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Abstract

Nominal logic is a variant of first-order logic which provides support for reasoning about bound names
in abstract syntax. A key feature of nominal logic is the new-quantifier, which quantifies overfresh names
(names not appearing in any values considered so far). Previous attempts have been made to develop con-
venient rules for reasoning with the new-quantifier, but we argue that none of these attempts is completely
satisfactory.

In this paper we develop a new sequent calculus for nominal logic in which the rules for the new-
quantifier are much simpler than in previous attempts. We also prove several structural and metatheoretic
properties, including cut-elimination, consistency, and conservativity with respect to Pitts’ axiomatization
of nominal logic; these proofs are considerably simpler for our system.

1 Introduction

Nominal logic [8] is a variant of first-order logic with additional constructs for dealing withnamesand
binding (or name-abstraction) based on the primitive notions of bijective renaming (swapping) and name-
independence (freshness). It was introduced by Pitts as a first-order and reasonably well-behaved fragment
of Fraenkel-Mostowski set theory, the setting for Gabbay and Pitts’ earlier foundational work on formalizing
names, freshness, and binding using swapping [6].

One of the most interesting features of nominal logic is the presence of a novel form of quantification:
quantification overfresh names. The formula Na.ϕ means, intuitively, “for fresh namesa, ϕ holds”. The
intended semantics of nominal logic interprets expressions as values infinitely-supported nominal sets, or
sets acted upon by name-swapping and such that each value depends on at most finitely many names. The
inspiration for the N-quantifier is the fact that in the presence of infinitely many names, a fresh name can
be chosen for any finitely-supported value, whereas equally-fresh names are indistinguishable. As a result, a
propertyϕ(a) holds for a fresh namea if and only if it holds for all fresh names; in either case, we say that

Na.ϕ holds.
Several formalizations of nominal logic have been investigated. Pitts introduced nominal logic as a

Hilbert-style axiomatic system. Gabbay [4] proposed Fresh Logic (FL), an intuitionistic Gentzen-style nat-
ural deduction system. Gabbay and Cheney [5] presentedFLSeq, a sequent calculus version of Fresh Logic.
Scḧopp and Stark have developed a dependent type theory of names and binding that contains nominal logic
as a special case [9].

However, none of these formalizations is ideal. Hilbert systems have well-known deficiencies for com-
puter science applications.FL andFLSeq rely on a complicated technical device calledslicesfor the rules
involving N. Scḧopp and Stark’s system is much more powerful than seems necessary for many applications
of nominal logic, and there are many unresolved issues, such as proof normalization and the decidability of
the equality and typechecking judgments.

In this report we present a new and simpler sequent calculus for nominal logic (developed in the course of
the author’s dissertation research [3]). Its main novelty is the use of afreshness contextto manage freshness
information needed in reasoning aboutN-quantified formulas, rather than the technically more cumbersome
slicesused inFL andFLSeq. We prove basic proof-theoretic results such as cut-elimination, establishing
that this calculus is proof-theoretically sensible. In addition, we prove thatNL⇒ is consistent and equivalent
to Pitts’ original axiomatization of nominal logic.

This report will be used as the basis of additional results, including an improved proof-theoretic semantics
of nominal logic programming and the development of a sound and complete embedding ofFOλ∇ (another
logic with a self-dual “freshness” quantifier) into nominal logic.
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Swapping
(CS1) ∀a:ν, x:τ. (a a) · x ≈ x
(CS2) ∀a, a′:ν, x:τ. (a a′) · (a a′) · x ≈ x
(CS3) ∀a, a′:ν. (a a′) · a ≈ a′

Equivariance
(CE1) ∀a, a′:ν, b, b′:ν′, x:τ. (a a′) · (b b′) · x ≈ ((a a′) · b (a a′) · b′) · (a a′) · x
(CE2) ∀a, a′:ν, b:ν′, x:τ. b # x ⊃ (a a′) · b # (a a′) · x
(CE3) ∀a, a′:ν, x:τ . (a a′) · f(x) ≈ f((a a′) · x)
(CE4) ∀a, a′:ν, x:τ . p(x) ⊃ p((a a′) · x)
(CE5) ∀b, b′:ν′, a:ν, x:τ. (b b′) · (〈a〉x) ≈ 〈(b b′) · a〉((b b′) · x)
Freshness
(CF1) ∀a, a′:ν, x:τ. a # x ∧ a′ # x ⊃ (a a′) · x ≈ x
(CF2) ∀a, a′:ν. a # a′ ⇐⇒ a 6≈ a′

(CF3) ∀a:ν, a′:ν′. a # a′

(CF4) ∀x:τ . ∃a:ν. a # x
N-quantifier
(CQ) ∀x.( Na:ν. ϕ) ⇐⇒ (∃a:ν. a # x ∧ ϕ)

whereFV ( Na.ϕ) ⊆ {x}
Abstraction

(CA1)
∀a, a′:ν, x, x′:τ. 〈a〉x ≈ 〈a′〉x′ ⇐⇒ (a ≈ a′ ∧ x ≈ x′)

∨ (a′ # x ∧ x′ ≈ (a a′) · x)
(CA2) ∀y:〈ν〉τ .∃a:ν, x:τ. y ≈ 〈a〉x

Figure 1: Axioms of Classical Nominal Logic

2 Background

2.1 Pitts’ axiomatization

As presented by Pitts, nominal logic consists of typed first-order logic with equality and with a number of
special types, type constructors, and function and relation symbols formalized by a collection of axioms. In
particular, the basic sort symbols of nominal logic are divided intodata typesδ, δ′ andatom typesν, ν′ (which
we shall also preferentially callname types). In addition, wheneverν is a name type andτ is a type, there
exists another type〈ν〉τ called theabstractionof τ by ν.

Besides possessing equality at every type, nominal logic includes a binaryfreshnessrelation symbol
freshντ : ν × τ for each name typeν and typeτ . In addition, nominal logic includes two special function
symbolsswapντ : ν × ν × τ → τ andabsντ : ν × τ → 〈ν〉τ , calledswappingandabstractionrespectively.
When there is no risk of confusion, we abbreviate formulas of the formfreshντ (a, t) asa # t, and terms of
the formswapντ (a, b, t) andabsντ (a, t) as(a b) · t and〈a〉t respectively. In addition, besides the ordinary∀
and∃ quantifiers, nominal logic possesses a third quantifier, called thefresh-name quantifierand written N.
A N-quantified formula Nx:ν.ϕ may be constructed for any name-typeν.

Pitts presented a Hilbert-style axiom system for nominal logic shown in Figure 1. The axioms are divided
into five groups:

• Swapping axioms (CS): describe the behavior of the swapping operation: swapping a name for itself
has no effect (CS1), swapping is involutive (CS2), and swapping exchanges names (CS3).

• Equivariance axioms (CE): prescribe theequivarianceproperty, namely that all relations are preserved
by and all function symbols commute with swapping. In particular, (CE1) says that the swapping
function symbol itself is equivariant; (CE2) says that freshness is equivariant, (CE3) says that all other
function symbols are equivariant, and (CE4) says that all other relation symbols are equivariant. Also,
(CE5) says that abstraction is equivariant.

• Freshness axioms (CF ): describe the behavior of the freshness relation (often in concert with swap-
ping). (CF1) says that two names fresh for a value can be exchanged without affecting the value.
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(CF2) says that freshness coincides with inequality for names. (CF3) says that distinct name-types
are disjoint. Finally, (CF4) expresses thefreshness principle, namely, that for any finite collection of
values, a name fresh for all the values simultaneously may be chosen.

• N-quantifier axiom(CQ): Pitts’ original formalization introduced no new inference rules forN. In-
stead, Nwas defined using the axiom schemeQ, which asserts∀x.( Na.ϕ ⇐⇒ ∃a.a # x∧ϕ), where
FV (ϕ) ⊆ {a, x}.

• Abstraction axioms(CA): These define special properties of the abstraction function symbol. Specif-
ically, (CA1) defines equality on abstractions as either structural equality or equality up to “safe” re-
naming of bound names. Gabbay and Pitts argued that this is a natural generalization ofα-equivalence
in, for example, the lambda-calculus [6]; we shall not repeat the argument here. Axiom(CA2) states a
surjectivity property for abstraction: any value of abstraction type〈ν〉τ can be written as〈a〉x for some
namea : ν and valuex : τ .

2.2 Gentzen systems

While admirable from a reductionist point of view, Hilbert systems have well-known deficiencies: Hilbert-
style proofs can be highly nonintuitive and circuitous. Instead, Gentzen-stylenatural deductionandsequent
systems provide a more intuitive approach to formal reasoning in which logical connectives are explained
asproof-searchoperations. Gentzen systems are especially useful for computational applications, such as
automated deduction and logic programming. Such systems are also convenient for relating logics by proof-
theoretic translations.

Gentzen-style rules for Nhave been considered in previous work. Pitts [8] proposed sequent and natural
deduction rules for Nbased on the observation that

∀a.(a # x ⊃ ϕ(a, x)) ⊃ Na.ϕ(a, x) ⊃ ∃a.(a # x ∧ ϕ(a, x)) .

These rules (see Figure 2(NL)) are symmetric, emphasizingN’s self-duality. However, they are not closed
under substitution, which complicates proofs of cut-elimination or proof-normalization properties.

