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Names, name-binding, and equivalence of expressions up to “safe” renaming of
bound names are often encountered in programming tasks, especially in writing
programs that manipulate symbolic data such as mathematical expressions or other
programs. Most programming languages provide no support for programming with
names and binding, so operations like renaming and substitution must be written
by hand, on an application-by-application basis.

Recently, a new theory of abstract syntax with names and binding has been
developed by Gabbay and Pitts, based on defining concepts like name-binding and
substitution in terms of more primitive concepts including name-swapping and
freshness. We call this approach nominal abstract syntax. Pitts has developed
a variant of first-order logic, called nominal logic, which formalizes nominal ab-
stract syntax. This dissertation investigates nominal logic programming, or logic
programming using nominal logic.

The contributions of this dissertation are as follows. A nominal logic program-
ming language called αProlog is presented, along with examples of programs that
are particularly convenient to write in αProlog. A revised form of nominal logic
that provides a suitable foundation for nominal logic programming is developed.
Both operational and denotational semantics for nominal logic programming are
given, and soundness and completeness properties are proved. The unification and
other nominal constraint problems that must be solved during execution of nomi-
nal logic programs are identified, and the complexity of and algorithms for solving
these constraints are investigated.

In addition, nominal abstract syntax is compared with other advanced tech-
niques for programming with names and binding, notably higher-order abstract
syntax (HOAS). It is argued that nominal abstract syntax is both simpler and more
expressive than HOAS: in particular, HOAS cannot easily handle open terms, or
terms with an unknown number of free names. In nominal abstract syntax, names
are explicit data, and there is no problem with open terms.

These contributions support the contention that nominal logic programming is
a powerful technique for programming with names and binding.
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Awake! for Morning in the Bowl of Night
Has cast the Stone which put the Stars to Flight,

And lo! the Hunter of the East has Caught
The Sultan’s Turret in a Noose of Light.

—Rubáiyát of Omar Khayyám, trans. E. FitzGerald
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Chapter 1

Introduction

If the only tool you have is a hammer, you tend to see every problem as a nail.

—Abraham Maslow

1.1 The Problem of Variable Binding

In mathematical expressions such as x + 1, the identifier x denotes an unknown
quantity. Many mathematical problems are formulated as searching for values
for the identifiers in an equation that make the equation true. For example, the
equation x + 1 = 5 has solution x = 4 because 4 + 1 = 5. However, sometimes
identifiers are not used to denote a specific unknown quantity, but in a more
schematic way as a placeholder within an expression. Here are two examples:

f(x) = x+ 1 (1.1)
10∑

y=1

y (1.2)

Both these notations support a substitution reading of the identifiers, since we
interpret f(x) = x + 1 as shorthand for infinitely many assertions of the form
f(1) = 2, f(2) = 3, etc., and

∑10
y=0 y = 1 + 2 + · · ·+ 10, the result of substituting

1 through 10 for y and summing the resulting sequence. We characterize the
substitution reading of identifiers as follows:

Substitution Reading: Identifiers are variables which stand for one
or more unknown values that will later be substituted for the identifier.

In addition, both notations also support a binding reading of the identifiers x
and y: the names x and y used are incidental to the meaning of the notations, and
other identifiers would do as well. Identifiers used this way are often called dummy
variables. Moreover, we think of the x and y in f(x) = [· · · ] and

∑10
y=0[· · · ] as bound

1
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within the respective bracketed parts of the expression. If the larger context of the
expression were

10∑
y=1

y = x+ y

we ought not to think of the occurrences of y as referring to the same thing. Instead,
the occurrences on the left side are bound names whereas the occurrence on the
right is unbound. We characterize the binding reading of identifiers as follows:

Binding Reading: Identifiers are scoped names which may be subject
to binding and “safe” renaming within their scopes.

Both the substitution and binding readings of identifiers play a particularly
important role in the λ-calculus, a formal notation for writing “anonymous” func-
tions invented by Church [20, 10]. In the term λx.t, the variable x is considered
bound in t, and x can only be renamed consistently to another bound variable
name or substituted with another term. For example, the λ-calculus expression
λx.x+ 1 describes a function which adds one to its argument, without giving the
function a specific name such as f (as is done in (1.1)).

Although the substitution and binding readings of variables often appear to-
gether, some notations involve binding but not substitution. In a programming
language, a local variable or function parameter x in an assignment statement
such as x := x + 1 has a different meaning: it identifies an unspecified value that
might change over time. For example, if x = 4, then after executing x := x+ 1, x
should be 5. Program variables also can be bound and used in a schematic way:
for example, in a program logic such as Hoare logic or dynamic logic [51], we could
describe the behavior of the assignment operation as follows:

∀i.∀x.{x = i}x := x+ 1{x = i+ 1}

where the formula {P}S{Q} indicates that if formula P holds before statement S
is executed and terminates, then Q holds afterward. While the ∀x can be read as
binding a name x (some other unused name y could be used instead), it cannot be
read as abbreviating substitutions for values for x:

{0 = 0}0 := 0 + 1{0 = 0 + 1} {1 = 0}1 := 1 + 1{1 = 0 + 1} · · ·

since only (dynamic) program variables, not specific integers, may appear on the
left of an assignment, that is, 0 := 0 + 1 is not even a well-formed program
statement.

Another example of a language in which identifiers may be bound but not
substituted with other terms is the π-calculus, a language for describing concurrent,
communicating processes, due to Milner [84]. A distinctive feature of the π-calculus
is its name-restriction operator νx.p, which binds an identifier x within process p,
and intuitively can be read as “a process with a private, local name”. In contrast
to the λ-calculus, a ν-bound name can only be renamed, never substituted away.
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This discussion demonstrates that the substitution reading of identifiers does
not apply to typical programming uses of variables or to restricted names in the
π-calculus. However, the binding reading is common to all the examples. Linguis-
tically speaking, we may be on shaky ground using the term variable to denote
things to which the substitution reading does not apply; hence in this dissertation
we shall instead use the word name rather than variable for identifiers to which
the binding reading applies but the substitution reading may not.

While the above discussion suffices for explaining changes of bound names in
summations or the behavior of local variables in programs informally in introduc-
tory courses on these subjects, it is inadequate for reasoning about languages or
logics or writing programs that deal with names and binding. In order to avoid
mistakes, it is necessary to define precisely when it is safe to rename a bound name.
For example, in an equation such as

f(n) =
n∑

i=0

n · i

it would be acceptable to rename n to m but not to i: the latter would cause
confusion between “the dummy variable i in the sum” and “the value i provided
as the argument to f”. However, renaming n to j would be fine. The intuition
is that a name can be renamed only to another name that is not already in use
elsewhere.

Beginning with Frege’s Begriffsschrift [38], the first comprehensive treatment
of symbolic predicate logic, logicians have been conscious of the need for caution
when dealing with name binding and substitution. In Frege’s work, bound names
were syntactically distinguished from unbound names: the former were written
using German letters a, b, c, and the latter using Roman (italic) letters x, y, z. For
Frege, bound names and were subject to renaming using the following principle:

. . . Replacing a German letter everywhere in its scope by some other
one is, of course, permitted, so long as in places where different letters
initially stood different ones also stand afterward. This has no effect
on the content. [38]

Frege did not give a completely explicit formal treatment of substitution, and as
a result much of the complexity resulting from the interaction of substitution and
name-binding was hidden.

These problems are put into particularly sharp focus in the λ-calculus. In a
λ-expression with multiple arguments, such as λx.λy.x+ y, the function that adds
its first and second arguments, it seems intuitively clear that x can be renamed
to z but not y, because otherwise we would have λy.λy.y + y, the function which
ignores its first argument and doubles its second. This phenomenon is called
variable capture, and is also familiar in first-order logic.

To prevent this kind of error, Church [20] defined the concepts of capture-
avoiding substitution, in which bound names are renamed to avoid capture, and
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α-equivalence, which permits renaming bound variables provided no capture can
occur. Church was not the first to define these concepts; they had been studied
by many logicians previously, with varying degrees of success. However, Church’s
treatment of α-equivalence and the use of capture-avoiding substitution in defining
equality for λ-terms has become standard.

In informal mathematical arguments, renaming issues are often either ignored
or minimized once the formal definitions have been presented. For example, the
Barendregt Variable Convention is often taken for granted in mathematical expo-
sition. After defining capture-avoiding substitution, renaming, and α-equivalence
and proving their properties in detail, Barendregt states:

2.1.13. Variable Convention. If M1, . . . ,Mn occur in a certain
mathematical context (e.g., definition, proof), then in these terms all
bound variables are chosen to be different from free variables. [10]

While clear enough for human readers, however, such conventions still leave a
considerable gap between mathematical exposition and correct formalizations or
computer implementations of programming languages and logics involving names
and binding.

1.2 Existing Approaches

There are two well-established techniques for bridging this gap: first-order and
higher-order abstract syntax. In this section we discuss them in detail and sketch
the state of the art of programming using these approaches. Additional techniques
are discussed in Chapter 8.

As a running example, we consider the problem of implementing the λ-calculus
in the various approaches. Table 1.1 shows typical informal definitions of αβη-
equivalence, capture-avoiding substitution, and well-formedness for simply-typed
λ-terms. We assume familiarity with these concepts. The notation FV (t) stands
for the set of free variables of a term t.

1.2.1 First-Order Abstract Syntax

The classical approach to encoding languages involving names and binding is to
model language expressions as algebraic terms, represent names using some infinite
datatype such as string, and represent both bindings and references as concrete
strings. Algebraic datatypes have a very clear and intuitive semantics based on
many-sorted logic and algebraic specification [46] which supports reasoning by
induction on the structure of terms.

This approach, which we term first-order abstract syntax (FOAS), is facilitated
by functional programming languages such as Standard ML (SML) [86] and logic
programming languages such as Prolog [21] that support sophisticated program-
ming with algebraic datatypes. For example, the λ-calculus can be encoded in
SML using the following SML declaration:
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Table 1.1: The simply-typed λ-calculus
Syntax:

x ∈ V ar = {x1, x2, . . .}
α ∈ TyV ar = {α1, α2, . . .}
t ::= x | (t t′) | λx.t
τ ::= α | τ → τ ′

Γ ::= · | Γ, x : τ

Capture-avoiding substitution:

x[t/x] = t (1.3)

y[t/x] = y (y 6= x) (1.4)

(t1 t2)[t/x] = (t1[t/x] t2[t/x]) (1.5)

(λy.t′)[t/x] = λy.(t′[t/x]) (y 6∈ FV (t) ∪ {x}) (1.6)

Equational laws:

λx.e ≡α λy.e[y/x] (y 6∈ FV (e)) (1.7)

(λx.e)e′ ≡β e[e′/x] (1.8)

e ≡η λx.(e x) (x 6∈ FV (e)) (1.9)

Well-formedness:

Γ, x : τ ` x : τ

Γ ` t1 : τ → τ ′ Γ ` t2 : τ

Γ ` (t1 t2) : τ ′
Γ, x : τ ` t : τ ′ (x 6∈ FV (Γ))

Γ ` λx.t : τ → τ ′
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datatype exp = Var of string

| App of exp * exp

| Lam of string * exp

The encoding of λ-expressions as terms is as follows:

pxq = Var "x"

p(e1 e2)q = App(pe1q, pe2q)

pλx.eq = Lam("x", peq)

It is necessary to consider λ-terms equal “up to consistent renaming”, or α-
equivalence, as defined by the equivalence relation generated by ≡α. For example,
λa.a and λb.b are α-equivalent terms, but they are not represented by equal data
structures: Lam("a",Var("a")) and Lam("b",Var("b")) are different terms.

Human readers can be trusted to fill in the missing α-renaming steps needed
to enforce the side condition y 6∈ FV (e) ∪ {x} in (1.6), but computer programs
cannot do so without prompting, and so to correctly implement operations like
capture-avoiding substitution in a first-order encoding it is necessary to make the
implicit renamings in the informal definition explicit:

fun subst (Var y) e x = if x = y then e else (Var y)

| subst (App (e1,e2)) e x = App(subst e1 e x, subst e2 e x)

| subst (Lam (y,e’)) e x = let val z = gensym()

val e’’ = subst e’ (Var z) y

in Lam(z,subst e’’ e x)

end

Here, gensym is a procedure that generates a “fresh” string (one guaranteed not to
have been used elsewhere in the program). In SML, gensym is implemented using
references and side-effects.

