involve formulas of the fdur: ~ (b)y, so the induction step is
immediate for these rules.

The proofs of separation fox and pairing are similar, but considerably simpler because there are no
branching rules for either. O

4.3 Conservativity
4.3.1 Classical Nominal Logic

We first consider the classical case. We wiité for the set of all axioms of Pitts’ axiomatization of nominal
logic, as reviewed in Section 2.1. For ordinary variable cont®asd N L-formula multisetd”, A, we write
Fnyr X : T'= Atoindicate that : I, TV = A for somel¥ C N L. Without loss of generality, a finitg’
can always be used. We writey - for derivability in N L=,

There is one technical point to address. Our system contains explicit name-constants quaritifadtiby
appearing in freshness contexts, whereas in Pitts’ sygtgumantifies ordinary variables. To bridge this gap,
we translateV L formulas toN L= formulas by replacingfl-bound variables with fresh name-symbols. For
example, theV L formulaWa.Wb.p(a, b) translates to th&/ L= formulala.b.p(a, b). We write o* for the
translation ofp, which is defined as follows:

A = A
1* = 1
(pD9)" = ¢" D¢
(Vz.p)* = Va.o*
(Na.p)* = Wa.(p[a/a]) (a & N(¢"))

We writea ¢ N(y) to indicate that the name does not appeaat all in ¢ (bound or free). The omitted
cases forT, A, Vv, 3 are derivable via de Morgan identities. The translation of a judgen”" = A is
3 I = A*, wherel™, A* is the result of translating each elemenfofA respectively.

We first show that every theorem &fL translates to a theorem &f L=

Theorem 25. If -y, X : T = Athenkyr= X : I = A*,

Proof. We defined-y; ¥ : I' = A to meantgsc ¥ : I', IV = A for some finite subsdt’ C NL. Any
G3c derivation is anV L~ derivation, so we just need to show thathi..=~, all of the uses ofV L axioms
are redundant. We will show that each axigne N L is derivable inN L= . Thus, using:ut finitely many
times, we canderiv€ : T' = Ain NL=.

For most of the axioms, this is straightforward. All of the axioms of the fgim/A P > \/ Q are clearly
derivable from the corresponding nonlogical rules as follows:

fﬁ>Q1:>\/@ Eﬁ?QH:V@A
— — i
T:P=
S Arova 2
T = D
— — VR
=VZ.APD>VQ
with the topsequents all derivable usivige andhyp.
This leaves axioms not fitting this pattern, includif@F:), (CFy), (CA;), (CAz), and(CQ). (CA;)
and(C A,) can be derived using the nonlogical rulés, A,, A3, ~S of NL=, and(CF») usingF3 andF,
of NL=. We will show the cases fdiIC'F}) and both directions ofCQ) in detail.

16

For an instanc®z.da.a # T of C'Fy, the derivation is of the form

THa:aHT=a#T
TH#Ha= Jda.a#7T
T=>daa#7T
=VZ.da.a # %

IR, SH

VR

For a translated instance 6€'Q)) of the formVz.(Na.p(a,T) <= Za.a # T A ¢(a,)), we will
prove the two directions individually. For the forward direction, after some syntax directed applications of
right-rules we have

THa:aHT=a#T Sn

THa=a#7T T#a: ¢(a,T) = p(a,T)
TH#a:p(a,T) = a# T Ap(a,T)

T : WNa.p(a,T) = Ja.a # T A p(a,T)

= VZ.(Na.p(a,T) D Ja.a # T A ¢(a,T))

AR
UL,3R
VR", DR

For the reverse direction, we need to shéWw3a.a # T A p(a,T) D Na.p(a,T).

T,a#b : (ab)- (b, T) = (b, T)

T,a#tb:a # T,b# T, (ab)-p(a,T) = p(b,T)
T,a#b :a # T, p(a,T) = @(b,T)
T,a:a #7T,0(a,T) = WNa.p(a,T)

Z:Ja.a # TN p(a,T) = WNa.p(a, T)

= VZ.(3a.a # T A ¢(a,T) D WNa.p(a,T))

Ax*
S#* EVL

3L, AL
VR,DR

Since bothz andb are fresh for all the other free variables@fwe havep(a,z) < ¢((ba)-a,(ba) -
T) < (b, T) using equivariance and the facttha# Ab # x D (ab) - x = z.
Consequently, all the translations of axiomsMf, can be derived ilVL=. As a result, ifl” ¢ NL is
a finite set of axioms such thaty;= X : I', IV = A, then using the derivations of the axioms and finitely
many instances afut, we can obtain a derivation 6fy = X : T' = A. O

Now we consider the problem of conservativity: showing that there are no “new theorems”, thgfany
sequent derivable itV L= is also derivable inV L. This is not as straightforward because subderivations of
translatedV L judgments may involve name-symbols. However, we can show that such name-symbols can
always be removed.