Gabbay [4] introduced an intuitionistic natural deduction calculus called Fresh Logic (FL) and studied
semantic issues including soundness and completeness as well proving proof-normalization. Gabbay and
Cheney [5] presented a similar sequent calculus calledFLSeq. Both FL andFLSeq had complex rules
for N. In FL, Gabbay introduced a technical device calledslicesfor obtaining rules that are closed under
substitution Technically, a sliceϕ[a#u] of a formulaϕ is a decomposition of the formula asϕ(a, x)[u/x] for
fresh variablesx, such thata does not appear in any of theu. Slices were used in bothFL andFLSeq to
deal with N(see Figure 2(FL,FLSeq)). The slice-based rules shown in Figure 2(FLSeq) are closed under
substitution, so proving cut-elimination for these rules is relatively straightforward once several technical
lemmas involving slices have been proved. Noting that theFLSeq rules are structurally similar to∀L and
∃R, respectively, Gabbay and Cheney observed that alternate rules in whichNL was similar to∃L and

NR similar to∀R were possible (see Figure 2(FL′Seq)). These rules seem simpler and more deterministic;
however, they still involve slices.

Experience gained in the process of implementingαProlog, a logic programming language based on
nominal logic [1], suggests a much simpler reading ofNas a proof-search operation than that implied by the
FL-style rules. InαProlog, when a N-quantifier is encountered (either in a goal or program clause), proof
search proceeds by generating a fresh namea to be used for the N-quantified name. Besides satisfying a
syntactic freshness requirement (like eigenvariables in∀-introduction or∃-elimination rules), the fresh name
is also required to besemantically fresh, that is, fresh for all values appearing in the derivation up to the
point at which it is generated. In contrast, the proof-search interpretation suggested byFL-style rules is to
search for a suitable slice of theN-quantified formula. This reading seems much less deterministic than that
employed inαProlog.

In this paper we present a simplified sequent calculus for nominal logic, calledNL⇒, in which slices are
not needed in the rules forN(or anywhere else). Following Urban, Pitts, and Gabbay [11, 4], we employ
a new syntactic class ofname-symbolsa, b, . . .. Like variables, such name-symbols may be bound (byN),
but unlike variables, two distinct name-symbols are always regarded as denoting distinct name values. In
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Γ, a # x⇒ ϕ,∆ (†)
Γ ⇒ Na.ϕ,∆ NR

Γ, a # x, ϕ⇒ ∆ (†)
Γ, Na.ϕ⇒ ∆ NL (NL)

Γ ` u # t Γ ` ϕ[u/a] (∗)
Γ ` Na.ϕ NI

Γ ` Na.ϕ Γ ` u # t
Γ, ϕ[u/a] ` ψ (∗)

Γ ⇒ ψ
NE (FL)

Γ, u # t⇒ ϕ[u/a] (∗)
Γ, u # t⇒ Na.ϕ

NR
Γ, u # t, ϕ[u/a] ⇒ ψ (∗)

Γ, u # t, Na.ϕ⇒ ψ
NL

(FLSeq)
Γ, a # t⇒ ϕ (∗), (∗∗)

Γ ⇒ Na.ϕ NR
Γ, a # t, ϕ⇒ ψ (∗), (∗∗)

Γ, Na.ϕ⇒ ψ
NL (FL′Seq)

Σ#a : Γ ⇒ ϕ (a /∈ Σ)
Σ : Γ ⇒ Na.ϕ NR

Σ#a : Γ, ϕ⇒ ψ (a /∈ Σ)
Σ : Γ, Na.ϕ⇒ ψ

NL (NL⇒)

(†) x = FV (Γ, Na.ϕ,∆) (∗) ϕ = ϕ[a#t] (∗∗) a 6∈ FV (Γ, ψ)

Figure 2: Evolution of rules for N

place of slices, we introduce contexts that encode information about freshness as well as identifying the types
of variables and name-symbols. Specifically, contextsΣ#a:ν may be formed by adjoining afresh name-
symbola which is also assumed to be semantically fresh for any value mentioned inΣ. Our rules for N
(Figure 2(NL⇒)) are in the spirit of the original rules and are very simple.

Besides presenting the sequent calculus and proving structural properties such as cut-elimination, we
verify thatNL⇒ and Pitts’ axiomatizationNL are equivalent. We also present a syntactic proof of the
consistency of the nonlogical rules, which together with cut-elimination implies consistency of the whole
system.

The structure of this paper is as follows: Section 3 presents the sequent calculusNL⇒ along with proofs
of structural properties. Section 4 discusses several applications, including proofs of consistency and of
conservativity ofNL⇒ relative toNL. Section 5 concludes.

The sequent calculus in Section 3 is (except for minor changes) the one presented in Chapter 4 of the
author’s dissertation [3].

3 Sequent Calculus

3.1 Syntax

The typesτ , termst, and formulasϕ of NL⇒ are generated by the following grammar:

τ ::= o | δ | ν | τ → τ ′ | τ × τ ′ | 〈ν〉τ
t, u ::= c | x | a | λx:τ.t | t u | πi(t) | 〈t, u〉 | (a b) · t | 〈a〉t
ϕ, ψ ::= > | ⊥ | t | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⊃ ψ | ∀x.ϕ | ∃x.ϕ | Na.ϕ

The base types are the typeo of propositions, datatypesδ and name-typesν; additional types are formed using
the function and abstraction type constructors. Variablesx, y are drawn from a countably infinite setV ; also,
name-symbolsa, b are drawn from a countably infinite setA disjoint formV . The lettersa, b are typically
used for terms of some name-typeν. Note thatλ-terms with surjective pairing are included in this language
and are handled in a traditional fashion. In particular, terms are considered equal up toαβη-equivalence in
the conventional sense. Negation and logical equivalence are defined as follows:

¬ϕ = (ϕ ⊃ ⊥) ϕ ⇐⇒ ψ = (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ)

The base typeo is used for formulas. However, quantification is limited to types not mentioningo. We
assume given a signature that maps constant symbolsc to typesτ , and containing at least the following
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FV (x) = {x}
FV (a) = ∅

FV (Qx.t) = FV (t)− {x} (Q ∈ {λ,∀,∃})
FV ( Na.ϕ) = FV (t)

FN(x) = ∅
FN(a) = {a}

FN(Qx.t) = FN(t) (Q ∈ {λ,∀,∃})
FN( Na.ϕ) = FN(t)− {a}

Fα(c) = Fα(>) = Fα(⊥) = ∅
Fα(t u) = Fα(〈t, u〉) = Fα(t ◦ u) = Fα(t) ∪ Fα(u) (◦ ∈ {∧,∨,⊃})

Fα(πi(t)) = Fα(t)
Fα((a b) · t) = Fα(a) ∪ Fα(b) ∪ Fα(t)

FV N(t) = FV (t) ∪ FN(t)

Figure 3: Free variables and names (noteFα stands for eitherFV or FN )

declarations:
eqτ : τ × τ → o freshντ : ν × τ → o

swapντ : ν × ν × τ → τ absντ : ν × τ → 〈ν〉τ
for name-typesν and typesτ . The subscripts are dropped when clear from context. The notationst ≈ u,
t # u, (a b) · t, and〈t〉u are syntactic sugar for the termseq(t, u), fresh(t, u), swap(a, b, t), andabs(t, u),
respectively. We writeω for a term that may be either a name-symbola or a variablex. The functionsFV (·),
FN(·), FV N(·) calculate the sets of free variables, name-symbols, or both variables and name-symbols of
a term or formula (see Figure 3).

Remark 1. The inclusion ofλ-terms and identification of terms and formulas with bound names up toα-
equivalence may be objectionable because it appears that we are circularly attempting to define binding in
terms of binding. This is not the case. A key contribution of Gabbay and Pitts’ approach is that it shows
how one can formally justify an informal (and traditional) approach to binding syntax by constructing syntax
trees moduloα-equivalence as simple mathematical objects in a particularly clever way [6][3, Ch. 3–4]. We
assume that this or some other standard technique for dealing with binding is acting behind the scenes.

Thefreshness contextsused inNL⇒ are generated by the grammar:

Σ ::= · | Σ, x:τ | Σ#a:ν

We often abbreviate·, x:τ and ·#a:ν to x:τ anda:ν respectively. We writeω:τ ∈ Σ if the bindingω:τ is
present inΣ. We writeΣ; Σ′ for the result of concatenating two contexts such thatFV N(Σ)∩FV N(Σ′) =
∅.

We write Σ ` t : τ or Σ ` ϕ : o to indicate thatt is a well-formed term of typeτ or ϕ is a well-
formed formula. From the point of view of typechecking, the additional freshness information in the context
is irrelevant. There are only two nonstandard rules for typechecking; the remaining rules (shown in Figure 4)
are standard. Terms viewed as formulas must, as usual, be of typeo. Quantification using∀ and∃ is only
allowed over types not mentioningo; N-quantification is only allowed over name-types.

Let TmΣ = {t | Σ ` t : τ} be the set of well-formed terms in contextΣ. We associate a set of freshness
formulas|Σ| to each contextΣ as follows:

| · | = ∅ |Σ, x : τ | = |Σ| |Σ, a : ν| = |Σ| ∪ {a # t | t ∈ TmΣ}
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c : τ
Σ ` c : τ

Σ ` t : σ1 Σ ` u : σ2

Σ ` 〈t, u〉 : σ1 × σ2

Σ ` t : τ1 × τ2
Σ ` πit : τi

ω : τ ∈ Σ
Σ ` ω : τ

Σ, x:τ ` t : σ
Σ ` λx.t : τ → σ

Σ ` t : τ → σ Σ ` u : τ
Σ ` t u : σ Σ ` >,⊥ : o

Σ ` ϕ,ψ : o (◦ ∈ {∧,∨,⊃})
Σ ` ϕ ◦ ψ : o

Σ, x:τ ` ϕ : o
Σ ` ∀x:τ.ϕ,∃x:τ.ϕ : o

Σ#a ` ϕ : o
Σ ` Na:ν.ϕ : o

Figure 4: Well-formedness rules

For example,a # x, b # a, andb # f x y ∈ |x#a, y#b|. We say thatΣ′ is stronger thanΣ (Σ ≤ Σ′) if
TmΣ ⊆ TmΣ′ and|Σ| ⊆ |Σ′|. For example,a, x ≤ x#a, y. The following routine properties hold:

Lemma 2 (Term Weakening). If Σ ` t : τ andΣ ≤ Σ′ thenΣ′ ` t : τ .