Now α-equivalence can be programmed as follows:

fun aeq (Var x) (Var y) = x = y

| aeq (App(e1,e2)) (App(e1’,e2’)) = aeq e1 e1’ andalso aeq e2 e2’

| aeq (Lam(x, e)) (Lam(y,e’)) = let z = gensym()

in aeq (subst e (Var z) x)

(subst e’ (Var z) y)

end

Since binders are explicitly and aggressively renamed, even simple properties
of substitution such as subst e (V ar x) x = e are not literally true, but only
true up to α-equivalence. For example, subst (Lam("x", V ar "x")) (V ar "y") "y"
will result in Lam(z, V ar z) for some fresh string z, so is guaranteed not to be
literally equal to Lam("x", V ar "x"). Instead, we only have the weaker property
aeq(subst e (V ar "x") "x") e. Also, because of the use of side-effects, subst is not
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even, technically, a function, since it can return different results when called with
the same arguments. For example, subst (Lam("x", V ar("x") y z can produce two
different values Lam("z1", V ar("z1") and Lam("z2", V ar("z2"). This definition
of substitution is only a function modulo α-equivalence.

Substitution and α-equivalence are basic operations in any program dealing
with the λ-calculus, so any attempt to verify the overall correctness of such a pro-
gram would be seriously handicapped by the difficulty of proving even simple facts
about them [53, 129]. First-order abstract syntax is the most popular implementa-
tion technique, but it difficult to reason about languages defined using first-order
syntax because of the use of side-effects1 to generate names and because reasoning
must frequently be performed “modulo α-equivalence”.

Combinatory logic and de Bruijn indices are two alternative approaches to
dealing with names and binding that may be called “first-order”. We defer a
comprehensive description of these approaches and comparison with our proposed
approach to Section 8.1.1.

1.2.2 Higher-Order Abstract Syntax

An alternative, very elegant approach to specifying languages with binding struc-
ture is to encode languages within a higher-order meta-language such as the λ-
calculus, model object-language variables as meta-language variables, and model
object-language binding structure with meta-language λ-abstraction. Usually the
meta-language is taken to be a variant of the simply-typed λ-calculus. This ap-
proach, which was first employed by Church [20] in the development of higher-
order logic, is called higher-order abstract syntax (HOAS) [104], and is supported
by logical frameworks such as Twelf [105] and Coq [32], theorem provers such as
Nuprl [23] and Isabelle/HOL [96] and higher-order logic programming languages
such as λProlog [90].

As an example of the use of higher-order abstract syntax, we return to the
λ-calculus example discussed in the previous section. For concreteness, we will
adopt λProlog notation. In λProlog, we could encode λ-terms using the following
declarations:

kind exp type.

type app exp -> exp -> exp.

type lam (exp -> exp) -> exp.

The explicit type string and the expression constructor V ar have disappeared
entirely. In addition, the constructor lam for representing λ-expressions no longer
takes a paired string and expression; instead, it takes a meta-level function mapping

1While the use of side-effects can be avoided by explicitly passing around a
supply of fresh names, the resulting programs are more complex and no easier to
reason about. This approach merely explicates the complexity implicit in the use
of side-effects.
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expressions to expressions. The encoding of λ-expressions in this syntax is as
follows:

pxq = x

p(e1 e2)q = app pe1q pe2q

pλx.eq = lam (λx.peq)

where x denotes an object variable on the left side and a meta-variable on the right
side, and λx.e denotes λ-abstraction in the meta-language on the right side.

In this encoding, the meta-language equates terms up to α-equivalence, as well
as β and (sometimes) η-equivalence as defined by (1.8) and (1.9) in Table 1.1.
Thus, it is not necessary to define α-equivalence explicitly for exp-terms; instead,
the built-in equality of λProlog takes it into account. It is not necessary to define
substitution explicitly either. Instead, to substitute e for x in e′, we can simply
evaluate the meta-level expression (λx.e′)e, and the built-in implementation of
substitution will perform the desired calculation.

Another advantage of higher-order abstract syntax in λProlog is that relations
such as typechecking can be implemented using λProlog’s advanced logic pro-
gramming features. In λProlog, program clauses are hereditary Harrop formulas, a
generalization of Horn clauses in which goal formulas may include universal quan-
tification and some forms of implication. These powerful features make it possible
to implement relations such as λ-calculus typing as follows:

kind ty type.

type arr ty -> ty -> ty.

tc (lam (x\E x)) (arr T U) :- pi x \ (tc x T => tc (E x) U).

tc (app E1 E2) U :- tc E1 (arr T U), tc E2 T.

(where pi x \ G is λProlog syntax for ∀x.G). Note that there is no explicit
representation of the context Γ, as shown in Table 1.1; instead, the logical context
of λProlog itself is used to store the elements x : τ of Γ implicitly as hypotheses
tc x T. The side-condition x 6∈ FV (Γ) is enforced by the meta-level freshness
constraint on ∀-bound variables in goals.

Higher-order abstract syntax encodings work very well for a large class of ex-
amples. For example, HOAS has been used very successfully to encode and reason
about first-order logic, higher-order logic, and a variety of simple programming
languages within logical frameworks such as λProlog and Twelf [104, 90, 105, 102].

Nevertheless, HOAS is not always possible or suitable for a problem. For
example, if we wish to program with open terms, a HOAS encoding is not possible
because free object-language variables would be translated to free meta-variables,
which are not allowed in meta-language terms. A concrete instance of this problem
is that it is not possible to deal with contexts or substitutions as an explicit data
structure. In contrast, in FOAS, contexts and substitutions can be represented
using lists of name-type or name-term pairs. Another drawback to HOAS is that
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it lacks a straightforward semantics, making reasoning about HOAS encodings
using familiar mathematical techniques difficult [54]. In addition, higher-order
unification, which is needed to execute λProlog programs, is undecidable [58]. As
a result, HOAS programs can also be difficult to write, verify, and analyze.

1.3 Proposed Solution

1.3.1 Nominal Abstract Syntax

This dissertation explores an alternative way of programming with names, which
we call nominal abstract syntax, in which names and name binding are encoded
using built-in abstract data types called name types and abstraction types. Nominal
abstract syntax is more complex than first-order abstract syntax, but considerably
simpler than HOAS. Nominal abstract syntax provides just enough structure to
capture α-equivalence while still admitting a simple first-order semantics and a
decidable equality theory and unification problems. Nominal abstract syntax can
be viewed as a formally sound reconstruction of intuitive reasoning on terms up to
α-equivalence.

The underlying ideas of nominal abstract syntax were developed in the context
of Fraenkel-Mostowski set theory (or FM-set theory), and used to develop a theory
of binding syntax by Gabbay and Pitts [42, 43]. The key components of this
approach are:

• a set A of infinitely many concrete names a, b, . . .,

• a swapping operation (a b) · t that swaps two names within an expression,

• a freshness relation a # t that holds between a name and an expression when
the latter is independent of the former,

• and an abstraction operation 〈a〉t that binds a name within an expression,
and admits equality up to α-equivalence

In addition, Gabbay and Pitts identify two key principles:

• Fresh name generation. A name fresh for any expression (or for each of
finitely many expressions) can always be found.

• Equivariance. Relations among expressions are invariant up to swapping;
the choice of particular names is irrelevant.

It should be noted that the idea of identifying formulas up to one-to-one renamings
of bound variables was already present in the work of Frege. It is only a small step
from one-to-one renamings to name-swappings or permutations. On the other
hand, nominal abstract syntax at present contains no built-in support for capture-
avoiding substitution, but it is easy to define.
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The key insight of Gabbay and Pitts’ technique is that α-equivalence can be
defined in terms of swapping and freshness. In particular, equality for abstractions
can be axiomatized as follows:

〈a〉x ≈ 〈b〉y ⇐⇒ (a ≈ b ∧ x ≈ y) ∨ (a # y ∧ x ≈ (a b) · y) .

Intuitively, if two abstractions are not literally equal, they may be equal if their
bodies are equal up to swapping the bound names and the name bound on one side
does not appear free on the other. It will be the task of much of this dissertation
to construct a satisfactory semantic and logical foundation for this intuitive idea.

Nominal abstract syntax has been applied in developing the functional pro-
gramming language FreshML by Shinwell, Pitts, and Gabbay [109, 116, 117].
FreshML permits users to define new abstract types of bindable names and includes
a type construction for name binding. In addition, name-swapping, fresh name gen-
eration, abstractions, and pattern-matching against abstractions are built-in op-
erations which support a cleaner form of programming with bindable names. The
language implementation takes care of the details of actually generating names,
performing routine renaming, and so on; moreover, it is free to do so in any way
which respects the invariants of the name and abstraction types.

1.3.2 Nominal Logic Programming and αProlog

While the nominal abstract syntax approach is already being put into practical
use in FreshML, the emphasis of FreshML is on making it easier to write programs
dealing with names, not necessarily to reason about programs and definitions in-
volving names. Specifications of programming languages and type systems are
often presented as a collection of nondeterministic inference rules that do not cor-
respond directly to function definitions in a functional programming language like
FreshML.

Logic programming offers a compelling alternative to functional programming
since it encourages programming in a declarative, relational style. Logic programs
can be viewed as a collection of logical formulas defining a problem. Usually, the
formulas are of a particularly convenient form: they are Horn clauses of the form
A :− G1, . . . , Gn, where A, G1, . . . , Gn are atomic formulas; such a clause is read
as “A is true provided formulas G1, . . . , Gn are true”. Horn clause logic programs
can be run by interpreting logical connectives as proof-search operations, using
backchaining and depth-first search. This is the approach taken in classical logic
programming (Prolog) and in this dissertation.

The subject of this dissertation is nominal logic programming, that is, logic
programming with nominal abstract syntax. I present a nominal logic program-
ming language called αProlog (“alpha-Prolog”) [17, 18]. Like FreshML, αProlog
includes built-in support for names and name binding, and equates expressions
up to α-equivalence. However, αProlog supports a distinctly different style of
programming than FreshML. “Paper” specifications of common programming lan-
guages and logics can be transcribed very directly into αProlog program clauses.
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This sets αProlog apart from all other tools for either programming with or rea-
soning about languages with names.

For example, the language of λ-terms can be encoded using the following αPro-
log type declarations:

id : name type exp : type ty : type

var : id→ exp app : exp× exp→ exp lam : 〈id〉exp→ exp arr : (ty, ty) → ty

Since abstractions are considered equal up to “safe” renaming, the built-in equality
on closed exp terms coincides with α-equivalence of (possibly non-ground) λ-terms.
Therefore, equality and unification take α-equivalence into account “for free” in
this encoding, and no added effort from the programmer is needed, just as in
higher-order abstract syntax.

Unlike higher-order abstract syntax, however, meta-level λ-abstraction and ap-
plication are not built-in, and unification does not take substitution, β-equiva-
lence, and η-equivalence into account. Therefore, unification remains essentially
first-order and decidable.

The definition of substitution in αProlog is strikingly similar to the informal
version defined using the Barendregt Variable Convention (shown in Table 1.1):

func subst(exp, exp, id) = exp.
subst(var(x), T, x) = T.
subst(var(y), T, x) = var(y).
subst(app(E1, E2), T, x) = app(subst(E1, T, x), subst(E2, T, x)).
subst(lam(〈y〉E1), T, x) = lam(subst(E1, T, x)) :− y # T.

Here, x and y are different name constants, so are not equal as terms. This encodes
the side-condition x 6= y in the second and fourth clauses. Note that in the fourth
clause, there is a side-condition that x must be “fresh” for T , corresponding to the
side-condition x 6∈ FV (T ) in the classical definition. In αProlog, the abstracted
name x may be assumed to be fresh without loss of generality, so subst still defines
a (total) function. Therefore, additional clauses such as

subst(lam(〈x〉E1, T, x) = lam(〈x〉E1)

while still correct, are redundant, i.e. derivable from the other clauses.
Similarly, the typing judgment Γ ` e : τ can be implemented using the following

Horn clauses:

pred tc([(id, ty)], exp, ty).
tc(G, var(X), T ) :− mem((X,T ), G).
tc(G, app(M,N), T ′) :− tc(G,M, arr(T, T ′)), tc(G,N, T ).
tc(G, lam(〈x〉M), arr(T, T ′)) :− x # G, tc([(x, T )|G],M, T ′).