Lemma 26. Suppos&+#a : I'[a] = Ala]. ThenX,a : I'a], a # ¥ = Alal, wherea # X is an abbreviation
for{a # w|w e X}.
Proof. We prove the stronger induction hypothesis: ¥linentions only variables and, Y#a; >’ : T'[a] =
Ala], then, ¥ a; % : Tla),a # X = Ala]”.
The proof is by induction on the structure of the derivatiortgfa; >’ : T'[a] = Ala]. Almost all cases
are straightforward. The only exception is the casefgr. In this case we have
Y#a; Y tla] # ula] : T[a] = Ala]
Y#a; Y :Ta] = Ala]
for somet[a] # ula] € |E+#a; ¥/|. By induction, we hav&, a; X', t[a] # ula] : T'[a] = Ala]. Note thatt[a]
must be a name-symbol. #fa] # a, thent[a] is some name-symbbl # a. Sinceb must be inX or ', it is
easy to see that # ufa] € |X#a; X/ impliesb # ula] € |3, a; ¥, so the induction step is straightforward.
Otherwise, the constraint is of the form# u[a], whereX + wu[a]. Obviously,u = u[a] cannot depend oa
Moreover, froma # X it is possible to derive # u. Thus, using nonlogical rules only we can derive
Y,0;Y :Tal,a # X,a # u = Ala]
¥,0;% :Ta],a # ¥ = Ald]

N

Az

from the derivation obtained using the induction hypothesis. O

17

With this fact in hand, we can show the desired result.

Theorem 27. If the translatedV L sequent : I'* = A* is derivable inNV L= thenX : T" = A is derivable
in NL.

Proof. By the separation property, the rules involving pairing argrms can be removed from a derivation
of ¥ : I'* = A*. The proof is by induction on the structure of this derivation. For the cases corresponding to
first-order/equational proof rules, the induction step is straightforward.

For the cases corresponding to nonlogical rules corresponding to universal akiofy\s® > \/ Q,
suppose that we have derivations of the form

E:F7?,Q1:>A EZF,?,QliA
Y:IP=A

Then by induction, we hav’ L derivations of theV L sequent& : T', P, Q; = A. Now

Y:BQi=A -+ X:B,Q,=A
L:P=A\P Y:PVQ=A
L:PAPDOVQ=A
S:I'=vz.APD>VQ Y:VZ.APDOVQ=A
Y:P=A

The cases foFs, Fy, F, Ay, As, X#, VL, UR remain.
For F;, we have a derivation

Z:F,a#a:AFP’

In NL we can deriveX : T',a # a = A using thea # b D a # b direction of (CF5) sincea # a is
contradictory.
For F4, we have a derivation

Y:Iaxrb=A Y :T,a#b=A
Y:I'= A

Fy

Sincea # b <= a % banda = bV a % bis atautology in classical logie, # bV a % b is also a tautology.
We can cut against a derivation of this formula to dedel’ = Ain NL.
For F', suppose we have a derivation of the form

YS#Ha:I'= A
Y:I'=s A

The upper sequent is not/dL sequent because#a mentions a name-symbol, but by Lemma 26, it is
equivalentto theVL sequent,a : I',a # T = A, where{z} = FV(X). By induction this has a derivation
in N L. We can derive

Yoa:Tia#T= A
Y. o=>Videa#T N:T.VZdaa#7 = A
Y:T'= A

VR,dR
cut

It is easy to derive ruled,, A from axioms(C'4,), (CAz) of NL. The ruleX# cannot apply because
if no name-symbols appear i, then|X| = .
Finally, we consider the cases fdi. andVR. ForUL, we have

S#a:T,p(a,7) = A
YT, Wa.p(a,z) = A

nL

From the upper derivation we can (by Lemma 26) obtain a derivation of the séquent’, a # X, ¢(a,T) =
A of no greater complexity. By induction we haveVa. derivation of the same sequent. Now we can also