Lemma 3 (Term Substitution). If Σ ` t : τ andΣ, x:τ ; Σ′ ` u : τ ′ thenΣ; Σ′ ` u[t/x] : τ ′.

3.2 The Rules

Judgments are of the formΣ : Γ ⇒ ∆, whereΣ is a freshness context andΓ,∆ are multisets of formulas.
We define classical and intuitionistic versions ofNL⇒. ClassicalNL⇒ is based on the classical sequent
calculusG3c (see Figure 5), whereasIntuitionistic NL⇒ (INL⇒) is based on the multiple-conclusion
intuitionistic calculusG3im (see Figure 6). Both versions include two additionallogical rules, NL and

NR, shown in Figure 2(NL⇒). In addition,NL⇒ includes severalnonlogical rules(Figure 8) defining the
properties of swapping, equality, freshness and abstraction.

Many of the nonlogical rules correspond to first-order universal axioms of nominal logic (Figure 7),
which may be incorporated into sequent systems in a uniform fashion using theAx rule without affecting
cut-elimination [7]. The remaining nonlogical rules are as follows. RuleA2 expresses an invertibility property
for abstractions: two abstractions are equal only if they are structurally equal or equal by virtue ofA1. A3

says that all values of abstraction type are formed using the abstraction function symbol. TheF rule expresses
the freshness principle: that a name fresh for a given context may always be chosen. Finally, theΣ# rule
allows freshness information to be extracted from the contextΣ. It states that in contextΣ, any constraint in
|Σ| is valid.

The naming of the nonlogical rule groups corresponds to that used by Pitts: the axioms are divided into
groups for swapping(S), equivariance(E), freshness(F ), and abstraction(A). The(Q) axiom is replaced
by the logical rules NL and NR.

Figure 9 lists some rules whose admissibility inNL⇒ will be shown in the next section.

3.3 Structural Properties

We now list some routinely-verified syntactic properties ofNL⇒. We write`n J to indicate that judgment
J has a derivation of height at mostn.

Lemma 4 (Weakening). If `n Σ : Γ ⇒ ∆ is derivable then so is̀n Σ : Γ, ϕ⇒ ∆. Similarly,`n Σ : Γ ⇒
∆, ϕ.

Lemma 5 (Context Weakening). If `n Σ : Γ ⇒ ∆ andΣ ≤ Σ′ then`n Σ′ : Γ ⇒ ∆.

Lemma 6 (Substitution). If `n Σ ` t : τ andΣ, x:τ ; Σ′ : Γ ⇒ ∆ then`n Σ; Σ′ : Γ[t/x] ⇒ ∆[t/x].

Proof. The interesting cases are for the new rules, specifically, nonlogical rules,NL, and NR. All of the
nonlogical rules are closed under substitution; in particular, forΣ# we havea # u ∈ |Σ, x; Σ′| thena #
u[t/x] ∈ |Σ; Σ′|.

ForF we have a derivation
Σ, x; Σ′#a : Γ ⇒ ∆
Σ, x; Σ′ : Γ ⇒ ∆

F
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Σ : Γ, p t⇒ p t,∆
hyp

Σ : Γ ⇒ >,∆ >R Σ : Γ,⊥ ⇒ ∆ ⊥L

Σ : Γ ⇒ ϕ,∆ Σ : Γ ⇒ ψ,∆
Σ : Γ ⇒ ϕ ∧ ψ,∆ ∧R

Σ : Γ, ϕ1, ϕ2 ⇒ ∆
Σ : Γ, ϕ1 ∧ ϕ2 ⇒ ∆ ∧L

Σ : Γ ⇒ ϕ1, ϕ2,∆
Σ : Γ ⇒ ϕ1 ∨ ϕ2,∆

∨R
Σ : Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Σ : Γ, ϕ ∨ ψ ⇒ ∆ ∨L

Σ : Γ, ϕ⇒ ψ,∆
Σ : Γ ⇒ ϕ ⊃ ψ,∆ ⊃R

Σ : Γ ⇒ ϕ,∆ Σ : Γ, ψ ⇒ ∆
Σ : Γ, ϕ ⊃ ψ ⇒ ∆ ⊃L

Σ, x : Γ ⇒ ϕ,∆ (x 6∈ Σ)
Σ : Γ ⇒ ∀x.ϕ,∆ ∀R

Σ ` t : σ Σ : Γ,∀x:σ.ϕ, ϕ{t/x} ⇒ ∆
Σ : Γ,∀x:σ.ϕ⇒ ∆ ∀L

Σ ` t : σ Σ : Γ ⇒ ∃x:σ.ϕ, ϕ{t/x},∆
Σ : Γ ⇒ ∃x:σ.ϕ,∆ ∃R

Σ, x : Γ, ϕ⇒ ∆ (x 6∈ Σ)
Σ : Γ,∃x.ϕ⇒ ∆ ∃L

Σ : Γ, t ≈ t⇒ ∆
Σ : Γ ⇒ ∆ ≈R

Σ : Γ, t ≈ u, P (t), P (u) ⇒ ∆
Σ : Γ, t ≈ u, P (t) ⇒ ∆ ≈S

Figure 5: Classical first-order equational sequent calculus (G3c)

Σ : Γ, ϕ⇒ ψ

Σ : Γ ⇒ ϕ ⊃ ψ,∆ ⊃R
Σ : Γ, ϕ ⊃ ψ ⇒ ϕ Σ : Γ, ψ ⇒ ∆

Σ : Γ, ϕ ⊃ ψ ⇒ ∆ ⊃L

Σ, x : Γ ⇒ ϕ (x 6∈ Σ)
Σ : Γ ⇒ ∀x.ϕ,∆ ∀R

Σ ` t : σ Σ : Γ,∀x:σ.ϕ, ϕ{t/x} ⇒ ∆
Σ : Γ,∀x:σ.ϕ⇒ ∆ ∀L

Σ ` t : σ Σ : Γ ⇒ ∃x:σ.ϕ, ϕ{t/x},∆
Σ : Γ ⇒ ∃x:σ.ϕ,∆ ∃R

Σ, x : Γ, ϕ⇒ ∆ (x 6∈ Σ)
Σ : Γ,∃x.ϕ⇒ ∆ ∃L

Figure 6: Variant rules for the intuitionistic multiple-conclusion calculus (G3im)

By induction we haveΣ; Σ′#a : Γ[t/x] ⇒ ∆[t/x], so we can useF again to deriveΣ; Σ′ : Γ[t/x] ⇒ ∆[t/x].
This requires the observation that sinceΣ ` t : τ , we must havea /∈ FN(t). The proofs for NL and NR are
similar, requiring the additional observation that( Na.ϕ)[t/x] = Na.(ϕ[t/x]) sincea 6∈ FN(t).

The remaining structural transformations do not preserve the height of derivations. However, they do
preserve the logical height of the derivation, which is defined as follows.

Definition 7. Thelogical heightof a derivation is the maximum number of logical rules in any branch of the
derivation. We writè l

n J to indicate thatJ has a derivation of logical height≤ n.

Now we consider some nontrivial structural properties.

Lemma 8 (Admissibility of EV L, EV R). TheEV L andEV R rules

Σ : Γ, (a b) · ϕ⇒ ∆
Σ : Γ, ϕ⇒ ∆ EV L

Σ : Γ ⇒ (a b) · ϕ,∆
Σ : Γ ⇒ ϕ,∆ EV R

(S1) (a a) · x ≈ x
(S2) (a b) · (a b) · x ≈ x
(S3) (a b) · a ≈ b
(E1) (a b) · c ≈ c
(E2) (a b) · (t u) ≈ ((a b) · t) ((a b) · u)
(E3) p(x) ⊃ p((a b) · x)

(E4) (a b) · λx.e[x] ≈ λx.(a b) · e[(a b) · x]
(F1) a # x ∧ b # x ⊃ (a b) · x ≈ x
(F2) a # b (a : ν, b : ν′, ν 6≡ ν′)
(F3) a # a ⊃ ⊥
(F4) a # b ∨ a ≈ b
(A1) a # y ∧ x ≈ (a b) · y ⊃ 〈a〉x ≈ 〈b〉y

Figure 7: Equational and freshness axioms
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Σ : Γ, P,Q1 ⇒ ∆ · · · Σ : Γ, P,Qn ⇒ ∆
Σ : Γ, P ⇒ ∆ Ax

∧
P ⊃

∨
Q an axiom instance

Σ : Γ, 〈a〉t ≈ 〈b〉u, a ≈ b, t ≈ u⇒ ∆ Σ : Γ, 〈a〉t ≈ 〈b〉u, a # u, t ≈ (a b) · u⇒ ∆
Σ : Γ, 〈a〉t ≈ 〈b〉u⇒ ∆

A2

Σ ` t : 〈ν〉σ Σ, a:ν, x:σ : Γ, t ≈ 〈a〉x⇒ ∆ (a, x /∈ Σ)
Σ : Γ ⇒ ∆

A3

Σ#a : Γ ⇒ ∆ (a /∈ Σ)
Σ : Γ ⇒ ∆ F

Σ : Γ, t # u⇒ ∆ (t # u ∈ |Σ|)
Σ : Γ ⇒ ∆

Σ#

Figure 8: Nonlogical rules

Σ : Γ ⇒ ∆
Σ : Γ, ϕ⇒ ∆ W Σ : Γ, ϕ⇒ ϕ,∆

hyp∗
Σ : Γ ⇒ ϕ,∆ Σ : Γ′, ϕ⇒ ∆′

Σ : Γ,Γ′ ⇒ ∆,∆′ cut

Σ : Γ, ϕ, ϕ⇒ ∆
Σ : Γ, ϕ⇒ ∆ C

Σ : Γ, (a b) · ϕ⇒ ∆
Σ : Γ, ϕ⇒ ∆ EV L

Σ : Γ ⇒ (a b) · ϕ,∆
Σ : Γ ⇒ ∆, ϕ EV R

Figure 9: Some admissible rules ofNL⇒

whereϕ is an arbitrary formula, are admissible.