Here, mem(A,L) is the list-membership predicate, which succeeds if A is a member
of L. Again, the freshness constraint x # G corresponds to the side-condition
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x 6∈ FV (Γ). Thus in both of these instances we can write relations and functions
as we might do in an informal presentation assuming the Barendregt Variable
Convention. But there is no informality here: the meanings of subst and tc are
well-defined functions and relations with the properties we would expect them to
have in a completely formal treatment. In fact, these αProlog programs themselves
constitute formal definitions of substitution, typechecking, etc. which can be used
to reason about the λ-calculus.

1.4 Outline

My thesis is that

Nominal logic programming is a powerful technique for programming
with names and binding.

To support this thesis, I shall present the design of αProlog, a particular nominal
logic programming language; give examples of programs that can be written more
easily in αProlog than any other language; provide a semantics of nominal logic
programs; and investigate the complexity of and algorithms for nominal constraint
solving problems. Along the way, many technical issues arise and I shall show how
to resolve them.

The first substantial technical problem that is solved in this dissertation is the
development of a logic that is a suitable foundation for nominal logic programming.
Just as classical Prolog logic programming is based on first-order logic, we require
a logic upon which to base αProlog. An obvious candidate is nominal logic (NL), a
variant of first-order logic defined by Pitts which includes names, swapping, fresh-
ness, abstraction, and appropriate axioms [108]. However, Pitts’ nominal logic has
several drawbacks when considered as a foundation for nominal logic programming.
First, it is presented using a Hilbert-style axiom system, whereas Gentzen-style in-
ference rule systems are often better suited for understanding logic programming.
Second, NL is incomplete with respect to Pitts’ finite-support semantics: that
is, there exist consistent theories of NL with no finite-support models. Third, any
language of NL containing name-constants (or closed terms) is inconsistent. There-
fore, Herbrand’s Theorem, an important step in understanding the semantics of
logic programming, trivially fails in NL because not enough closed terms exist.

The second technical problem I address is the development of a sensible se-
mantics for nominal logic programming. Because of the presence of freshness
constraints in αProlog programs, the semantic framework of constraint logic pro-
gramming (CLP) [61] is well-suited to defining the semantics of αProlog. In this
framework, the high-level logical aspects of the semantics are separated cleanly
from the low-level constraint-solving problems that need to be solved during ex-
ecution. Constraint logic programming is a very general framework for analyzing
first-order logic programming with constraints; unfortunately, however, it cannot
be used to analyze nominal logic programming. As a result, it is necessary to
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provide new definitions and prove new theorems concerning the semantics of nom-
inal logic programs. This development follows existing work on the semantics of
CLP [62].

The third technical problem addressed in this dissertation is that of solving
the constraints arising during the execution of nominal logic programs. This prob-
lem is analogous to the unification problems arising in first-order, higher-order,
and other variants of logic programming; however, in nominal logic programming,
both equality, freshness, and atomic logical equivalence constraints must be solved.
These problems are more general than the nominal unification problem solved by
Urban, Pitts, and Gabbay’s algorithm [126, 127], and so it is necessary to inves-
tigate the complexity of these problems and develop new algorithms for solving
them.

The structure of the rest of this dissertation is as follows.
Chapter 2 presents the αProlog language, describes its type system, unification

procedure, and execution algorithm informally, and gives several example programs
demonstrating its expressive power.

In Chapter 3, I introduce a revised theory of nominal sets which may include
elements with infinite but “small” support. This theory is subsequently used for
both the syntax and semantics of nominal logic.

In Chapter 4, I define a new version of nominal logic, which includes name-
constants and is equipped with a Gentzen-style proof system admitting cut-elimi-
nation. The semantics of nominal logic is given using nominal sets.

In Chapter 5, it is shown that nominal logic is sound and complete with re-
spect to the revised semantics. In addition, an appropriate version of Herbrand’s
Theorem is proved.

Chapter 6 presents a CLP-style operational and denotational semantics for
αProlog, and shows them to be equivalent by proving the relevant soundness
and completeness properties. In addition, this chapter identifies the nominal con-
straints which need to be solved during the execution of nominal logic programs.

Chapter 7 discusses the nominal constraint solving problems arising in αProlog.
First, it is shown that all of the problems are NP-hard in general, and most of
them are NP-complete. (The worst-case complexity of one problem is left open).
Next, sound and complete algorithms for solving the constraints are developed.
The chapter concludes with a discussion of the shortcomings of these algorithms,
some efficient special cases, and directions for future work on nominal constraint
solving.

Chapter 8 compares αProlog with other programming languages that support
advanced programming with names and binding, and discusses other work that is
related to nominal logic programming.

Chapter 9 reviews the results presented in this dissertation, discusses future
research directions, and concludes.





Chapter 2

The αProlog Language and
Examples

Inside every large program is a small program struggling to get out.

—C. A. R. Hoare

This chapter presents the logic programming language αProlog. We begin with
an overview of the core language. We present the syntax and type system of αPro-
log. Next follow several examples of αProlog programs.

2.1 Language Overview

2.1.1 Syntax

The terms of αProlog are called nominal terms t, constructed according to the
syntax in Table 2.1, where X,Y are (logic) variables, f, g are function symbols, p, q
are relation symbols, and a, b are name-constants. Note that name-constants, vari-
ables, and function symbols are distinct syntactic classes. We use sans-serif letters
a, b, c, d, x, y, z for name-constants, and uppercase letters to denote variables; other
identifiers are assumed to be function or relation symbols, according to context.
In addition, function symbols are subdivided into two classes: defined function
symbols and constructors.

Table 2.1: αProlog syntax: terms and formulas

Terms t ::= X | f(~t) | 〈a〉t | (a b)t
Constraints C ::= a # t | t ≈ u

Atomic formulas A ::= p(~t)
Goals G ::= C | A | > | G1, G2 | G1;G2

Program clauses P ::= A :− G | f(~t) = t :− G

15
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Terms of the form 〈a〉t are called abstractions, and terms of the form (a b)t are
called swappings. Also, note that variables cannot be used to form abstractions
and swappings, i.e., 〈X〉t and (X Y )t are not well-formed terms.

The notation for swappings may be confusing at first glance. It is based on
standard notation in group theory, where (x y) denotes a permutation that ex-
changes the values of x and y, leaving all other elements fixed. Intuitively, (a b)t
is the result of swapping two name-constants a and b everywhere within a term
t. Thus, (a b)f(a, b, c) ≈ f(b, a, c). Also, the abstraction function symbol denotes
object-level name-abstraction within the term language. This should not be con-
fused with ordinary variable binding: for example 〈a〉a and 〈b〉b are syntactically
different terms which denote the same value, whereas 〈a〉X and 〈b〉X may or may
not denote the same value, depending on X.

Atomic formulas (or atoms) A are formulas of the form p(t1, . . . , tn). Con-
straints C are equations t ≈ u or freshness constraints a # u. Note that the left-
hand side of # must be a name-constant. Goals (or queries) G are constructed
using the grammar rules in Table 2.1, and include conjunction (G,G′), disjunction
(G;G′), logical truth (>), atomic predicates, and constraints. Program clauses
include Horn clauses of the form A :− G and function-definition clauses of the
form f(~t) = u :− G. The latter permit the definition of functional relations; this
is a standard extension to logic programming. We abbreviate clauses A :− > and
f(t) = u :− > as simply A and f(t) = u.

Term and propositional constants c, p are taken by convention to be the special
case of a function or relation symbol applied to the empty list of arguments; we
write c for c() and p for p().

Example 2.1.1. The following are well-formed program clauses:

p(X) :− q(X,X), X ≈ Y. f(〈a〉X, Y ) = X :− q((a b)X), a # Y.

The formulas p((Y Z)X), p(〈Y 〉Z) and Y # X are ill-formed because of the
restriction that variables (here Y and Z) may not appear in place of names in
swappings, abstractions, and freshness constraints.

2.1.2 Type System

Traditionally, Prolog-like languages are untyped. However, in programming prac-
tice, it is usually an advantage to be able to check that the arguments to functions
or predicates are sensible, to rule out nonsense programs that try to add a list to a
number or concatenate a boolean value to a string. In dynamically typed languages
such as Prolog and Lisp, such nonsense programs result in run-time failure, and
programmers are encouraged to use built-in predicates to write “bulletproofing”
code that handles type errors more gracefully. Programming languages such as
SML, Haskell, Mercury, and λProlog are based on static type systems that rule
out such ill-formed programs prior to execution. Such languages also include poly-
morphism; that is, types can contain variables that can be instantiated during
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Table 2.2: αProlog syntax: kinds, types, and declarations

Kinds κ ::= type | name type
Types σ, ν, τ ::= α | tcon(σ1, . . . , σn) | 〈ν〉σ
Declarations D ::= tcon : (κ1, . . . , κn) → κ | f : (σ1, . . . , σn) → τ

| pred p(σ1, . . . , σn) | func f(σ1, . . . , σn) = σ
| type τ = σ

typechecking, so that, for example, list-manipulation functions need be written
only once rather than repeatedly for each type of interest.

Static typing confers a number of advantages: types serve as lightweight pro-
gram specifications and program errors are often caught at compile-time rather
than causing bugs at run-time which must be tracked down and fixed. And types
can often be inferred by the language implementation, saving the programmer from
having to write down explicit types.

αProlog is a statically-typed, polymorphic language. Its type system permits
user-defined algebraic datatypes and allows polymorphic function and predicate
definitions. These features are standard in strongly-typed functional languages
such as ML, Haskell, and strongly-typed logic languages such as λProlog and Mer-
cury. In fact, αProlog’s type system is almost a special case of those of the latter
two languages: the only difference is the inclusion of name types and abstractions.
The syntax of types and type declarations is summarized in Table 2.2.

In αProlog, types are classified into two basic kinds : type and name type.
Every type is of kind type, whereas only name-types are of kind name type.
Name types are types inhabited only by name-constants. The programmer may
declare new types and name-types as follows:

exp : type. id : name type.

In fact, there are no built-in name-types, so all name-types must be introduced in
this way.

Also, αProlog allows type-level functions, or type constructors, which take sev-
eral types as arguments and produce a type. For example, list takes a type σ and
produces a type list σ (abbreviated [σ]) consisting of lists of values from σ; we
write list : type → type to indicate that list constructs types from types. The
abstraction constructor 〈·〉· takes a name-type ν and a type σ and produces a type
〈ν〉σ inhabited by abstractions. Thus, we write abs : (name type, type) → type.
In general, a type constructor c with signature (κ̄) → type takes a list of types of
kinds κ1, . . . , κn and produces a type of kind κ. Type constructors are allowed to
construct name types.

Similarly, αProlog terms are classified by types. Each constant or variable has
an associated type; a constructor has an associated function type (σ̄) → τ indicat-
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Table 2.3: Built-in types, constructors, and constants

Type Constructors
bool : type true, false
int : type 1, 2, 3 . . .
char : type ’a’, ’b’, . . .
[·] = list : type → type [] : [A], [·|·] : (A, [A]) → A
string = [char] : type "abcd" = [’a’, ’b’, ’c’, ’d’] . . .
opt : type → type none : opt A, some : A→ opt A
〈·〉· = abs : (name type, type) → type 〈·〉· : (A, T ) → 〈A〉T

ing that the function expects arguments of type σ1, . . . , σn and produces a result
of type τ . The result type τ must be a user-defined type. Defined function and
relation symbols are associated with types using the pred and func declarations.
Type abbreviations may be defined using the type con ~α = σ declaration. Types
may contain variables; type variables in constructor, pred, func, and type dec-
larations are interpreted as implicitly universally quantified. Thus, for example,
func([A]) = A is the type of a function that takes a list of elements of some type
A and returns a value of the same type.