18

Swapping

(I51) Vaw,z:T. (aa) -z~
(I152) Va,a'.w,x:7. (ad')-(ad) -z =z
(I1S3) Va,a":v. (ad')-a=d

Equivariance

(IEy) Va,a":v,b,b v x:r. (ad)-(bb)-z=((ad)-b(ad) V) (ad) x
(I1E5) Va,o' v, b/ o b# x D (aad)-b# (ad) - x
(IE3) Va,a':v,7:S. (ad)- f(T)~ f((aad)-7T)
(IE4) Va,a':v,7: S. p(x) D p((ad)-7)
(IE5) Vo, b aw, i (b)) - ({ayx) =~ (b)) - a)((bY) - x)
Freshness

(IFy) Va,o':v,x:m.a# cNd #xD(ad) s~
(IF,) Va:ww. =(a # a)

(IF3) Va,a':w.a # a' Vard

1Fy) Va:v,a':v'. a # d

(IF5) VZ:S. Jav.a#7T
M-quantifier

(IQ) VZ.(Na:v.) <= (Jav. a # T A)
whereFV (Wa.p) C {z}
Abstraction

Va,d vz, 2" (a)r =~ (a')r’ <= (amd ANx=2)
(¢ #x N2’ = (ad)-x)
Ty & (a)x

(141)
(IA2) Yy : (v)S.Ja:v,

Figure 10: Axioms of Intuitionistic Nominal Logic

deriveX : I',VZ.3a.a # T A ¢(a,T) = A using3L andVL. Finally, we can cut against the axiom instance
VZ.da.a # T A p(a,T) < Wa.p(a,T) to prove that : T, Na.p(a, T) = A.
ForR, we have
S#a:T = p(a,z), A
Y: T = Wa.p(a,7),A

Again by Lemma 26 and the induction hypothesis, we can dé&tive: I',a # ¥ = ¢(a,T),AIn NL. In
N L itis not difficult to prove that

VR

Fynr YyVa.a #75 D ¢ D Way

wheneverFV (Wa.¢) C 7, so takingy = FV(X) 2 FV(Wa.e) andy = ¢(a,7), we can derivé-y, X :
Va.a # ¥ D ¢(a,T) = WNa.p(a, 7). Using cut, we can obtaiBl : I' = A, UNa.p(a,). O

4.3.2 Intuitionistic Case

We wish to argue that the intuitionistic calculli$’ L= is really “intuitionistic nominal logic”. Howeuver,
Pitts only considered classical nominal logic. There is a subtlety having to do with Pitts’ #&1&h) in the

intuitionistic case.
Pitts’ original axiom(C F5) stated that freshness among names is the same as inequality:

(CFy) Va,dw.a#d <= —(a=~ad)

However, this axiom does not fit the scheme for nonlogical rules. Insteddy it~ we use two nonlogical
rules F; and F, asserting that no name is fresh for itself and that two names are either equal or fresh. These
two axioms are equivalent {@'F5) in classical logic, but in intuitionistic logic, Pitts’ axiom is weaker, since

a = bV a # bdoes not follow from(CF,). (Recall that for thefy case of Theorem 27, we used excluded

middle for name-equality).

19

We have modified Pitts’ axiomatization slightly by replacing the original axi@h#,) with two rules,
(I Fy) asserting that no name is fresh for itself, gdd) stating that two names are either fresh or equal.
In classical logic, these are equivalent axiomatizations, wheigag is not provable in intuitionistic logic
from Pitts’ axioms. Moreover, id N L, equality and freshness among names are both decidable.

For this reason, we introduce an alternative axiomatizafidyi, shown in Figure 10, differing in the
replacement ofC F») with two axioms(I F,) and(IFs). This decision may be defended on the following
grounds:

1. Though stronger in intuitionistic logid,N L is equivalent taV L in classical logic.
2. Every intuitionistic theorem oWV L is an intuitionistic theorem of N L, and the inclusion is strict.
3. Every intuitionistic theorem of N L is a classical theorem df L, and the inclusion is strict.

4. From a constructivist point of view, it is usually acceptable for equality to be decidable at base types
(such as name-types).