Proof. We proceed by induction to show that if the hypothesis of an instance ofEV L orEV R has a deriva-
tion then the conclusion of the respective rule has a derivation of the same logical height.

We first considerEV L. The only interesting cases are when(a b) · ϕ is principal on the left, otherwise
the induction step is straightforward. Furthermore, only the cases forhyp and⊃L are nontrivial.

If the derivation is of the form
Γ, (a b) ·A⇒ (a b) ·A,∆

then we may deriveΓ, A⇒ (a b) ·A,∆ as follows:

Σ : Γ, (a b) ·A⇒ (a b) ·A,∆
Σ : Γ, A⇒ (a b) ·A,∆

Ep

This derivation has the same logical height, 1, as the first.
If the derivation is of the form

Σ : Γ, (a b) · P ⊃ (a b) ·Q⇒ (a b) · P,∆ Σ : Γ, (a b) ·Q⇒ ∆
Σ : Γ, (a b) · P ⊃ (a b) ·Q⇒ ∆

⊃L

then using the admissibility ofEV R andEV L on the left andEV R on the right we obtain

Σ : Γ, (a b) · P ⊃ (a b) ·Q⇒ (a b) · P,∆
Σ : Γ, P ⊃ Q⇒ P,∆

EV L,EV R
Σ : Γ, (a b) ·Q⇒ ∆

Σ : Γ, Q⇒ ∆ EV L

Σ : Γ, P ⊃ Q⇒ ∆ ⊃L

This transformation is obviously logical height-preserving by induction.
ForEV R, the interesting cases are those forhyp and⊃Rwhere(a b)·ϕ is principal on the right. Suppose

the derivation is of the form
Γ, (a b) ·A⇒ (a b) ·A,∆

Then we can derive

Γ, (a b) · (a b) ·A⇒ A,∆
≈, hyp

Γ, (a b) ·A⇒ A,∆
Ep

This derivation has the same logical height, 1, as the first.
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If the derivation is of the form

Γ, (a b) · P ⇒ (a b) ·Q,∆
Γ ⇒ (a b) · P ⊃ (a b) ·Q,∆ ⊃R

then sinceEV L andEV R are admissible for all subderivations of this derivation, by induction we can derive

Γ, (a b) · P ⇒ (a b) ·Q,∆
Γ, P ⇒ Q,∆

EV L,EV R

Γ ⇒ P ⊃ Q,∆ ⊃R

This transformation is obviously logical height-preserving by induction.

Lemma 9 (Swapping Fresh Names).SupposeΣ#a ` ϕ(a) : o. Then the rule

Σ#a#b : Γ, ϕ(b) ⇒ ∆
Σ#a#b : Γ, ϕ(a) ⇒ ∆

is admissible using nonlogical axioms only.

Proof. LetX = FV (Σ). The derivation is roughly as follows:

Σ#a#b : Γ, a # x, b # x, ϕ(b) ⇒ ∆
Σ#a#b : Γ, a # x, b # x, (a b) · ϕ(a) ⇒ ∆ Ax

Σ#a#b : Γ, a # x, b # x, ϕ(a) ⇒ ∆ EV L

Σ#a#b : Γ, ϕ(a) ⇒ ∆
Σ#

whereF1 and equational reasoning is used repeatedly to show that(a b) · ϕ(a) ⊃ ϕ(b).

Lemma 10 (Admissibility of hyp∗). Thehyp∗ rule

Σ : Γ, ϕ⇒ ϕ,∆
hyp∗

whereϕ is an arbitrary formula, is admissible.

Proof. The proof is by induction on the construction ofϕ. The cases for the ordinary connectives of first-
order logic are standard. The case forϕ = Na.P is as follows. By induction, we may assume thatΣ#a#b :
Γ, ϕ(b) ⇒ ϕ(b),∆ is derivable. We derive

Σ#a#b : Γ, ϕ(b) ⇒ ϕ(b),∆
Σ#a#b : Γ, ϕ(a) ⇒ ϕ(b),∆

Lemma 9

Σ#a : Γ, ϕ(a) ⇒ Na.P,∆ NR

Σ : Γ, Na.P ⇒ Na.P,∆ NL

Using the induction hypothesis, the judgmentΣ#a#b : Γ, ϕ(b) ⇒ ϕ(b),∆ is derivable, since it is an
instance ofhyp∗ with a smaller principal formula.

Lemma 11 (Inversion). The∧L, ∨L,⊃L, ∃L, ∀R, NL, and NR rules are invertible; that is,

1. If `l
n Σ : Γ, ϕ ∧ ψ ⇒ ∆ then`l

n Σ : Γ, ϕ, ψ ⇒ ∆.

2. If `l
n Σ : Γ, ϕ ∨ ψ ⇒ ∆ then`l

n Σ : Γ, ϕ⇒ ∆ or `l
n Σ : Γ, ψ ⇒ ∆.

3. If `l
n Σ : Γ, ϕ ⊃ ψ ⇒ ∆ then`l

n Σ : Γ, ψ ⇒ ∆.

4. If `l
n Σ : Γ,∃x.ϕ⇒ ∆ then`l

n Σ, y : Γ, ϕ[y/x] ⇒ ∆.

5. If `l
n Σ : Γ ⇒ ∆,∀x.ϕ then`l

n Σ, y : Γ∆, ϕ[y/x].
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6. If `l
n Σ : Γ, Na.ϕ⇒ ∆ then`l

n Σ#a : Γ, ϕ⇒ ∆ for fresha.

7. If `l
n Σ : Γ ⇒ ∆, Na.ϕ then`l

n Σ#a : Γ ⇒ ∆, ϕ for fresha.

Proof. The proofs for the rules∧L,∨L,⊃L, ∃L, ∀R are similar to those for the systemsG3c andG3im [7].
For NL, the proof is by induction on the height of the derivation. Most cases are straightforward. Only

cases such as∀R,∃L,A3, F that introduce variables or name-symbols intoΣ are exceptions. We show the
reasoning for∀R.

If the derivation is of the form
Σ, x : Γ, Na.ϕ⇒ ψ

Σ : Γ, Na.ϕ⇒ ∀x.ψ

then using the induction hypothesis, we haveΣ, x#b : Γ, ϕ(b) ⇒ ψ. Using structural weakening we have
Σ#a, x#b : Γ, ϕ(b) ⇒ ψ. Using equivariance and equational reasoning (and the fact thatx 6∈ FV (ϕ)), we
can deriveΣ#a, x#b : Γ, ϕ(a) ⇒ ψ. Now b is not mentioned in the sequent so usingF and∀R we can
deriveΣ#a : Γ, ϕ(b) ⇒ ∀x.ψ, as desired.

The proof for the invertibility of NR is symmetric.

Lemma 12 (Contraction). If `l
n Σ : Γ, ϕ, ϕ ⇒ ∆ then so is̀ l

n Σ : Γ, ϕ ⇒ ∆. Similarly, if`l
n Σ : Γ ⇒

∆, ϕ, ϕ then`l
n Σ : Γ ⇒ ∆, ϕ.

Proof. The proof is by induction on the logical height and secondary induction on the total height. That is,
the induction hypothesis applies to all derivations of smaller logical height and to all derivations of equal
logical height but smaller total height. Most cases are similar to any standard proof. The only new cases
involve nonlogical rules and Na.ϕ. For the nonlogical rules it suffices to show that for each nonlogical rule
that has a contractable instance, there is a nonlogical rule corresponding to the contraction. The only such
rule isF1. If the derivation is of the form

Σ : Γ, a # x, a # x, (a a) · x ≈ x⇒ ∆
Σ : Γ, a # x, a # x⇒ ∆

F1

then we can transform the derivation to

Σ : Γ, a # x, (a a) · x ≈ x⇒ ∆
Σ : Γ, a # x⇒ ∆

S1

Most of the remaining cases are standard. The only interesting new case is when the contracted formula
is derived using NL:

Σ#a : Γ, ϕ(a), Nb.ϕ(b) ⇒ ∆
Σ : Γ, Na.ϕ(a), Nb.ϕ(b) ⇒ ∆ NL

Then using inversion we havèn−1 Σ#a#b : Γ, ϕ(a), ϕ(b) ⇒ ∆. Now using nonlogical rules we can
derive`n−1 Σ#a#b : Γ, ϕ(a), ϕ(a) ⇒ ∆. Then using the induction hypothesis we have`n−1 Σ#a#b :
Γ, ϕ(a) ⇒ ∆. Finally we can derive

Σ#a#b : Γ, ϕ(a) ⇒ ∆
Σ#a : Γ, ϕ(a) ⇒ ∆ F

Σ : Γ, Na.ϕ(a) ⇒ ∆ NL

The proof for right-contraction is symmetric, using the invertibility ofNR.

3.4 Cut-Elimination

As usual for sequent systems, the most important property to check to verify that the system is sensible is
cut-elimination.

Lemma 13 (Admissibility of Cut). If ` Σ : Γ ⇒ ∆, ϕ and` Σ : Γ′, ϕ⇒ ∆ then` Σ : Γ,Γ′ ⇒ ∆,∆′.
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Proof. Following the proof of cut-elimination for similar systems such asG3c or G3im of [7], we prove
the lemma by induction on the structure of the cut-formulaϕ and then by a sub-induction on the sizes of the
subderivationsΠ of Σ : Γ ⇒ ∆, ϕ andΠ′ of Σ : Γ′, ϕ ⇒ ∆. Thus, for the induction hypothesis, we may
assume that the lemma holds for any instances with a less complex cut-formula or for all instances with the
same cut-formula but with a smaller derivation of one or the other ofΠ,Π′.