There are several standard built-in types, summarized in Table 2.3. All of
them are standard except for the abstraction type constructor abs. Note that
strings are defined as lists of characters, with string constants as syntactic sugar
for list notation. We also may view the abstraction type and term constructors as
ordinary type and term constructors for the purpose of typing, and we can give
the swapping operation the polymorphic type

(· ·)· : ∀A : name type, T : type.(A,A, T ) → T

In addition, we may view formulas as having a type prop. Then we can give the
built-in formulas the following polymorphic types:

· # · : ∀A : name type, T : type.(A, T ) → prop

· ≈ · : ∀T : type.(T, T ) → prop

Why do we introduce two different types, bool and prop, for (arguably) the same
thing? Intuitively, bool is the type consisting of two truth-values true and false;
these truth values can be compared and manipulated using Boolean operations.
In contrast, prop consists of formulas which might have free (logical) variables,
and it often does not make sense to perform arbitrary Boolean manipulations on
prop, or to compare two propositions for equality. In other words, prop consists
of computations, whereas bool consists of truth values.
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Parametricity

The type system of αProlog is intended to be parametric, in order to avoid the
need for typechecking at run time. This means that the behavior of polymorphic
predicates and functions must be independent of the types of their arguments. For
example, the following program is illegal. (The first line is a type declaration and
the next two lines are program clauses defining the meaning of dyn.)

pred dyn(A, string).
dyn(0, "integer").
dyn(true, "bool").

In contrast, some typed logic programming languages, such as λProlog, employ
non-parametric (or intensional) polymorphism and dynamic typing. A program
like the above would be legal in λProlog, and in addition λProlog includes a type-
annotation term constructor t : σ that can be used to test types at run-time.
Though more powerful, intensional polymorphism requires type information to be
maintained throughout execution so that typechecking can be performed at run-
time; in contrast, parametric polymorphism permits most or all type information
to be erased after type-checking.

2.1.3 How Programs Run

In Prolog (and most other logic programming languages), we view a program as a
set of clauses together with a goal or query which we wish to solve. When we wish
to solve a goal A, we search the program for a clause of the form A :− G1, . . . , Gn,
and replace the goal A with the subgoals G1, . . . , Gn. Then we proceed recursively
to solve all the new subgoals (as well as any other outstanding subgoals that
might need to be solved in addition to A). This is called backchaining. If there
is no matching clause, then Prolog backtracks to a point where an alternative
backchaining step could be taken.

This proof search procedure is a bit näıve, since it assumes that whenever A
can be proved from a program, there exists a clause A :− G whose head is literally
A. This is true if we limit programs to contain ground propositions only (that
is, atomic predicates contain no variables.) However, as soon as variables enter
the picture, this assumption is no longer true, for we may have a goal p(c) and a
clause p(X) :− q(X, d) which “matches” p(c) without being syntactically equal.
Instead, they are equal modulo a unifying substitution, in this case p(c) ≈ p(X)
when X = c, so we may solve p(c) if we can solve q(c, d). Fortunately, there are
efficient algorithms for unification, the problem of determining whether two terms
can be made equal by applying a substitution. Therefore, in Prolog, execution
proceeds by recursively solving goals using unification to determine when to apply
a clause. This proof search procedure combining backchaining and unification is
sometimes called SLD-resolution.
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αProlog programs are executed in a fashion very similar to Prolog programs.
But in αProlog, there two complications. The first is the fact that the equality
theory of αProlog is not simply syntactic equality, but a coarser equivalence re-
lation which identifies terms up to a form of α-equivalence. In particular, two
abstractions such as 〈a〉a and 〈b〉b are considered equal, so if ordinary first-order
unification were used, correct answers would be missed. Therefore, in αProlog, it
is at least necessary to generalize first-order backchaining and unification to unify
up to equality in nominal logic, or nominal unification. We will show in Chapter 7
that nominal unification can be hard in general. Fortunately, an efficient algorithm
for the special case of nominal unification needed in αProlog has been developed
by Urban, Pitts, and Gabbay [126, 127]: as long as the names a, b in abstractions
〈a〉t and swappings (a b)t are ground (that is, constants), their algorithm produces
unique most general unifiers.

Here is an example. Suppose the program contains a clause such as

p(〈a〉X) :− q([a], X).

and we wish to solve the goal p(〈b〉b). The (unique) nominal unifier (i.e., module
α-equivalence) of p(〈a〉X) and p(〈b〉b) is X = a, so we may proceed by solving the
subgoal q([a], a).

If both the goal and clause head contain variables then the situation can be more
complex. Consider the program clause head p(Z,Z) and the goal p(〈b〉Y , 〈a〉X).
Then the most general nominal unifier is X = (a b)Y with the side-constraint a #
Y . Such freshness side-conditions are necessary to guarantee that α-equivalence is
not violated. If the side-condition were ignored, then we could obtain an incorrect
solution such as Y = a. This solution is incorrect because 〈a〉b 6≈ 〈b〉a, that is,
the terms are not α-equivalent. There is a seeming asymmetry in the reduction
to the constraint a # Y : why do we not need to check b # X as well? In fact, if
X = (a b)Y and a # Y , then it follows that b # X.

As an important aside, note that in Prolog, in order to obtain completeness
(not miss any answers) it is necessary to freshen all the variables in a clause
before unifying. This ensures that there are no false dependences between the goal
variables and those in the clause. For example, the clause p(X, c) does not unify
with the goal p(d,X), but the freshened clause p(X ′, c) does, producing the answer
X = c,X ′ = d. In αProlog, we treat names similarly to variables, in that names
are freshened whenever an attempt is made to unify a clause head with a goal.
Since we have so far treated name-constants as ordinary constants, this may not
seem appropriate. In fact, in nominal logic, name-constants behave like variables
in some respects; in particular, they can be bound by a “fresh name” quantifier

N. It is our logical treatment of this quantifier that will justify the freshening
of name-constants during backchaining. This approach is proved both sound and
complete in Chapter 6.

The second source of complication in the execution of αProlog programs arises
from the equivariance property of nominal logic, which asserts that if some atomic
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formula holds, then any variant obtained by swapping names also holds. For
example, if p(a) is true, then so is p(b), p(a′), . . .. Similarly, if q(a, b) holds then
so does q(a′, b′) for any distinct a′, b′ (but not necessarily for q(a′, a′), etc.) This
may seem arbitrary, but it is actually a cornerstone of nominal logic and cannot
be ignored. As a more concrete motivating example, equivariance tells us that a
relation such as typechecking is a priori closed under renaming, thus, from

typ([], lam(〈x〉lam(〈y〉var(x))), T → U → T )

we may immediately infer

typ([], lam(〈z〉lam(〈w〉var(z))), T → U → T )

(assuming no names occur in T or U).
Equivariance is convenient, powerful, and necessary from a semantic point of

view (as we shall see in Chapter 4), but complicates the implementation of αProlog.
Specifically, because of equivariance, backchaining based on nominal unification,
while sound and less incomplete than ordinary first-order backchaining, is not
complete. Thus, there may be consequences of an αProlog program (viewed as
a nominal theory) that cannot be computed using nominal backchaining. For
example, if the program clause is

p(a).

then an attempt to solve the goal p(a) will fail, because p(a) will be freshened
to p(a′) before we attempt to unify p(a) and p(a′); this attempt will fail because
a 6≈ a′.

Instead, it is necessary to consider an even coarser form of equivalence that
equates p(~t) and p((a b)~t). Unfortunately, even for the restricted terms used in
nominal unification, deciding unifiability up to this equivalence (a problem we call
equivariant unification) is NP-hard.

This limitation can frequently be circumvented, but usually only by avoiding
the kind of open-term manipulations that distinguish nominal abstract syntax from
other approaches. In fact, as we shall discuss briefly in Chapter 7, there is a large
class of interesting αProlog programs that behave correctly even if only nominal
unification is used.

In this chapter we will write programs that rely on equivariant unification to run
properly; however, at present these programs cannot be executed very efficiently.
There are two reasons for doing this: first, although in many cases the programs
could also be written so as to avoid reliance on equivariant unification, the resulting
programs would be considerably more complex and less clear; and second, these
programs help to establish the potential usefulness and desirability of practical
equivariant unification.

Many unification problems have practically useful algorithms for common cases
despite being NP-complete in general. We hope this will turn out to be the case
for equivariant unification (and generalized nominal unification) as well. However,
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the development of such techniques is beyond the scope of this dissertation and is
an extremely important area for future work.

We now give two small examples of αProlog programs.

Example 2.1.2. Consider the following program clause:

p(〈a〉X, 〈a〉Y ) :− q(X,Y ).

This clause matches p(t, u) provided both t, u are abstractions with the same name
at the head. In fact, any two abstractions can be renamed to a fresh name a,
so αProlog’s execution strategy of freshening names guarantees that the above
program clause will match any abstractions t, u.

For example, consider p(〈a〉f(a, b), 〈b〉f(a, b)). Unifying against a fresh in-
stance of p(〈a′〉X, 〈a′〉Y ) yields the unifier X = f(a′, b), Y = f(a, a′). If a had
not been freshened to a′, however, unification would fail because 〈b〉f(a, b) is not
α-equivalent to 〈a〉X for any instantiation of X.

Example 2.1.3. Consider the program dunion defined as follows:

pred dunion([A], [A], [A]).
dunion([], L, L).
dunion([a|L],M, [a|N ]) :− a # M,dunion(L,M,N).

This predicate takes two lists of names and merges them, checking that no names
in the first list are mentioned in the second. If the two input lists contain no
duplicates, then neither does the output. Thus, if lists are used to represent sets,
dunion calculates the disjoint union of sets, failing if it does not exist.

2.1.4 Standard Logic Programming Extensions

There are several features found in Prolog and other logic programming languages
which we will use in example programs but not deal with formally in this disserta-
tion. They include function definitions (which we have already encountered), infix
operators, disjunctive goals, the “cut” proof-search operator, negation as failure,
if-then-else goals, and definite clause grammars. In this section we briefly explain
these features in case they are unfamiliar.

Function definitions are often incorporated into logic programming by unfolding
or flattening the definitions. This means replacing the defined function symbol with
a relation symbol such that p(~x, y) if and only if f(~x) = y. This transformation is
performed by many Prolog implementations, although more advanced techniques
are known for combining functional programming and logic programming [50].

Most programming languages include infix operators for arithmetic and boolean
operations. This is the case in Prolog and αProlog as well. In addition, Prolog
supports user-defined infix operators, which has become a standard feature in logic
and functional languages. αProlog provides limited support for infix operators as
well.
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Disjunctive goals G;G′ are executed by attempting to solve G first, then G′ if
no solution to G is found. Programs containing such goals can be translated to
pure Horn clause programs by, for example, replacing A :− G, (G1;G2), G

′ with
A :− G,P,G′ using an auxiliary predicate P defined by two clauses P :− G1,
P :− G2.

The cut operator ! is a nonlogical construct which discards the backtracking
state associated with the current goal when it is executed. It can be used to commit
to a particular solution to a goal, which can increase the efficiency of a program
by avoiding unnecessary backtracking. However, cut may damage the declarative
transparency of a program. For example, the program

p(X) :− q(X), !, r(X). q(a). q(b). r(X).

produces only the answer X = a to the query p(X), because the cut “commits”
to the first answer q(a) found for q(X), and the second answer X = b is missed.
However, the more explicit query p(b) succeeds, because the search for a solution
q(b) succeeds before the cut is processed. We will not actually use cut in the
examples, so will not discuss it further.

Negation as failure means that goals of the form not(G) are permitted. Such a
goal succeeds if the search for a proof of G terminates in failure, and fails otherwise.
Goals for which proof search terminates with failure are said to finitely fail. If-
then-else goals are goals of the form G → Gt|Gf . If G finitely fails, then Gf is
executed, and otherwise Gt is executed. In addition, if backtracking occurs during
the execution of Gt, then alternative solutions to G are not considered (similar
to cut). Negation-as-failure and if-then-else are logically better behaved than cut,
but can lead to strange behavior as well.

Definite clause grammars [101] are a standard extension to logic programming
languages. It is straightforward to incorporate DCGs into αProlog. They are not
used in any of the examples, so we will not describe them in any more detail;
instead see for example [21].

2.2 Examples

2.2.1 The λ-calculus

Recall that the λ-calculus includes terms of the form

t ::= x | t t′ | λx.t

where x is a variable name and t, t′ are terms. We encode this syntax with the
αProlog declarations

exp : type. id : name type.
var : id→ exp. app : (exp, exp) → exp.
lam : 〈id〉exp→ exp.
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Example 2.2.1 (Typechecking and inference). First, we consider the prob-
lem of typechecking λ-terms. The syntax of types includes type variables α and
function types τ → τ ′ constructed from types τ and τ ′, and can be encoded as
follows:

tid : name type. ty : type.
tvar : tid→ ty. arr : (ty, ty) → ty.