5. Fresh Logic, another intuitionistic form of nominal logic, also included rules similag tand F,.

Lett; v indicate derivability in intuitionistic logic from the axioms iV L. Using essentially the same
proof techniques as for the classical case, we have

Theorem 28. -y X : T' = Alisderivable ifand only if-; 7= X : '™ = A*.

5 Conclusions

Nominal logic is a recently developed logic that is of considerable interest because it provides powerful tech-
niques for reasoning about fresh names and name-binding. One of the most interesting features of nominal
logic is theW-quantifier. However, the techniques used for reasoning Mittfered by previous formaliza-
tions of nominal logic are highly (but unnecessarily) complex.

In this paper we have introduced a nhew sequent calculus for nominal logic whichrest@sess contexts
to deal with the new-quantifier. Its rules fdrare symmetric and rationalize a proof-search semantidd for
that seems natural and intuitive (inspired by the treatmeit iof nominal logic programming). We proved
cut-elimination in detail. In addition, we us@dL= to provide a syntactic proof of consistency and a detailed
proof of equivalence to Pitts’ axiomatization modulo ordinary first-order (classical/intuitionistic) logic. These
results are the first of their kind to be shown in detail.

Two applications ofVL= are to be addressed by future work:

e N L= provides a proof-search readingléfvhich is much closer to the approach taken indifolog
nominal logic programming language [1]. While Gabbay and Cheney gave a proof-theoretic seman-
tics of nominal logic programming based 6L ., this analysis does not seem relevantwrolog
because it suggests a radically different (and much more computationally intensive) proof-search tech-
nigue forM-quantified formulas. In contrasy L= seems to provide a rationale faProlog’s existing
search technique. We plan to study the proof-theoretic semantics of nominal logic programming in
N L= in order to establish the correctness of (or fix any bugs/Piolog’s search technique.

e Gabbay and Cheney showed taD)V, another logic possessing a self-dual “fresh value” quantifier,
can be soundly interpreted in nominal logic via a proof-theoretic translation. However, the translation
they developed was incomplete, and the possibility of finding a faithful translation was left open. Using
N L=, it appears to be possible (though still not easy) to prove the completeness of this translation [2].

Additional directions for future work include the development of natural deduction calculi and type the-
ories using the ideas a¥ L= . One particularly interesting direction is the possibility of developing a type
system and confluent term rewriting system that could be used to decide equality of nominal terms and proof
terms. In such a system, the equality and freshness theory that necessitates the many nonlogical Eates in
could be dealt with implicitly via rewriting and normalization, leading to an even simpler proof theory for
nominal logic. However, work in this direction by Sigbp and Stark [9] indicates that there may be significant
obstacles to this approach; the system introduced in this paper may be viewed as a well-behaved fragment of
their system. Further improvement to the proof theory of nominal logic seems possible and desirable.

20

References

[1] J. Cheney and C. Urban. Alpha-Prolog: A logic programming language with names, binding and alpha-
equivalence. IrProc. 20th Int. Conf. on Logic Programming (ICLP 200#4umber 3132 in LNCS,
pages 269-283, 2004.

[2] James Cheney. A simpler proof theory for nominal logic.Proceedings of the 2005 Conference on
Foundations of Software Science and Computation Structures (FOSSACSZIIR) To appear.

[3] James R. CheneyNominal Logic Programming PhD thesis, Cornell University, Ithaca, NY, August
2004.

[4] M. J. Gabbay. Fresh logic: A logic of FM, 2003. Submitted.

[5] M. J. Gabbay and J. Cheney. A proof theory for nominal logidPtaceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science (LICS 20t#jes 139-148, Turku, Finland, 2004.

[6] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable birfeingal Aspects
of Computing 13:341-363, 2002.

[7] Sara Negri and Jan von PlatStructural Proof TheoryCambridge University Press, 2001.

[8] A. M. Pitts. Nominal logic, a first order theory of names and bindihgformation and Computatign
183:165-193, 2003.

[9] Ulrich Schopp and lan Stark. A dependent type theory with names and bindirgrobeedings of the
2004 Computer Science Logic Conferenmember 3210 in Lecture notes in Computer Science, pages
235-249, Karpacz, Poland, 2004.

[10] A. S. Troelstra and H. Schwichtenberd@gasic Proof Theory Number 43 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, second edition, 2000.

[11] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unificatidieoretical Computer Sciencg23(1—
3):473-497, 2004.

21