As in other proofs of cut-elimination for similar systems, there are four categories of cases:

• Base cases in whichΠ or Π′ is an axiom or initial sequent.

• Left-commuting cases in whichΠ starts with a rule in whichϕ is not principal.

• Right-commuting cases in whichΠ′ starts with a rule in whichϕ is not principal.

• Principal cases in whichΠ andΠ′ both start with a rule in whichϕ is principal.

All cases involving first-order rules exclusively are standard, and are shown in any standard proof of cut-
elimination (e.g. [7] or [10]). In addition, Negri and von Plato [7] showed that nonlogical rules of the form
we consider can be added to sequent systems likeG3c or G3im without damaging cut-elimination. Hence,
it will suffice to consider only the new cases involving theN-quantifier rules.

• Base cases: There are no new base cases.

• Left-commuting cases: There are two new cases in whichΠ begins with NR or NL.

In the first case, we have
Π

Σ#a : Γ, ψ ⇒ ∆, ϕ
Σ : Γ, Na.ψ ⇒ ∆, ϕ NL

wherea 6∈ Σ. We can weakenΠ′ to deriveW (Π′) derivingΣ#a : Γ′, ϕ ⇒ ∆′, and by induction, we
haveΣ#a : Γ, ψ,Γ′ ⇒ ∆,∆′. Then we may deriveΣ : Γ, Na.ψ,Γ′ ⇒ ∆,∆′ using NL.

In the second case, we have
Π

Σ#a : Γ ⇒ ∆, ψ, ϕ
Σ : Γ ⇒ ∆, Na.ψ, ϕ NR

wherea 6∈ Σ. We can weakenΠ′ to getW (Π′) derivingΣ#a : Γ′ ⇒ ∆′ and then by induction obtain
Σ#a : Γ′,Γ ⇒ ∆,∆′, ψ. Using NR we can deriveΣ : Γ′,Γ ⇒ ∆,∆′, Na.ψ.

• Right-commuting cases. These cases are exactly symmetric to the left-commuting cases.

In the first case, we have
Π′

Σ#a : Γ′, ϕ, ψ ⇒ ∆′

Σ : Γ′, ϕ, Na.ψ ⇒ ∆′ NL

wherea 6∈ Σ. We can weakenΠ to deriveW (Π) derivingΣ#a : Γ ⇒ ∆, ϕ, and by induction, we
haveΣ#a : Γ, ψ,Γ′ ⇒ ∆,∆′. Then we may deriveΣ : Γ, Na.ψ,Γ′ ⇒ ∆,∆′ using NL.

In the second case, we have
Π′

Σ#a : Γ′, ϕ⇒ ∆′, ψ

Σ : Γ′, ϕ⇒ ∆′, Na.ψ
NR

wherea 6∈ Σ. We can weakenΠ to getW (Π) derivingΣ#a : Γ ⇒ ∆, ϕ and then by induction obtain
Σ#a : Γ′,Γ ⇒ ∆,∆′, ψ. Using NR we can deriveΣ : Γ′,Γ ⇒ ∆,∆′, Na.ψ.

• Principal cases. In this case, bothΠ andΠ′ decompose the cut formula. The only new rule for decom-
posing formulas on the right isNR, so the only new principal cut case is when we have

Π
Σ#a : Γ ⇒ ∆, ϕ
Σ : Γ ⇒ ∆, Na.ϕ NR

Π′
Σ#a : Γ′, ϕ⇒ ∆′

Σ : Γ′, Na.ϕ⇒ ∆′ NL
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for somea 6∈ Σ. By induction we haveΣ#a : Γ,Γ′ ⇒ ∆,∆′, and we may concludeΣ : Γ,Γ′ ⇒ ∆,∆′

by an application of the freshness rule.

This completes the proof.

Theorem 14. Any derivable sequent has a cut-free derivation; there is an algorithm for producing such
derivations.

Proof. Proof by induction on the number of cuts. Given a derivation using cut, we can always find an
uppermost use of cut in the derivation tree and remove it. This reduces the number of cuts by one.

4 Applications

4.1 Syntactic Consistency

For pure first-order logic, cut-elimination immediately implies consistency, since by inspection of the rules
there can be no shortest proof of⇒ ⊥. However, in the presence of general nonlogical rules, only a weaker
result holds. We say that an atomic formula is aconstraintif it is an equality or freshness formula, andΓ is a
constraint set of it contains only constraints.

Proposition 15. If ⇒ ⊥ has a derivation, then it has one using only nonlogical rules, in which each sequent
is of the formΓ ⇒ ⊥, whereΓ is a constraint set.

The proof is immediate by observing that only nonlogical rules are applicable to a derivation ofΓ ⇒ ⊥
whereΓ is a constraint set.

This means that nominal logic is consistent if and only if the nonlogical rules are consistent. To prove
the consistency of the nonlogical rules, it is necessary to exhibit a model. An appropriate semantics can be
defined in terms of the syntax of nominal terms.

Definition 16 (Syntactic Swapping, Equality and Freshness).LetTm be the set of swapping-free nominal
terms generated by the grammar

t ::= a | 〈〉 | 〈t, u〉 | 〈a〉t | f(t)

We define theswapping functionon such terms as follows:

(a b) · a = b

(a b) · b = a

(a b) · c = c (a, b 6= c)
(a b) · 〈〉 = 〈〉

(a b) · 〈t, u〉 = 〈(a b) · t, (a b) · u〉
(a b) · f(t) = f((a b) · t)
(a b) · 〈c〉t = 〈(a b) · c, (a b) · t〉

We define thefreshnessrelation on ground terms using the rules:

(a 6= b)
a # b a # 〈〉

a # t

a # f(t)
a # t a # u

a # 〈t, u〉 a # 〈a〉t
a # t (a 6= b)

a # 〈b〉t

Thenominal equalityrelation is defined as follows:

a ≈ a 〈〉 ≈ 〈〉
t1 ≈ u1 t2 ≈ u2

〈t1, t2〉 ≈ 〈u1, u2〉
t ≈ u

f(t) ≈ f(u)
t ≈ u

〈a〉t ≈ 〈a〉u
t ≈ (a b) · u a # u (a 6= b)

〈a〉t ≈ 〈b〉u

Proposition 17. The nominal equality relation≈ is an equivalence relation. Hence,NTm = Tm/≈ is
well-defined. Moreover, both≈ and# are equivariant relations onTm.
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We now show how to interpret arbitrary nominal terms inNTm.

Definition 18. Let θ : V → NTm be a substitution of ground nominal terms for variables, called an
interpretation. We liftθ to a functionθ : NTm→ NTm as follows:

θ(a) = a

θ(〈〉) = 〈〉
θ(〈t1, t2〉) = 〈θ(t1), θ(t2)〉
θ(f(t)) = f(θ(t))

θ((a b) · t) = (θ(a) θ(b)) · θ(t)
θ(〈a〉t) = 〈θ(a)〉θ(t)

We say thatθ : FV (Σ) → NTm satisfiesΣ (written θ : Σ) if θ(x) : Σ(x) for eachx anda # θ(x) for
each constrainta # x ∈ |Σ|.

We writeθ � t ≈ u or θ � a # t to indicate thatθ(t) ≈ θ(u) or θ(a) # θ(t) respectively. Similarly,
θ � Γ indicates thatθ � A for each constraintA in constraint setΓ. We say that a constraintA (or constraint
setΓ) is satisfiableif there is an interpretationθ : Σ such thatθ � A (θ � Γ) holds inNTm.

Proposition 19. The axioms listed in Figure 7 are valid forNTm, in the sense that for each axiom
∧
P ⊃∨

Q, if θ � P thenθ � Qi for someQi ∈ Q.

Proof. ForS1 andS2, the proof is by induction on the definition of swapping for ground terms. The validity
of S3 is immediate.

For the equivariance axioms, the definition of swapping makes plain that unit, pairing, abstraction, and
other function symbols besides swapping itself are equivariant. In addition, it is not difficult to show that

(a a′) · (b b′) · x = ((a a′) · b (a a′) · b′) · (a a′) · x

that is, that the syntactic swapping function is equivariant. For the equivariance axioms for formulas, we only
need to considerE≈ andE#. But clearly equality is equivariant since

x ≈ y ⊃ (a b) · x ≈ (a b) · y

can be shown by induction on the derivation ofx ≈ y; similarly,

a # x ⊃ (b b′) · a # (b b′) · x

can be shown valid by induction on the derivation ofa # x.
For the axiomF1, we must show that ifa # x andb # x then(a b) ·x ≈ x. The proof is by induction on

the structure ofx. Forx = 〈〉 the result is immediate; similarly, forx = f(y) or x = 〈y1, y2〉 the induction
step is straightforward. Forx = c, we havea, b 6= c so(a b) · c = c ≈ c. Forx = 〈c〉y, there are two cases.
If a, b 6= c then we havea, b # y and

(a b) · 〈c〉y = 〈(a b) · c〉(a b) · y ≈ 〈c〉y

since by induction(a b) · y ≈ y. Otherwise, without loss of generality supposeb = c (the case wherea = c
is symmetric). We need to show that(a b) · 〈b〉y ≈ 〈b〉y, or equivalently that〈a〉(a b) · y ≈ 〈b〉y. If a = b,
this is trivial. Otherwise, it is sufficient to show that(a b) · y ≈ (a b) · y (which is immediate) anda # y.
But sincea # 〈b〉y anda 6= b, we know thata # y holds.