We define contexts ctx as lists of pairs of identifiers and types, and the 3-ary
relation typ relating a context, term, and type:

type ctx = [(id, ty)].
pred typ(ctx, exp, ty).
typ(G, var(X), T ) :− mem((X,T ), G).
typ(G, app(M,N), T ′) :− typ(G,M, arr(T, T ′)), typ(G,N, T ).
typ(G, lam(〈x〉M), arr(T, T ′)) :− x # G, typ([(x, T )|G],M, T ′).

The predicate mem is the usual predicate for testing list membership. The side-
condition x 6∈ Dom(Γ) is translated to the freshness constraint x # G.

Consider the query ?− typ([], lam(〈x〉lam(〈y〉var(x))), T ). We can reduce this
goal by backchaining against the suitably freshened rule

typ(G1, lam(〈x1〉M1), arr(T1, U1)) :− x1 # G1, typ([(x1, T1)|G1],M1, U1)

which unifies with the goal with [G1 = [],M1 = lam(〈y〉var(x1)), T = arr(T1, U1)].
This yields subgoal x1 # [], typ([(x1, T1)|G1],M1, U1). The first conjunct is trivially
valid since G1 is a constant. The second is solved by backchaining against the third
typ-rule again, producing unifier [G2 = [(x1, T1)],M2 = var(x1), U1 = arr(T2, U2)]
and subgoal x2 # [(x1, T1)], typ([(x2, T2), (x1, T1)], var(x1), U2). The freshness sub-
goal reduces to the constraint x2 # T1, and the typ subgoal can be solved by
backchaining against

typ(G3, var(X3), T3) :− mem((X3, T3), G3)

using unifier [G3 = [(x2, T2), (x1, T1)], X3 = x1, T3 = U2]. Finally, the remaining
subgoal mem((x1, U2), [(x2, T2), (x1, T1)]) clearly has most general solution [U2 =
T1]. Solving for T , we have

T = arr(T1, U1) = arr(T1, arr(T2, U2)) = arr(T1, arr(T2, T1)) .

This solution corresponds to the principal type of λx.λy.x.

Example 2.2.2 (Substitution and Normalization). As mentioned in Chap-
ter 1, in αProlog the substitution function can be written as follows:

func subst(exp, exp, id) = exp.
subst(var(x), P, x) = P.
subst(var(y), P, x) = var(y).
subst(app(M,N), P, x) = app(subst(M,P, x), subst(N,P, x)).
subst(lam(〈y〉M), P, x) = lam(〈y〉subst(M,P, x)) :− y # P.
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This program makes maximum use of names: for example, in the second clause we
use distinct names x and y to distinguish from the first clause, and the abstracted
name in the fourth clause is also assumed fresh for P .

Next we define evaluation for λ-terms. We first define a relation which expresses
β-reduction:

pred beta(exp, exp).
beta(app(lam(〈x〉M),M ′), N) :− N = subst(M,M ′, x).

Now we define a relation step that express one-step reduction of λ-terms.

pred step(exp, exp).
step(M,M ′) :− beta(M,M ′).
step(app(M,N), app(M ′, N)) :− step(M,M ′).
step(app(M,N), app(M,N ′)) :− step(N,N ′).
step(lam(〈x〉M), lam(〈x〉M ′)) :− step(M,M ′).

Using if-then-else, we can express the normalization relation, that associates a
normal form to a λ-expression, if it exists.

pred nf (exp, exp).
nf (M,M ′) :− step(M,M ′′) → nf (M ′′,M ′)|M = M ′.

This says that if M can take a step to M ′′, then M ’s normal form is the same
as the normal form of M ′′, whereas if M cannot take a step then M is already in
normal form.

Example 2.2.3 (α-inequivalence). Consider the problem of testing whether
two λ-terms are not equivalent up to α-renaming. Using negation-as-failure, such
a program is trivial:

neq(M,M ′) :− not(M ≈M ′).

However, this program is easy to write in αProlog, even without negation-as-failure:

neq(var(x), var(y)).
neq(app(M,N), app(M ′, N ′)) :− neq(M,M ′);neq(N,N ′).
neq(lam(〈x〉M), lam(〈x〉M ′)) :− neq(M,M ′).
neq(var( ), app( , )).
neq(var( ), lam( )). ...

In particular, note that the first clause, because of equivariance, implies that any
terms var(a) and var(b) with a 6= b are α-inequivalent.

Example 2.2.4 (let, pairs, and units). We consider some standard extensions
to the pure λ-calculus considered so far. One common extension is to permit
expressions let x = t in u. In the pure λ-calculus, this expression form is definable
as (λx.u)t; however, in many languages (particularly call-by-value languages like
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ML) the two expressions are inequivalent. In any case, we can add syntax and
cases to deal with let as follows:

let : (exp, 〈id〉exp) → exp.
subst(let(M1, 〈y〉M2), T, x)) = let(subst(M1, T, x), 〈y〉subst(M2, T, x)).
typ(G, let(M1, 〈y〉M2), T ) :− y # G, typ(G,M1, U), typ([(y, U)|G],M2, T ).

Another standard extension is (surjective) pairing. That is, we consider a bi-
nary function symbol pair(t, u) and projection operations pi1(t), pi2(t) such that
pi1(pair(t, u)) = t, pi2(pair(t, u)) = u. A form of pairing is definable in the
(untyped) λ-calculus, but often it is preferable to assume that explicit surjective
pairing exists. We can extend the αProlog implementation to deal with pairing
as follows:

pair : (exp, exp) → exp.
pi1, pi2 : exp→ exp.
times : (ty, ty) → ty.
subst(pair(M1,M2), T, x) = pair(subst(M1, T, x), subst(M2, T, x)).
subst(pi1(M1), T, x) = pi1(subst(M1, T, x)).
typ(G, pair(M1,M2), times(T1, T2)) :− typ(G,M1, T1), typ(G,M2, T2).
typ(G, pi1(E), T1) :− typ(G,E, times(T1, T2)).

The cases for pi2 are symmetric. Finally, when pairs and pair types are present,
it is often useful to also introduce a unit value and unit type, as a “default” base
type. This can be accommodated as follows:

? : exp.
seq : (exp, exp) → exp.
unit : ty.
subst(?, , ) = ?.
typ( , ?, unit).
typ(G, seq(E,E ′), T ) :− typ(G,E, unit), typ(G,E ′, T ).

Example 2.2.5 (Closure conversion). We give a final meta-programming ex-
ample for the λ-calculus: closure conversion (also known as lambda lifting [63]).
In the λ-calculus, function bodies may refer to variables introduced outside the
body of the function. This phenomenon makes it difficult to perform code trans-
formations; it is much easier to deal with closed functions that refer only to local
variables (that is, variables bound at the same point as the function is defined).

Closure conversion is a standard translation phase in functional language com-
pilers in which possibly-open function bodies are converted into closed ones. Specif-
ically, a function is replaced with a pair consisting of a closed function and an
environment containing expressions for the nonlocal values to which the function
refers. Function calls are rewritten so that the environment and closed function
are unpacked and the function is called with the environment and ordinary ar-
gument as values. Explicit pairing and projection operations are needed in the
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type ctx = [id].
func cconv(ctx, exp, exp) = exp.
cconv([x|G], var(x), E) = pi1(E).
cconv([x|G], var(y), E) = cconv(G, var(y), pi2(E)).
cconv(G, app(T1, T2), E) = let(cconv(G, T1, E), 〈c〉

app(pi1(var(c)),
pair(cconv(G, T2, E), pi2(var(c))))).

cconv(G, lam(〈x〉T ), E) = pair(lam(〈y〉cconv([x|G], T, var(y))), E)
:− x # G, y # G.

Figure 2.1: Closure conversion in αProlog

?− cconv([], lam(〈x〉lam(〈y〉app(var(y), var(x)))), ?, E).
E = pair(lam(〈y17〉pair(lam(〈y38〉

let(pi1(var(y38)), 〈c51〉
app(pi1(var(c51)),

pair(pi1(pi2(var(y38))),
pi2(var(c51)))))), var(y17))), ?)

Figure 2.2: Closure conversion example

target language, so we consider a λ-calculus extended with let, pairing, and pro-
jection operations as shown above. We take the source language to contain only
λ-abstraction, variables, and application.

We work in an untyped setting (typed closure conversion [87] is substantially
more complicated). The following equations define a closure conversion transfor-
mation C[[Γ ` t]]e; here, Γ is a list of variables describing the environment of t, and
e is a term representing the environment. If Γ has n elements then it is expected
that e is an n-tuple.

C[[x,Γ ` x]]e = π1(e)

C[[y,Γ ` x]]e = C[[Γ ` x]](π2(e)) (x 6= y)

C[[Γ ` t1t2]]e = let c = C[[Γ ` t1]]e in (π1(c)) 〈C[[Γ ` t2]]e, π2(c)〉
C[[Γ ` λx.t]]e = 〈λy.C[[x,Γ ` t]]y, e〉 (x, y /∈ Γ)

This function can be translated directly into αProlog as shown in Figure 2.1.
Figure 2.2 shows a small example: closure-converting the expression λx.λy.x y. It
is not very readable. In more compact notation, this term is expressed as

E = (λy17.(λy38.let c51 = π1(y38) in (π1(c51)) (π1(π2(y38)), π2(c51)), y17), ?)

which is the correct result of closure-converting C[[· ` λx.λy.x y]].
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type cell = (refty , exp).
type mem = [cell].
type config = (mem, exp).

pred update((A,B), [(A,B)], [(A,B)]).
update((a, B), [(a, )|L], [(a, B)|L]).
update((a, B), [(a′, B′)|L], [(a′, B′)|L′]) :− update((a, B), L, L′).

% A call-by-value semantics
pred eval(config , config).
eval((C, ref (A)), (C, ref (A))).
eval((C, new ref (M)), ([(a, V )|C ′], ref (a))) :− a # V, a # C ′,

eval((C,M), (C ′, V )).
eval((C, assign(M1,M2)), (C

′, ref (A))) :− eval((C,M1), (C1, ref (A))),
eval((C1,M2), (C2, V )),
update((A, V ), C2, C

′).
eval((C, deref (M)), (C, V )) :− eval((C,M), (C ′, ref (A))),

mem((A, V ), C ′).

Figure 2.3: Partial λref Implementation

Example 2.2.6. We now consider the problem of modeling a simple λ-calculus
with references (see for example [107, Chapter 13]). Following the ML approach,
we include three new language syntax cases:

e ::= · · · | new(e) | !e | e := e′

represented in αProlog using the term constructors new ref : exp → exp, deref :
exp→ exp, and assign : (exp, exp) → exp.

Figure 2.3 shows part of an αProlog implementation of λref . In this example
we ignore typechecking issues and focus on the operational semantics of references.
The standard operational semantics of references requires considering both the
term being evaluated and the contents of memory, often modeled as a finite partial
function from some set of memory cell identifiers to values. In αProlog, it is
natural to use a name type refty for these identifiers or references. We use a
list of pairs to model the memory itself. In addition we introduce a fourth new
expression constructor, ref : refty → exp that can be used to treat a reference
as an expression. Note that such explicit, hardwired references are not allowed
in source programs in ML-like languages, but only appear during execution. (In
a language like C, references may be explicit memory addresses, but this feature
is rarely used except in very low-level systems programming tasks, so this is a
reasonable assumption for many C programs also.)

We represent the contents of memory using an association list M containing
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?− M = let(new ref (const(17)), 〈x〉
seq(assign(var(x), const42),
var(x))),

eval(([],M), (C,M ′)).
M ′ = ref (a68)
C = [(a68, const(42))]

?− M = let(new ref (const(17)), 〈x〉let(var(x), 〈y〉
seq(assign(var(x), const(42)),
var(y)))),

eval(([],M), (C,M ′)).
M ′ = ref (a68)
C = [(a68, const(42))]

?− M = let(new ref (const(0)), 〈x〉
let(new ref (var(x)), 〈y〉
seq(assign(var(x), var(y)),
var(x)))),

eval(([],M), (C,M ′)).
M ′ = ref (a68)
C = [(a143, ref (a68)), (a68, ref (a143))]

Figure 2.4: Example queries for λref

pairs (r, v) of references r and values v. We define a predicate update for updating
the value associated to a name in M . Note that update requires equivariance to run
properly. The predicate eval encodes a call-by-value large-step evaluation relation
for λ-terms with references. Of particular interest are the cases for ref , new ref ,
deref , and assign.