ForF2, clearly any two name symbolsa:ν andb:ν′ of different sorts are distinct, soa # b.
ForF3, we need to show thata # a is underivable. This is immediate from the definition of the freshness

relation.
For F4, we need to show that eithera # b or a ≈ b is derivable. Ifa = b thena ≈ b is derivable;

otherwisea 6= b soa # b is derivable.
Finally, forA1 we need to show that ifa # y andx ≈ (a b) · y then〈a〉x ≈ 〈b〉y. There are two cases. If

a 6= b then the last rule in the definition of nominal equality applies to show〈a〉x ≈ 〈b〉y. Otherwise,a = b
sox ≈ (a b) · y = y and so〈a〉x ≈ 〈b〉y.
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Proposition 20. If θ � 〈a〉x ≈ 〈b〉y then eitherθ � a ≈ b, x ≈ y or θ � a # y, x ≈ (a b) · y.

Proof. The proof is by case analysis of the possible derivations ofθ(〈a〉x) ≈ θ(〈b〉y). There are only two
cases, corresponding to the last two rules in the definition of structural equality. The result is immediate.

Proposition 21. If θ : Σ thenθ � a # t for eacha # t ∈ |Σ|.

Proof. The proof is by induction on the structure oft. The critical case is fort a variable; in this case, we
need to use the fact thatθ : Σ only if a # θ(x) for eacha # x ∈ |Σ|.

Theorem 22. Let Γ be a set of freshness and equality formulas. IfΣ : Γ ⇒ ⊥ is derivable thenΓ is
unsatisfiable.

Proof. Proof is by induction on the structure of the derivation. Note that the only applicable rules are non-
logical rules. There is one case for each nonlogical rule. Most cases are straightforward. We present some
interesting cases.

All of the axioms in Figure 7 hold inNTm, so the cases in which these axioms are used are straightfor-
ward. For example, for a derivation of the form

Σ : Γ, a # a⇒ ⊥ F3

clearlyΓ, a # a is unsatisfiable.
For a derivation of the form

Σ : Γ, a # b⇒ ⊥ Σ : Γ, a ≈ b⇒ ⊥
Σ : Γ ⇒ ⊥ F4

we haveΓ, a ≈ b andΓ, a # b unsatisfiable. Ifθ : Σ then eitherθ(a) ≈ θ(b) or θ(a) 6= θ(b), in which case
θ(a) # θ(b). In either case,θ cannot satisfyΓ.

For a derivation ending withF ,
Σ#a : Γ ⇒ ⊥
Σ : Γ ⇒ ⊥ F

if θ : Σ, then without loss of generality we can assumea # θ so thatθ : Σ#a and soθ 6� Γ by induction.
For

Σ : Γ, a # t⇒ ⊥
Σ : Γ ⇒ ⊥ Σ#

if θ : Σ thenθ � a # t for anya # t ∈ |Σ|, by Proposition 21. Consequentlyθ 6� Γ.
ForA2,

Σ : Γ, a ≈ b, x ≈ y ⇒ ⊥ Σ : Γ, a # y, x ≈ (a b) · y ⇒ ⊥
Σ : Γ, 〈a〉x ≈ 〈b〉y ⇒ ⊥

A2

supposeθ : Σ. By inductionθ 6� Γ, a ≈ b, x ≈ y andθ 6�, a # y, x ≈ (a b) · y. There are three cases. If
θ(a) ≈ θ(b) andθ(x) ≈ θ(y), thenθ 6� Γ. Similarly, if θ(a) # θ(y) andθ(x) ≈ (θ(a) θ(b)) · θ(y) then
θ 6� Γ. Otherwise, by the contrapositive of Proposition 20,θ 6� 〈a〉x ≈ 〈b〉y. In any case,θ 6� Γ, 〈a〉x ≈ 〈b〉y.

ForA3
Σ ` t : 〈ν〉τ Σ, a, x : Γ, t ≈ 〈a〉x⇒ ⊥

Σ : Γ ⇒ ⊥ A3

if θ : Σ thenθ(t) = 〈a〉v for somea : ν andv : τ , so letθ′ = θ[a 7→ a, x 7→ v]. Clearlyθ′ : Σ, a, x and
θ′ � t ≈ 〈a〉x so by inductionθ 6� Γ.

Corollary 23 (Syntactic consistency).There is no derivation of⇒ ⊥.

Proof. This follows from Proposition 15 and Theorem 22, since∅ is a satisfiable constraint set.
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4.2 Separation

Using cut-elimination, we can also show that some parts of the equational theory are “orthogonal extensions”,
that is, derivable sequents not mentioning abstraction, pairing, orλ, can be derived without using the special
properties of these symbols.

Theorem 24 (Separation).SupposeΣ : Γ ⇒ ∆ andΓ,∆ have no subterms of the form〈a〉t (or λx.t or
〈t, u〉). Then there is a derivation ofΣ : Γ ⇒ ∆ that does not use any nonlogical rules involving abstraction
(or λ or pairing).

Proof. We say that a context, formula, formula multiset, or sequent is abstraction-free if the abstraction func-
tion symbol and type constructor do not appear in it. A derivation is abstraction-free if the rulesA1, A2, A3

do not appear in it. We writè−A for abstraction-free derivability.
The proof is by induction on the structure of cut-free derivations. We need a stronger induction hypothesis.

We sayΓ is good if abstraction is only mentioned in equations and freshness formulas. Note that ifΣ
is abstraction-free and there are no constants whose types mention abstraction then the only well-formed
terms of type〈ν〉τ are of the form〈a〉t. Hence, any equations among abstraction-typed terms are of the
form 〈a〉t ≈ 〈b〉y; we call such formulas abstraction equations. Any context can be partitioned intoΓ,Γ′

such thatΓ′ contains all the abstraction equations. We say thatΓ′ is redundantrelative toΓ if whenever
〈a〉x ≈ 〈b〉y ∈ Γ′, we have either̀ −A Σ : Γ ⇒ a ≈ b andx ≈ y or `−A Σ : Γ ⇒ a # y andx ≈ (a b) · y.

We will show that ifΣ,∆ are abstraction-free andΓ,Γ′ is good andΓ′ is redundant relative toΓ, then if
` Σ : Γ,Γ′ ⇒ ∆ then`−A Σ : Γ ⇒ ∆. An abstraction-freeΓ is obviously good and redundant relative to
∅, so the separation theorem is a special case.

The proof is by structural induction on the derivation. The cases involving left or right rules are straight-
forward because such rules act only onΓ and do not affect goodness and redundancy. The case forhyp is
easy since the hypothesis cannot be inΓ′.

ForA1, we have
Σ : Γ, a # x, x ≈ (a b) · y,Γ′, 〈a〉x ≈ 〈b〉y ⇒ ∆

Σ : Γ, a # x, x ≈ (a b) · y,Γ′ ⇒ ∆
A1

Clearly,Γ′, 〈a〉x ≈ 〈b〉y is redundant relative toΓ, a # x, x ≈ (a b) · y, 〈a〉x. Also, goodness is preserved.
So by induction we haveΣ : Γ, a # x, x ≈ (a b) · y ⇒ ∆, as desired.

ForA2, we have

Σ : Γ,Γ′, 〈a〉x ≈ 〈b〉y, a ≈ b, x ≈ y ⇒ ∆ Σ : Γ,Γ′, 〈a〉x ≈ 〈b〉y, a # y, x ≈ (a b) · y ⇒ ∆
Σ : Γ,Γ′, 〈a〉x ≈ 〈b〉y ⇒ ∆

A2

SinceΓ is redundant relative toΓ′, 〈a〉x ≈ 〈b〉y there are two cases. IfΣ : Γ ⇒ a ≈ b andx ≈ y, then
by induction we have a derivation ofΣ : Γ, a ≈ b, x ≈ y ⇒ ∆, and using cut we can deriveΣ : Γ ⇒ ∆
as desired. Otherwise, ifΣ : Γ ⇒ a # y andx ≈ (a b) · y, then by induction we have a derivation of
Σ : Γ, a # y, x ≈ (a b) · y ⇒ ∆, and using cut we can deriveΣ : Γ ⇒ ∆ as desired. Cut-elimination does
not introduce uses of the abstraction rules, so the resulting derivations are abstraction-free.

ForA3, we have
Σ ` t : 〈ν〉τ Σ, a, x : Γ, t ≈ 〈a〉x,Γ′ ⇒ ∆

Σ : Γ,Γ′ ⇒ ∆
A3

SinceΣ has no variables of abstraction type, we must havet = 〈u〉v for some termsΣ ` u : ν, v : τ .
Therefore, we can substitute into the derivationΣ, a, x : Γ,Γ′, t ≈ 〈a〉x ⇒ ∆ to getΣ : Γ,Γ′, 〈u〉v ≈
〈u〉v ⇒ ∆. ClearlyΣ : Γ ⇒ u ≈ u andv ≈ v so by induction we have a derivation ofΣ : Γ ⇒ ∆.

For the reflexivity rule≈R, we have

Σ : Γ,Γ′, t ≈ t⇒ ∆
Σ : Γ,Γ′ ⇒ ∆

≈R

If t = 〈a〉x, then clearlyΓ ⇒ a ≈ a andx ≈ x, soΓ′, 〈a〉x ≈ 〈a〉x is redundant relative toΓ, and we have
Σ : Γ ⇒ ∆ by induction. Otherwise,Γ, t ≈ t is obviously still good andΓ′ redundant, so we can again
concludeΣ : Γ ⇒ ∆ by induction.
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For≈S-derivations, we have

Σ : Γ, t ≈ u, P (t), P (u) ⇒ ∆
Σ : Γ,Γ′, t ≈ u, P (t) ⇒ ∆

≈S

If P (u) is not an equation among abstraction-typed terms then the induction step is easy. There are many
cases depending on the structure ofP (x), but in each case we can show thatP (u) is also redundant relative
to Γ, t ≈ u (if t ≈ u is not an abstraction equation) orΓ (if t ≈ u is an abstraction equation).

The remaining nonlogical rules do not involve formulas of the form〈a〉x ≈ 〈b〉y, so the induction step is
immediate for these rules.

The proofs of separation forλ and pairing are similar, but considerably simpler because there are no
branching rules for either.

4.3 Conservativity

4.3.1 Classical Nominal Logic

We first consider the classical case. We writeNL for the set of all axioms of Pitts’ axiomatization of nominal
logic, as reviewed in Section 2.1. For ordinary variable contextsΣ andNL-formula multisetsΓ,∆, we write
`NL Σ : Γ ⇒ ∆ to indicate thatΣ : Γ,Γ′ ⇒ ∆ for someΓ′ ⊆ NL. Without loss of generality, a finiteΓ′

can always be used. We writèNL⇒ for derivability inNL⇒.
There is one technical point to address. Our system contains explicit name-constants quantified byNand

appearing in freshness contexts, whereas in Pitts’ systemNquantifies ordinary variables. To bridge this gap,
we translateNL formulas toNL⇒ formulas by replacing N-bound variables with fresh name-symbols. For
example, theNL formula Na. Nb.p(a, b) translates to theNL⇒ formula Na. Nb.p(a, b). We writeϕ∗ for the
translation ofϕ, which is defined as follows:

A∗ = A

⊥∗ = ⊥
(ϕ ⊃ ψ)∗ = ϕ∗ ⊃ ψ∗

(∀x.ϕ)∗ = ∀x.ϕ∗

( Na.ϕ)∗ = Na.(ϕ∗[a/a]) (a 6∈ N(ϕ∗))

We write a 6∈ N(ϕ) to indicate that the namea does not appearat all in ϕ (bound or free). The omitted
cases for>,∧,∨,∃ are derivable via de Morgan identities. The translation of a judgmentΣ : Γ ⇒ ∆ is
Σ : Γ∗ ⇒ ∆∗, whereΓ∗,∆∗ is the result of translating each element ofΓ,∆ respectively.

We first show that every theorem ofNL translates to a theorem ofNL⇒.

Theorem 25. If `NL Σ : Γ ⇒ ∆ then`NL⇒ Σ : Γ∗ ⇒ ∆∗.

Proof. We defined̀ NL Σ : Γ ⇒ ∆ to meaǹ G3c Σ : Γ,Γ′ ⇒ ∆ for some finite subsetΓ′ ⊆ NL. Any
G3c derivation is anNL⇒ derivation, so we just need to show that inNL⇒, all of the uses ofNL axioms
are redundant. We will show that each axiomϕ ∈ NL is derivable inNL⇒. Thus, usingcut finitely many
times, we can deriveΣ : Γ ⇒ ∆ in NL⇒.

For most of the axioms, this is straightforward. All of the axioms of the form∀x.
∧
P ⊃

∨
Q are clearly

derivable from the corresponding nonlogical rules as follows:

x : P ,Q1 ⇒
∨
Q · · · x : P ,Qn ⇒

∨
Q

x : P ⇒
∨
Q

Ax

x⇒
∧
P ⊃

∨
Q
⊃R,∧R

⇒ ∀x.
∧
P ⊃

∨
Q
∀R

with the topsequents all derivable using∨R andhyp.
This leaves axioms not fitting this pattern, including(CF2), (CF4), (CA1), (CA2), and(CQ). (CA1)

and(CA2) can be derived using the nonlogical rulesA1, A2, A3,≈S of NL⇒, and(CF2) usingF3 andF4

of NL⇒. We will show the cases for(CF4) and both directions of(CQ) in detail.
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For an instance∀x.∃a.a # x of CF4, the derivation is of the form

x#a : a # x⇒ a # x

x#a ⇒ ∃a.a # x
∃R,Σ#

x⇒ ∃a.a # x
F

⇒ ∀x.∃a.a # x
∀R

For a translated instance of(CQ) of the form∀x.( Na.ϕ(a, x) ⇐⇒ ∃a.a # x ∧ ϕ(a, x)), we will
prove the two directions individually. For the forward direction, after some syntax directed applications of
right-rules we have

x#a : a # x⇒ a # x

x#a ⇒ a # x
Σ#n

x#a : ϕ(a, x) ⇒ ϕ(a, x)
x#a : ϕ(a, x) ⇒ a # x ∧ ϕ(a, x) ∧R

x : Na.ϕ(a, x) ⇒ ∃a.a # x ∧ ϕ(a, x)
NL,∃R

⇒ ∀x.( Na.ϕ(a, x) ⊃ ∃a.a # x ∧ ϕ(a, x))
∀Rn,⊃R

For the reverse direction, we need to show∀x.∃a.a # x ∧ ϕ(a, x) ⊃ Na.ϕ(a, x).

x, a#b : (a b) · ϕ(b, x) ⇒ ϕ(b, x)
x, a#b : a # x, b # x, (a b) · ϕ(a, x) ⇒ ϕ(b, x) Ax

∗

x, a#b : a # x, ϕ(a, x) ⇒ ϕ(b, x)
Σ#∗, EV L

x, a : a # x, ϕ(a, x) ⇒ Na.ϕ(a, x) NR

x : ∃a.a # x ∧ ϕ(a, x) ⇒ Na.ϕ(a, x)
∃L,∧L

⇒ ∀x.(∃a.a # x ∧ ϕ(a, x) ⊃ Na.ϕ(a, x))
∀R,⊃R

Since botha andb are fresh for all the other free variables ofϕ, we haveϕ(a, x) ⇐⇒ ϕ((b a) · a, (b a) ·
x) ⇐⇒ ϕ(b, x) using equivariance and the fact thata # x ∧ b # x ⊃ (a b) · x ≈ x.

Consequently, all the translations of axioms ofNL can be derived inNL⇒. As a result, ifΓ′ ⊂ NL is
a finite set of axioms such that̀NL⇒ Σ : Γ,Γ′ ⇒ ∆, then using the derivations of the axioms and finitely
many instances ofcut, we can obtain a derivation of̀NL⇒ Σ : Γ ⇒ ∆.

Now we consider the problem of conservativity: showing that there are no “new theorems”, that anyNL
sequent derivable inNL⇒ is also derivable inNL. This is not as straightforward because subderivations of
translatedNL judgments may involve name-symbols. However, we can show that such name-symbols can
always be removed.

Lemma 26. SupposeΣ#a : Γ[a] ⇒ ∆[a]. ThenΣ, a : Γ[a], a # Σ ⇒ ∆[a], wherea # Σ is an abbreviation
for {a # ω | ω ∈ Σ}.
Proof. We prove the stronger induction hypothesis: “IfΣ mentions only variables and̀ln Σ#a; Σ′ : Γ[a] ⇒
∆[a], then`l

n Σ, a; Σ′ : Γ[a], a # Σ ⇒ ∆[a]”.
The proof is by induction on the structure of the derivation ofΣ#a; Σ′ : Γ[a] ⇒ ∆[a]. Almost all cases

are straightforward. The only exception is the case forΣ#. In this case we have

Σ#a; Σ′, t[a] # u[a] : Γ[a] ⇒ ∆[a]
Σ#a; Σ′ : Γ[a] ⇒ ∆[a]

Σ#

for somet[a] # u[a] ∈ |Σ#a; Σ′|. By induction, we haveΣ, a; Σ′, t[a] # u[a] : Γ[a] ⇒ ∆[a]. Note thatt[a]
must be a name-symbol. Ift[a] 6= a, thent[a] is some name-symbolb 6= a. Sinceb must be inΣ or Σ′, it is
easy to see thatb # u[a] ∈ |Σ#a; Σ′| impliesb # u[a] ∈ |Σ, a; Σ′|, so the induction step is straightforward.
Otherwise, the constraint is of the forma # u[a], whereΣ ` u[a]. Obviously,u = u[a] cannot depend ona.
Moreover, froma # Σ it is possible to derivea # u. Thus, using nonlogical rules only we can derive

Σ, a; Σ′ : Γ[a], a # Σ, a # u⇒ ∆[a]
Σ, a; Σ′ : Γ[a], a # Σ ⇒ ∆[a]

Ax

from the derivation obtained using the induction hypothesis.
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With this fact in hand, we can show the desired result.

Theorem 27. If the translatedNL sequentΣ : Γ∗ ⇒ ∆∗ is derivable inNL⇒ thenΣ : Γ ⇒ ∆ is derivable
in NL.

Proof. By the separation property, the rules involving pairing andλ-terms can be removed from a derivation
of Σ : Γ∗ ⇒ ∆∗. The proof is by induction on the structure of this derivation. For the cases corresponding to
first-order/equational proof rules, the induction step is straightforward.

For the cases corresponding to nonlogical rules corresponding to universal axioms∀x.
∧
P ⊃

∨
Q,

suppose that we have derivations of the form

Σ : Γ, P ,Q1 ⇒ ∆ Σ : Γ, P ,Q1 ⇒ ∆
Σ : Γ, P ⇒ ∆

Then by induction, we haveNL derivations of theNL sequentsΣ : Γ, P ,Q1 ⇒ ∆. Now

Σ : Γ ⇒ ∀x.
∧
P ⊃

∨
Q

Σ : P ⇒
∧
P

Σ : B,Q1 ⇒ ∆ · · · Σ : B,Qn ⇒ ∆
Σ : P ,

∨
Q⇒ ∆

Σ : P ,
∧
P ⊃

∨
Q⇒ ∆

Σ : ∀x.
∧
P ⊃

∨
Q⇒ ∆

Σ : P ⇒ ∆

The cases forF3, F4, F,A2, A3,Σ#, NL, NR remain.
ForF3, we have a derivation

Σ : Γ, a # a⇒ ∆
F3

In NL we can deriveΣ : Γ, a # a ⇒ ∆ using thea # b ⊃ a 6≈ b direction of(CF2) sincea 6≈ a is
contradictory.