The case for ref does nothing: a reference is a value. The case for new ref
generates a fresh name a for the new memory cell, and assigns it the result of
evaluating the given expression. The case for assign evaluates its first argument
to a name, and updates the memory to the value of its second argument. Finally,
deref evaluates its argument to a reference and looks up its value.

This is an entirely standard operational semantics for references. The novelty
here is the handling of memory references using αProlog names and freshness to
enforce the freshness side-condition for names generated by new ref . Note that
name-abstraction is never used for reference cells, only freshness.

Figure 2.4 shows three example queries executed in αProlog. The first example
allocates a reference with one value and then updates it to take a new value. The
second example allocates a reference and creates two aliases to it, updates one of
the aliases and evaluates the second. The third example builds a two-node cycle
using references.
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Table 2.4: The π-calculus

Process terms p ::= 0 | τ.p | p|q | p+ q | x(y).p | x̄y.p | [x = y]p | ν(x)p
Actions a ::= τ | x(y) | x̄y | x̄(y)

τ.p
τ−→ p

p
a−→ p′ bn(a) ∩ fn(q) = ∅

p|q a−→ p′|q
p

x̄y−→ p′ q
x(z)−→ q′

p|q τ−→ p′|q′{y/z}
p

a−→ p′

p+ q
a−→ p′ x̄y.p

x̄y−→ p

w /∈ fn((z)p)

x(z).p
x(w)−→ p{w/z}

p
a−→ p′

[x = x]p
a−→ p′

p
x̄(w)−→ p′ q

x(w)−→ q′

p|q τ−→ ν(w)(p′|q′)
p

a−→ p′ y /∈ n(a)

ν(y)p
a−→ ν(y)p′

p
x̄y−→ p′ y 6= x w /∈ fn(ν(y)p)

ν(y)p
x̄(w)−→ p′{w/y}

There is arguably nothing deep about this example. However, in any ordi-
nary programming language it would have been necessary to either introduce a
side-effecting gensym function to come up with new names, or clutter the eval
predicate with added parameters for a fresh name supply. In the first approach,
the declarative transparency of the program is destroyed; in the second approach,
the cluttered program is harder to read and harder to prove correct.

2.2.2 The π-Calculus

The π-calculus is a calculus of concurrent, mobile processes. Its syntax (following
Milner, Parrow, and Walker [85]) is described by the grammar rules shown in
Table 2.4. The symbols x, y, . . . are channel names. The inactive process 0 is inert.
The τ.p process performs a silent action τ and then does p. Parallel composition
is denoted p|q and nondeterministic choice by p + q. The process x(y).p inputs a
channel name from x, binds it to y, and then does p. The process x̄y.p outputs y
to x and then does p. The match operator [x = y]p is p provided x = y, but is
inactive if x 6= y. The restriction operator ν(y)p restricts y to p. Parenthesized
names are bound, e.g. y in x(y).p and ν(y)p are bound in p, and fn(p), bn(p) and
n(p) denote the sets of free, bound, and all names occurring in p. Capture-avoiding
renaming is written t{x/y}.

Milner et al.’s original operational semantics (shown in Table 2.4, symmetric
cases omitted) is a labeled transition system with relation p

a−→ q indicating “p
steps to q by performing action a”. Actions τ , x̄y, x(y), x̄(y) are referred to as
silent, free output, input, and bound output actions respectively; the first two are
called free and the second two are called bound actions. For an action a, n(a) is
the set of all names appearing in a, and bn(a) is empty if a is a free action and is
{y} if a is a bound action x(y) or x̄(y).

Much of the complexity of the rules is due to the need to handle scope extrusion
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|

P Q

x
out(c,x),P’ in(c,y),Q’(y) |

P Q

x

P’ Q’(x)

Figure 2.5: Scope extrusion

(Figure 2.5), which occurs when restricted names “escape” their scope because of
communication. In ((x)āx.p)|(a(z).z(x).0)

τ−→ (x′)(p|x′(x).0)), for example, it is
necessary to “freshen” x to x′ in order to avoid capturing the free x in a(z).z(x).0.
Bound output actions are used to lift the scope of an escaping name out to the
point where it is received.

In αProlog, processes and actions can be encoded using the following syntax:

chan : name type. proc : type. ina : proc. tau : proc→ proc.
par, sum : (proc, proc) → proc. in : (chan, 〈chan〉proc) → proc.
out,match : (chan, chan, proc) → proc. nu : (〈chan〉proc) → proc.
act : type. tau a : act. in a, fout a, bout a : (chan, chan) → act.

The labeled transition rules can be translated directly into αProlog (see Fig-
ure 2.6 and Figure 2.7). The function

func ren p(proc, chan, chan) = proc.

performing capture-avoiding renaming is not shown, but easy to define. The pred-
icate safe defined in Figure 2.6 implements the relation bn(a)∩ fn(q) = ∅ holding
between a name a and process q needed in the second rule in Table 2.4.

We can check that this implementation of the operational semantics produces
correct answers for the following queries:

?− step(nu(〈x〉par(nu(〈y〉out(x, y, ina)), in(x, 〈z〉out(z, x, ina)))), A, P ).
A = tau a, P = nu(〈y58〉nu(〈z643〉par(ina, out(z643, y58, ina))))
?− step(nu(〈x〉out(x, y, ina)), A, P ).
No.

This αProlog session shows that ν(x)(ν(y)x̄y.0 | x(y).ȳx.0)
τ−→ ν(x)ν(y)(0 | yx.0),

but (x)(x(y).0) cannot make any transition. Moreover, the answer to the first query
is unique (up to renaming).

2.2.3 Additional Examples

The example programs given so far are just a small sample of the test cases I
have developed for αProlog. Additional examples that have been developed us-
ing αProlog include the operational semantics and type system of Parigot’s λµ



32 CHAPTER 2. THE αPROLOG LANGUAGE AND EXAMPLES

pred safe(act, pr). (* tests bn(A) ∩ fn(P ) = ∅ *)
safe(tau a, P ).
safe(fout a(X, Y ), P ).
safe(bout a(X, y), P ) :− y # P.
safe(in a(X, y), P ) :− y # P.

Figure 2.6: Safety side-condition

pred step(pr, act, pr). (* encodes p
a−→ p′ *)

step(tau(P ), tau a, P ).
step(par(P,Q), A, par(P ′, Q)) :− step(P,A, P ′), safe(A,Q).
step(par(P,Q), tau a, par(P ′, Q′′)) :− step(P, fout a(X, Y ), P ′),

step(Q, in a(X,Z), Q′),
Q′′ = ren p(Q′, Y, Z).

step(sum(P,Q), A, P ′) :− step(P,A, P ′).
step(out(X, Y, P ), fout a(X, Y ), P ).
step(in(X, 〈z〉P ), in a(X,w), P ′) :− w # 〈z〉P , P ′ = ren p(P,w, z).
step(match(X,X, P ), A, P ′) :− step(P,A, P ′).
step(par(P,Q), tau a, nu(〈z〉par(P ′, Q′))) :− step(P, bout a(X, z), P ′),

step(Q, in a(X, z), Q′).
step(nu(〈y〉P ), A, nu(〈y〉P ′)) :− y # A, step(P,A, P ′).
step(nu(〈y〉P ), bout a(X,w), P ′′) :− step(P, fout a(X, y), P ′), y # X,

w # 〈y〉P , P ′′ = ren p(P ′,w, y).

Figure 2.7: π-calculus transitions in αProlog
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calculus [100], the operational semantics of the ζ-calculus [3], the spi-calculus [2],
prenex normalization and Skolemization of first-order logic formulas [21], efficient
first-order unification [72], natural deduction systems for first-order and dynamic
logics [56] and various type theories, symbolic differentiation [21], constructing
automata from regular expressions and removing dead states from automata [57],
parsing programming and natural languages to nominal abstract syntax represen-
tations using DCGs [101], and programming λ-DRT, an advanced language for
computational linguistics [65].

2.3 Notes

Clocksin and Mellish [21] is the standard introductory text for Prolog. The Prolog
Standard Reference Manual [31] specifies the behavior of standard Prolog. Pfen-
ning [103] is a collection of work on type systems in logic programming; αProlog
uses a ML-style static type system with parametric polymorphism, similar to Mer-
cury’s type system [120], but this is only one of many approaches. The type
system of αProlog is based on those described by Mycroft and O’Keefe [89] and of
Hanus [49]. The unification algorithm used in αProlog is the Nominal Unification
algorithm of Urban et al. [126].

The standard reference on the λ-calculus is Barendregt [10]. Closure conversion
and lambda lifting are covered in any textbook on compiling functional languages
such as [7]. The λ-calculus with references λref and the π-calculus are typical
examples of programs that are difficult to deal with using higher-order abstract
syntax in a logical framework like Twelf, but that can be handled using the Linear
Logical Framework [15] or Concurrent Logical Framework [130].

This chapter expands upon Cheney and Urban [17, 18], where the λ-calculus,
λµ-calculus, and π-calculus examples were first given.





Chapter 3

Nominal Sets

A scientific theory should be as simple as possible, but no simpler.

—Albert Einstein

The FM-set-theoretic approach to nominal abstract syntax originally developed
by Gabbay and Pitts [42, 43] is powerful, but also has several disadvantages. First,
classical set theory is often not a good match for computational applications due to
its high theoretical complexity and reliance on nonconstructive reasoning. Second
(and somewhat inconsistently with the first part), the Axiom of Choice is not valid
in FM-set theory; however, the proof of completeness for first-order logic relies on
it. More generally, working in an alternative set theory such as FM is not a step to
be taken lightly, and it would be an advantage to work instead in the more familiar
universe of ZFC.

Therefore, in this chapter we present an alternative development of nominal
abstract syntax, using a class of ordinary mathematical structures which we (fol-
lowing Pitts [108]) call nominal sets. A nominal set is a set whose elements admit
a sensible swapping operation and notion of support, such that for every element,
a fresh name not in the element’s support can always be found. Nominal sets are
a special case of a well-known algebraic structure: G-sets, or sets acted upon by
a group G. We first review the definition of a G-set, then show how nominal sets
are obtained as a special case.

The main difference between our account of nominal sets and that of Pitts is
that our nominal sets may contain supports that are “infinite but small” whereas
Pitts required supports to be finite. This restriction caused problems in the se-
mantics of nominal logic which are solved by our more general development (as
shall be shown in Chapter 5.

3.1 Groups and Group Actions

We assume familiarity with the definition of a group and basic concepts from
permutation group theory.

35
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Definition 3.1.1 (G-sets). Given a group G = (|G|, id, ◦,−1 ), a G-set is a struc-
ture X = (|X|, ·X : G×|X| → |X|) satisfying id·Xx = x and (g◦h)·Xx = g·Xh·Xx.

We say G acts faithfully on X if whenever g ·X x = h ·X x for every x ∈ X, we
have g = h.

Given a G-set X, the orbit of x ∈ X is the subset xG = {g ·X x | g ∈ G}.
Given a G-set acting faithfully on X, the support of g ∈ G is

support(g) = {x ∈ A | g(x) 6= x}

Remark 3.1.2 (Abuse of notation). By an abuse of notation, we often con-
fuse the structure X with its carrier |X|, and when no ambiguity ensues we omit
subscripts on ·X .

Note that the orbits of elements of X partition X into equivalence classes, and
the corresponding equivalence relation on X is x ≡G y ⇐⇒ ∃g ∈ G.x = g ·X y.

Remark 3.1.3 (Some G-sets). Before proceeding, we note that G-sets are
closed under standard constructions such as products, disjoint union, and power
set constructions. For example, if X is a G-set, then P(X) is a G-set with the
natural action inherited by X, such that if S ∈ P(X) then

g · S = {g · x | x ∈ S} .

Any ordinary set X encountered in mathematics (e.g. N, R, etc.), equipped
with the trivial swapping operation (a a′) ·X x = x can be viewed as a G-set.

In addition, any group acts on itself by conjugation, that is, G can be viewed
as a G-set where

g ·G h = g ◦ h ◦ g−1 .

We have a specific class of groups G in mind, which we call name-groups.

Definition 3.1.4 (Name-groups). We assume A is a given countably infinite
G-set, called the set of names. Then G is called a name-group if

1. G acts faithfully on A,

2. G partitions A into countable orbits A1, A2, . . ., also called name-sets,

3. for each name-set A and a, b ∈ A, there is an element (a b) ∈ G such that

(a b) · a = b (3.1)

(a b) · b = a (3.2)

(a b) · c = c (a 6= c 6= b) (3.3)

This element is unique (because G is faithful) and we call it the transposition
of a and b.

If, in addition, G satisfies
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4. The support of each g ∈ G is finite.

then G is called a finitary name-group.

In the rest of this chapter, we let G be a fixed finitary name-group.

Remark 3.1.5. It is not difficult to show that a finitary name-group is isomorphic
to the permutation group consisting of all finite permutations on A respecting the
name-sets A. For example, let A1, A2, . . . be a partition of A into countable sets,
and let G be the group generated by all the compatible swappings (a b) where
a, b ∈ Ai for some i. Then

G = {g ∈ FSym(A) | ∀i.g · Ai = Ai} .

It would also be sensible to allow more general name-groups, satisfying only
properties 1–3, which would permit infinite permutations. For example, Sym(A1)×
Sym(A2)×· · · , the products of the full transformation groups on the name-sets A,
also satisfies properties 1–3. However, this is not necessary for the form of nominal
logic considered in this dissertation. This more general class of name-groups would
be needed if we considered a form of nominal logic with explicit group elements.
Instead, however, we consider only swappings of pairs of compatible names. This
simplifies matters considerably.

Note that the name-sets are G-subsets of A (that is, subsets closed under the
restricted action on A). In addition, if a, a′ ∈ A, b, b′ ∈ A′, and A 6= A′ then
(a a′) · b = b since distinct orbits are disjoint.

We say that a, a′ ∈ A are compatible if a and a′ are in the same name-set. Let
A[2] be the set of all transpositions of compatible names, that is, A[2] = {(a a′) |
A ⊂ A, a, a′ ∈ A}.

Proposition 3.1.6 (G-set laws). Suppose X = (|X|, ·X) is a G-set. Then

(a a) ·X x = x (3.4)

(a a′) ·X (a a′) ·X x = x (3.5)

(a a′) ·X (b b′) ·X x = ((a a′) · b (a a′) · b′) ·X (a a′) ·X x (3.6)

Conversely, if |X| is a set equipped with a swapping function (a b), x→ (a b) · x :
A[2] ×X → X satisfying the above laws, then the swapping action can be extended
to a full action ·X of G on |X| making X = (|X|, ·X) a G-set.

Proof. The first part is an immediate consequence of the definition of transposi-
tions. The second part relies on the fact that since G is finitary, it is generated by
swappings of compatible names, i.e. by the elements of A[2].
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3.2 Equivariance, Support and Freshness

3.2.1 Equivariance

As might be expected, there is a natural criterion for a function mapping one G-set
to another to be structure-preserving:

Definition 3.2.1 (Equivariance). Given G-sets X, Y , a function f : X → Y is
equivariant from X to Y provided for any x ∈ X and g ∈ G,

g ·Y f(x) = f(g ·X x) . (3.7)

A relation R ⊆ |X| on a G-set X is an equivariant relation on X provided for
any x ∈ X, g ∈ G,

R(x) ⇐⇒ R(g ·X x) . (3.8)

A value x ∈ X is equivariant provided for any g ∈ G,

g ·X x = x . (3.9)

3.2.2 Support Ideals

Equivariance means invariance under arbitrary swappings. This is a special case
of a more general phenomenon: invariance under swapping all but a certain set of
names (often called a support). Intuitively, a support of an element x of a G-set
X is a subset of A that contains all the names “used” or “mentioned” in x. In
group theory, the support of a permutation is the set of elements moved by the
permutation. In a G-set, the (intuitive) notion of a support of x is a set S such
that swapping any two names not in S fixes x, or more generally,

for every finite permutation π fixing every element of S, π fixes x.

Pitts’ original semantics for nominal logic prescribed a finite support property :
all elements of nominal sets were required to have finite supports. Unfortunately, as
we shall see (Chapter 5), nominal logic is incomplete with respect to this semantics
because (intuitively) the statement “there exists a value with infinite support” can
be expressed in nominal logic but the statement “every value has finite support”
cannot. Since statements about finiteness usually cannot be expressed in first-
order logic, there is little reason to believe that this problem can be repaired while
remaining within an essentially first-order framework.

However, without some restriction on which sets can be supports, minimum
supports may not even exist. For example, using the näıve definition above, both
{a} and A−{a} can be considered minimal supports for a ∈ A, since (b b′) · a = a
precisely when b = b′ = a or b 6= a 6= b′. Clearly, however, the preferred support of
a is {a}. When a finite support exists, it is clearly preferable to an infinite support;
on the other hand, for a value with only infinite supports, it may be difficult to
choose. For example, if x = {a1, a3, . . .} consists of the odd-numbered names, then
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{x} supports x but so does A− x (and both x and A− x also support A− x). In
this case the choice of “real” support seems arbitrary.

Therefore, we adopt the position that some a priori choice concerning which
sets are acceptable as supports must be made. The intuition is that supports
should be “small” in some sense (not necessarily in terms of cardinality). Clearly
∅ and singletons {a} (or more generally, finite sets of names) are small. Also, it
seems reasonable to expect that subsets and finite unions of small sets are small.
Since we want to ensure that fresh names of any sort can always be chosen, A
should not be a support for any name-set A. Finally, if S is a support then for any
g ∈ G, g · S should also be a support. (For finitary name-groups, this property is
derivable from the others.)

These properties suggest that the set of all supports forms a special kind of
ideal, defined as follows:

Definition 3.2.2. A support ideal I is a collection of subsets of A satisfying

1. If S ⊆ T ∈ I then S ∈ I.

2. If S, T ∈ I then S ∪ T ∈ I.

3. If a ∈ A then {a} ∈ I.

4. A 6∈ I for any name-set A.

We refer to the sets in I as small (with respect to I) and the subsets of A not in
I as large (with respect to I).

Proposition 3.2.3. If I is a support ideal and a, b are compatible and S ∈ I then
(a b) · S ∈ I.

Proof. There are two cases: if a, b ∈ S or a, b 6∈ S then (a b)·S = S ∈ I. Otherwise
without loss of generality assume a ∈ S, b 6∈ S. Then (a b)·S = (S−{a})∪{b}. By
(1), S−{a} ⊆ S ∈ I so S−{a} ∈ I. By (3), {b} ∈ I, and by (2), (S−{a})∪{b} ∈
I.

Proposition 3.2.4. The set P<ω(A) = {S ⊆ A | |S| < ω} of all finite subsets of
A forms a support ideal.

Proof. P<ω(A) contains all singletons, is obviously closed under subset and union,
and A is not finite for any A.

Is P<ω(A) the only support ideal over a countable A? The answer is no. One
counterexample is the set of sparse (that is, nowhere dense) subsets of Q with the
usual open interval topology.

Proposition 3.2.5. There exists a support ideal over a countable A containing a
countable element.
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Proof. Consider the standard open-interval topology of Q. We identify A with Q
in some arbitrary way such that each name-set A is dense, and say that S ⊆ A is
sparse if it has no accumulation points. Let I be the set of all sparse subsets of A.

• If S ⊆ T ∈ I then any accumulation point of S would also be an accumula-
tion point of T , so S ∈ I.

• If S, T ∈ I then any accumulation point of S ∪ T would also have to be an
accumulation point of S or of T , so S ∪ T ∈ I.

• If a ∈ A, then {a} ∈ I is obviously sparse.

• Finally, as observed before, no name-set A is sparse.

This shows that I is a support ideal. Clearly, there are infinite sparse subsets of
A, so I contains infinite supports. In fact, it contains infinite supports within each
A.

3.2.3 Support and Nominal Sets

We now can give a general definition of support. In this section, let I be a fixed
support ideal.

Definition 3.2.6 (Support). Let X be a G-set, x ∈ X, w ⊆ A. We say that w
supports x (w / x) if

∀a, a′ ∈ A[2] − w2.(a a′) ·X x = x . (3.10)

Lemma 3.2.7. Suppose w / x. If a, b 6∈ w then (a b) · x = x. Conversely, if
(a b) · x 6= x then a ∈ w or b ∈ w.

Proof. The first part is immediate from the definition of /. The second part is the
contrapositive.

Lemma 3.2.8. Suppose X is a G-set and w,w′ / x ∈ X with w,w′ ∈ I. Then
w ∩ w′ ∈ I supports x as well.

Proof. Clearly w ∩ w′ ∈ I. Let (a a′) ∈ A[2] − (w ∩ w′)2 be given. If a, a′ both lie
in the complement of w (symmetrically, w′), then clearly (a a′) ·x = x. Otherwise,
without loss of generality assume a 6∈ w and a′ 6∈ w′. Since w,w′ ∈ I, we must
also have w ∪ w′ ∈ I, so we may choose b ∈ A − w ∪ w′. Then b ∈ A − w and
b ∈ A− w′. Since (a a′) = (a b)(a′ b)(a b), we have

(a a′) · x = (a b)(a′ b)(a b) · x = x

because (a b) and (a′ b) both fix x.

Proposition 3.2.9. Let X be a G-set and x ∈ X be given, and assume x has a
support in I. Then x has a ⊆-least support in I.
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Proof. Let S =
⋂
{w ∈ I | w / x}. If x has a least support in I, then it must be

S. We wish to show that S / x.
Suppose a, a′ ∈ A − S. Then there exist w,w′ / x such that a 6∈ w and a′ 6∈

w′. Without loss of generality, we can assume that w and w′ are small. By
Lemma 3.2.8, w ∩ w′ / x and a, a′ 6∈ w ∩ w′; hence (a a′) · x = x. This completes
the proof.

Definition 3.2.10 (Nominal sets). A nominal set is a G-set all of whose ele-
ments are supported in I. Given a nominal set, we define the support of x ∈ X
(suppX(x)) as

suppX(x) =
⋂
{w ∈ I | w / x} . (3.11)

Proposition 3.2.11 (Equivalent views of supp). The following are equivalent:

1. a ∈ supp(x).

2. For any b 6∈ supp(x), (a b) · x 6= x

3. For some b 6∈ supp(x), (a b) · x 6= x

Proof. We prove that 1 → 2, 2 → 3, and 3 → 1.

• (1 → 2): Assume a ∈ supp(x) and b 6∈ supp(x). Assume for contradiction
that (a b) · x = x. Then we will show that supp(x) − {a} supports x.
Let a′, b′ 6∈ supp(x) − {a} be given. If neither or both a′, b′ is a, there is
nothing to prove since (a′ b′) · x = x. Otherwise, assume a′ = a. Then
(a b′) · x = (b b′) · (a b) · (b b′) · x, and since both b, b′ 6∈ supp(x) and by
assumption (a b) ·x = x, we have (b b′) · (a b) · (b b′) ·x = x. This shows that
supp(x)− {a} supports x, contradicting the minimality of supp(x).

• (2 → 3): Assume that for any b 6∈ supp(x), (a b) · x 6= x. There must be a
name-set A such that a, b ∈ A. Since supports are always elements of I and
A 6∈ I, there must be an element b of A not in supp(x), and by assumption
any such b satisfies (a b) · x 6= x.

• (3 → 1): Assume that b 6∈ supp(x) and (a b) · x 6= x. By the contrapositive
of the definition of support, if (a b) · x 6= x then a ∈ supp(x) or b ∈ supp(x),
but clearly b 6∈ supp(x) so we can conclude a ∈ supp(x).

Remark 3.2.12 (Some nominal sets). Clearly, any name-set A is a nominal set
since {a} ∈ I supports a. Also, w/w for any w ∈ I so I is a nominal set. Finally,
for the natural action of G on itself by conjugation, we have suppG(g) = support(g)
where the latter is as defined in Definition 3.1.4. Since every element of G has finite
support, G is a nominal set. We now prove these facts.
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Proposition 3.2.13. 1. A name-set A is a nominal set and suppA(a) = {a} if
a ∈ A.

2. I is a nominal set and suppI(S) = S.

3. G is a nominal set and suppG(g) = support(g) = {a ∈ A | g ·A a 6= a}.

4. Let X be a nominal set. Then suppX(x) = ∅ if and only if x is equivariant.

Proof. 1. Obviously {a} / a since if b, b′ 6∈ {a} then (b b′) · a = a. On the other
hand, ∅ does not support a, so supp(a) = {a}. So A is a nominal set and
suppA(a) = {a}.