ForF4, we have a derivation

Σ : Γ, a ≈ b⇒ ∆ Σ : Γ, a # b⇒ ∆
Σ : Γ ⇒ ∆

F4

Sincea # b ⇐⇒ a 6≈ b anda ≈ b∨a 6≈ b is a tautology in classical logic,a # b∨a 6≈ b is also a tautology.
We can cut against a derivation of this formula to deriveΣ : Γ ⇒ ∆ in NL.

ForF , suppose we have a derivation of the form

Σ#a : Γ ⇒ ∆
Σ : Γ ⇒ ∆ F

The upper sequent is not aNL sequent becauseΣ#a mentions a name-symbol, but by Lemma 26, it is
equivalent to theNL sequentΣ, a : Γ, a # x⇒ ∆, where{x} = FV (Σ). By induction this has a derivation
in NL. We can derive

Σ : · ⇒ ∀x.∃a.a # x

Σ, a : Γ, a # x⇒ ∆
Σ : Γ,∀x.∃a.a # x⇒ ∆

∀R,∃R

Σ : Γ ⇒ ∆ cut

It is easy to derive rulesA2, A3 from axioms(CA1), (CA2) of NL. The ruleΣ# cannot apply because
if no name-symbols appear inΣ, then|Σ| = ∅.

Finally, we consider the cases forNL and NR. For NL, we have

Σ#a : Γ, ϕ(a, x) ⇒ ∆
Σ : Γ, Na.ϕ(a, x) ⇒ ∆ NL

From the upper derivation we can (by Lemma 26) obtain a derivation of the sequentΣ, a : Γ, a # Σ, ϕ(a, x) ⇒
∆ of no greater complexity. By induction we have aNL derivation of the same sequent. Now we can also
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Swapping
(IS1) ∀a:ν, x:τ. (a a) · x ≈ x
(IS2) ∀a, a′:ν, x:τ. (a a′) · (a a′) · x ≈ x
(IS3) ∀a, a′:ν. (a a′) · a ≈ a′

Equivariance
(IE1) ∀a, a′:ν, b, b′:ν′, x:τ. (a a′) · (b b′) · x ≈ ((a a′) · b (a a′) · b′) · (a a′) · x
(IE2) ∀a, a′:ν, b:ν′, x:τ. b # x ⊃ (a a′) · b # (a a′) · x
(IE3) ∀a, a′:ν, x : S. (a a′) · f(x) ≈ f((a a′) · x)
(IE4) ∀a, a′:ν, x : S. p(x) ⊃ p((a a′) · x)
(IE5) ∀b, b′:ν′, a:ν, x:τ. (b b′) · (〈a〉x) ≈ 〈(b b′) · a〉((b b′) · x)
Freshness
(IF1) ∀a, a′:ν, x:τ. a # x ∧ a′ # x ⊃ (a a′) · x ≈ x
(IF2) ∀a:ν. ¬(a # a)
(IF3) ∀a, a′:ν. a # a′ ∨ a ≈ a′

(IF4) ∀a:ν, a′:ν′. a # a′

(IF5) ∀x : S. ∃a:ν. a # x
N-quantifier
(IQ) ∀x.( Na:ν. ϕ) ⇐⇒ (∃a:ν. a # x ∧ ϕ)

whereFV ( Na.ϕ) ⊆ {x}
Abstraction

(IA1)
∀a, a′:ν, x, x′:τ. 〈a〉x ≈ 〈a′〉x′ ⇐⇒ (a ≈ a′ ∧ x ≈ x′)

∨ (a′ # x ∧ x′ ≈ (a a′) · x)
(IA2) ∀y : 〈ν〉S.∃a:ν, x:τ. y ≈ 〈a〉x

Figure 10: Axioms of Intuitionistic Nominal Logic

deriveΣ : Γ,∀x.∃a.a # x ∧ ϕ(a, x) ⇒ ∆ using∃L and∀L. Finally, we can cut against the axiom instance
∀x.∃a.a # x ∧ ϕ(a, x) ⇐⇒ Na.ϕ(a, x) to prove thatΣ : Γ, Na.ϕ(a, x) ⇒ ∆.

For NR, we have
Σ#a : Γ ⇒ ϕ(a, x),∆
Σ : Γ ⇒ Na.ϕ(a, x),∆ NR

Again by Lemma 26 and the induction hypothesis, we can deriveΣ, a : Γ, a # Σ ⇒ ϕ(a, x),∆ in NL. In
NL it is not difficult to prove that

`NL ∀y.∀a.a # y ⊃ ψ ⊃ Na.ψ

wheneverFV ( Na.ϕ) ⊆ y, so takingy = FV (Σ) ⊇ FV ( Na.ϕ) andψ = ϕ(a, y), we can derivè NL Σ :
∀a.a # Σ ⊃ ϕ(a, x) ⇒ Na.ϕ(a, x). Using cut, we can obtainΣ : Γ ⇒ ∆, Na.ϕ(a, x).

4.3.2 Intuitionistic Case

We wish to argue that the intuitionistic calculusINL⇒ is really “intuitionistic nominal logic”. However,
Pitts only considered classical nominal logic. There is a subtlety having to do with Pitts’ axiom(CF2) in the
intuitionistic case.

Pitts’ original axiom(CF2) stated that freshness among names is the same as inequality:

(CF2) ∀a, a′:ν. a # a′ ⇐⇒ ¬(a ≈ a′)

However, this axiom does not fit the scheme for nonlogical rules. Instead, inINL⇒ we use two nonlogical
rulesF3 andF4 asserting that no name is fresh for itself and that two names are either equal or fresh. These
two axioms are equivalent to(CF2) in classical logic, but in intuitionistic logic, Pitts’ axiom is weaker, since
a ≈ b ∨ a 6≈ b does not follow from(CF2). (Recall that for theF4 case of Theorem 27, we used excluded
middle for name-equality).
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We have modified Pitts’ axiomatization slightly by replacing the original axiom(CF2) with two rules,
(IF2) asserting that no name is fresh for itself, and(IF3) stating that two names are either fresh or equal.
In classical logic, these are equivalent axiomatizations, whereas(IF3) is not provable in intuitionistic logic
from Pitts’ axioms. Moreover, inINL, equality and freshness among names are both decidable.

For this reason, we introduce an alternative axiomatizationINL, shown in Figure 10, differing in the
replacement of(CF2) with two axioms(IF2) and(IF3). This decision may be defended on the following
grounds:

1. Though stronger in intuitionistic logic,INL is equivalent toNL in classical logic.

2. Every intuitionistic theorem ofNL is an intuitionistic theorem ofINL, and the inclusion is strict.

3. Every intuitionistic theorem ofINL is a classical theorem ofNL, and the inclusion is strict.

4. From a constructivist point of view, it is usually acceptable for equality to be decidable at base types
(such as name-types).

5. Fresh Logic, another intuitionistic form of nominal logic, also included rules similar toF3 andF4.

Let`INL indicate derivability in intuitionistic logic from the axioms inINL. Using essentially the same
proof techniques as for the classical case, we have

Theorem 28. `INL Σ : Γ ⇒ ∆ is derivable if and only if̀ INL⇒ Σ : Γ∗ ⇒ ∆∗.

5 Conclusions

Nominal logic is a recently developed logic that is of considerable interest because it provides powerful tech-
niques for reasoning about fresh names and name-binding. One of the most interesting features of nominal
logic is the N-quantifier. However, the techniques used for reasoning withNoffered by previous formaliza-
tions of nominal logic are highly (but unnecessarily) complex.

In this paper we have introduced a new sequent calculus for nominal logic which usesfreshness contexts
to deal with the new-quantifier. Its rules forNare symmetric and rationalize a proof-search semantics forN
that seems natural and intuitive (inspired by the treatment ofNin nominal logic programming). We proved
cut-elimination in detail. In addition, we usedNL⇒ to provide a syntactic proof of consistency and a detailed
proof of equivalence to Pitts’ axiomatization modulo ordinary first-order (classical/intuitionistic) logic. These
results are the first of their kind to be shown in detail.

Two applications ofNL⇒ are to be addressed by future work:

• NL⇒ provides a proof-search reading ofNwhich is much closer to the approach taken in theαProlog
nominal logic programming language [1]. While Gabbay and Cheney gave a proof-theoretic seman-
tics of nominal logic programming based onFLSeq, this analysis does not seem relevant toαProlog
because it suggests a radically different (and much more computationally intensive) proof-search tech-
nique for N-quantified formulas. In contrast,NL⇒ seems to provide a rationale forαProlog’s existing
search technique. We plan to study the proof-theoretic semantics of nominal logic programming in
NL⇒ in order to establish the correctness of (or fix any bugs in)αProlog’s search technique.

• Gabbay and Cheney showed thatFOλ∇, another logic possessing a self-dual “fresh value” quantifier,
can be soundly interpreted in nominal logic via a proof-theoretic translation. However, the translation
they developed was incomplete, and the possibility of finding a faithful translation was left open. Using
NL⇒, it appears to be possible (though still not easy) to prove the completeness of this translation [2].

Additional directions for future work include the development of natural deduction calculi and type the-
ories using the ideas ofNL⇒. One particularly interesting direction is the possibility of developing a type
system and confluent term rewriting system that could be used to decide equality of nominal terms and proof
terms. In such a system, the equality and freshness theory that necessitates the many nonlogical rules inNL⇒

could be dealt with implicitly via rewriting and normalization, leading to an even simpler proof theory for
nominal logic. However, work in this direction by Schöpp and Stark [9] indicates that there may be significant
obstacles to this approach; the system introduced in this paper may be viewed as a well-behaved fragment of
their system. Further improvement to the proof theory of nominal logic seems possible and desirable.
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