2. First, note that it is obvious that S / S. We only need to show that S is the
least support of S in I, i.e. that S ⊆ T if T ∈ I supports S. We show the
contrapositive. If S 6⊆ T then choose a ∈ S − T , which must be nonempty.
Since S, T ∈ I, there must be an element b ∈ A− S ∪ T compatible with a.
Observe that (a b) · S = (S − {a}) ∪ {b} since a ∈ S and b 6∈ S; however,
a 6∈ T and b 6∈ T , so T cannot be a support of S.

3. First, observe that support(g) / g, for if a, b ∈ A[2] − supp(g)2, g fixes both a
and b, so g commutes with (a b). Also, support(g) is finite so must be in I,
consequently G is a nominal set. We have

(a b) · g = (a b) ◦ g ◦ (a b) = (a b) ◦ (a b) ◦ g = g .

Moreover, if a ∈ support(g) and b 6∈ support(g) then let c = g · a. Note
that c 6= a (since a ∈ support(g)) and c 6= b (since c ∈ support(g) and
b 6∈ support(g)). We have

((a b) · g) ·A b = (a b) · (g ·A a) = (a b) · c = c

hence, (a b) · g 6= g since g fixes b. This shows that if a ∈ support(g) then
a ∈ suppG(g), by Proposition 3.2.11. Thus, support(g) ⊆ suppG(g). Since
suppG(g) is the least support, suppG(g) = support(g).

4. If x is equivariant then for any compatible a, b we have (a b) ·x = x, so ∅/x.
Conversely, if supp(x) = ∅ then (a b) · x = x for every compatible a, b ∈ A.

Lemma 3.2.14. Let X be a nominal set and A a name-set.

1. The relation / ⊆ I ×X is equivariant.

2. The function suppX : X → I is equivariant.

3. The relation =: X ×X is equivariant.
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4. If R is an equivariant relation, then so are its reflexive, symmetric, and
transitive closures (and any combination thereof).

Proof. 1. Suppose w/x. Let b, b′ be given and set x′ = (b b′)·x and w′ = (b b′)·w.
Then ∀a, a′ ∈ A − w.(a a′) · x = x. Let a, a′ 6∈ A − w′ be given. Then
(b b′) · a, (b b′) · a′ 6∈ A− w, so ((b b′) · a (b b′) · a′) · x = x. Moreover,

(a a′) · x′ = (a a′) · (b b′) · x
= (b b′) · ((b b′) · a (b b′) · a′) · x
= (b b′) · x
= x′ .

Since a, a′ were arbitrary, this shows that ∀a, a′ ∈ A − w′.(a a′) · x′ = x′, so
w′ / x′ as desired.

2. For suppX((a b) ·x) = (a b) ·suppX(x), assume a′ ∈ suppX((a b) ·x). We wish
to show that a′ ∈ (a b) · suppX(x), or equivalently, that (a b) ·a′ ∈ suppX(x).
It suffices to show that if w / x then (a b) · a′ ∈ w. Suppose w / x. Clearly,
then, (a b) · w / (a b) · x by part 1. So a′ ∈ (a b) · w since (a b) · w / (a b) · x
and a′ ∈ suppX((a b) ·x). But this means that (a b) · a′ ∈ w, as desired. The
reverse inclusion is similar.

3. Let a, b and x = y ∈ X be given. Then (a b) · x = (a b) · y also.

4. Let R be equivariant. If Rr is its reflexive closure, then xRry if x = y or xRy.
In either case, we can derive (a b)·xRr(a b)·y. For Rs the symmetric closure,
xRsy if xRy or yRx, and again in either case we can derive (a b) ·xRs(a b) ·y.
Finally, for Rt the transitive closure, xRtz if x = y1R · · ·Ryn+1 = z. By
induction on n, the number of steps from x to z, we can show that (a b) ·x =
(a b) · y1R · · ·R(a b) · yn+1 = (a b) · z and so (a b) · xRt(a b) · z

3.2.4 Freshness

We are now in a position to define the freshness relation #: A×X for any name-set
A and nominal set X.

Definition 3.2.15. A name a ∈ A is fresh for x ∈ X (written a #X x) provided
a 6∈ suppX(x).

We write a # ~x to indicate that a # x1, . . . , a # xn all hold.

Proposition 3.2.16 (Properties of freshness). Let a, b ∈ A and nominal set
X be given.

1. #: A×X is an equivariant relation.
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2. If a # x and b # x then (a b) · x = x.

3. a # b if and only if a 6= b.

4. a # x for any equivariant value x ∈ X.

Proof. Let a, X be as specified.

1. Let a ∈ A, x ∈ X with a # x be given. Suppose b, b′ are compatible. Then
a 6∈ supp(x), so (b b′) ·a 6∈ (a b) ·supp(x). Note that since supp is equivariant,
(b b′) · supp(x) = supp((a b) · x). Consequently, (b b′) · a # (a b) · x.

2. If a # x and b # x then a, b 6∈ supp(x) so (a b) · x = x since supp(x) / x.

3. Observe that a 6∈ supp(b) = {b} if and only if a 6= b.

4. If x is equivariant then supp(x) = ∅ so any a 6∈ supp(x).

3.2.5 Reasoning with Fresh Names

Gabbay and Pitts [42, 43, 108] observed that a novel quantifier, N, may be defined
in FM-set theory as

Na.φ ⇐⇒ {a | φ(a)} is cofinite

that is, φ holds of a new a just in case it holds for “almost all” a, or all a except
those in a finite set. Moreover, Nis self-dual, as can be seen by the equivalences

Na.φ(a, ~x) ⇐⇒ ∀a.a # ~x ⊃ φ(a, ~x) ⇐⇒ ∃a.a # ~x ∧ φ(a, ~x)

This definition of Nis not appropriate for ideal-supported nominal sets because
some elements might have infinite (but small) support. Instead, we say that φ(a)
holds for fresh a (or, symbolically, Na.φ(a)) provided that the set {a | φ(a)} is
large (with respect to I).

In subsequent chapters, we will formalize the properties of the N-quantifier
within Nominal Logic. While doing so, however, we shall also need to reason
about the fresh names and variables occurring in the syntax of NL.

Remark 3.2.17 (Conventions for reasoning with names and N). In an
informal mathematical proof, an argument of the form

Let a be fresh. [Argument establishing P (a)]. Since a was chosen fresh,
P (a) holds for any fresh name.

may be used to establish that Na.P (a) holds. Conversely, if Na.P (a) holds, then
the argument

Since Na.P (a) holds, P (a) must hold for some fresh a. [Argument
establishing Q.]
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In either case, within the arguments enclosed in brackets, a may be assumed to be
fresh for any element of a nominal set that was already present in the argument
before a was introduced, without explicit mention of this fact. For example:

Let x be given. Let a be fresh. Then a # x. Since a was fresh, Na.a # x
holds. Since x was arbitrary, ∀x. Na.a # x holds.

These informal proof principles will be given a more formal development in nominal
logic.

3.3 Constructions on Nominal Sets

In this section we present some basic nominal sets and constructions for building
new nominal sets from existing ones.

3.3.1 Standard Constructions

Definition 3.3.1 (Initial, terminal). The initial nominal set is 0, carried by
the empty set and the empty swapping operation.

The terminal nominal set is 1, carried by a singleton set {?} with the trivial
swapping operation.

Proposition 3.3.2. The initial and terminal structures are nominal sets. More-
over, supp0(y) = supp1(z) = ∅, and x #0 y, x #1 y for any x ∈ A, y ∈ 0, and
z ∈ 1.

Definition 3.3.3 (Product). Given nominal sets X, Y , the product of X and Y
is X × Y , carried by |X| × |Y | and with swapping operation defined by

(a b) ·X×Y (x, y) = ((a b) ·X x, (a b) ·Y y)

Proposition 3.3.4. The product of two nominal sets is a nominal set. Moreover,
suppX×Y (x, y) = suppX(x) ∪ suppY (y), and a #X×Y (x, y) if and only if a #X x
and a #Y y.

Proof. The nominal set axioms are easy to verify.
For the second part, we first show that supp(x, y) ⊆ supp(x) ∪ supp(y). If

a, b 6∈ supp(x) ∪ supp(y) then (a b) · (x, y) = ((a b) · x, (a b) · y) = (x, y). So
supp(x) ∪ supp(y) / (x, y); consequently supp(x, y) ⊆ supp(x) ∪ supp(y).

We now show that suppX×Y (x, y) ⊇ suppX(x) ∪ suppY (y). If a ∈ supp(x) ∪
supp(y), suppose a ∈ supp(x) (the case for y is symmetric). Then for any b 6∈
supp(x)∪ supp(y), (a b) · x 6= x, and some such b exists, so for some b 6∈ supp(x)∪
supp(y), (a b) · (x, y) 6= (x, y). Hence a ∈ supp(x, y).

The third part is an immediate consequence of the second.



46 CHAPTER 3. NOMINAL SETS

Definition 3.3.5 (Sum (or disjoint union)). Given nominal sets X,Y , the sum
of X and Y is X+Y , carried by |X|] |Y | = {0}×X ∪{1}×Y and with swapping
operation defined by

(a b) ·X+Y (0, x) = (0, (a b) ·X x) (a b) ·X+Y (1, y) = (0, (a b) ·Y y)

Proposition 3.3.6. The sum of two nominal sets is a nominal set. Moreover,
suppX+Y (0, x) = suppX(x), suppX+Y (1, y) = suppY (y), and a # (i, z) ⇐⇒ a # z
for i ∈ {0, 1}.

The proof is straightforward and omitted.
Some of the standard constructions on G-sets, such as exponentiation (function

space construction) and power set, do not preserve the I-support property. For
example, for a name-set A, the full set-theoretic powerset may contain sets that are
not I-supported. For example, any name-set A contains infinite infinite subsets
S, T such that S ∪ T = A and S ∩ T = ∅; it cannot be the case that both S and
T are in I. However, we can recover adequate versions of these constructions by
filtering out the non-I-supported elements.

Definition 3.3.7 (Restriction). Given a G-set X, and support ideal I, the re-
striction X|I of X to I is given by restricting the carrier |X| to

|X|I | = {x ∈ |X| | ∃w ∈ I.w / x}

Proposition 3.3.8. The restriction of a G-set to I is a nominal set.

Definition 3.3.9 (Exponential (or function space)). Given nominal sets
X, Y , the exponential of X and Y is the set of all I-supported functions from X
to Y , written Y X . This set is carried by the restricted G-exponential (X → Y )I,
with swapping operation defined by

(a b) ·Y X f = x 7→ (a b) ·Y (f((a b) ·X x))

Proposition 3.3.10. The exponential of two nominal sets is a nominal set. More-
over, suppY (f(x)) ⊆ suppY X (f) ∪ suppX(x), and a #Y f(x) if a #Y X f and
a #X x.

Proof. The swapping axioms are easy to verify.
We will show that every support of both f and x is a support of f(x); this

implies supp(f(x)) ⊆ supp(f) ∪ supp(x). Let w = supp(x) ∪ supp(f). Then

(a b) · f(x) = ((a b) · f)((a b) · x) = f(x)

since (a b) must fix both f and x. So w / f(x), consequently supp(f(x)) ⊆ w =
supp(f) ∪ supp(x).

If f ∈ Y X then supp(f(x)) ⊆ supp(f) ∪ supp(x) so a # f, x implies a #
f(x).
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Definition 3.3.11 (Power set). Given a nominal set X, the nominal power set
of X, written P(X), is carried by the restricted power G-set P(|X|)|I and the
swapping operation on P(X) is given by

(a b) ·P(X) S = {(a b) ·X x | x ∈ S}

Proposition 3.3.12. The power set of a nominal set is a a nominal set. More-
over, ∈: X × P(X) and ⊆: P(X) × P(X) are equivariant relations, and

⋃
,
⋂

:
P(P(X)) → P(X) are equivariant functions.

Proof. The axioms of swapping are easy to verify, as is the fact that P(X) is
I-supported.

Let a, b and x, y be given with x ∈ y. Then (a b)·x ∈ (a b)·y = {(a b)·z | z ∈ y}.
Similarly, since x ⊆ y precisely if whenever z ∈ x, we have z ∈ y, it is obvious that
⊆ is equivariant.

Let C be a collection of subsets of X. We wish to show that (a b) ·
⋃
C =⋃

(a b) · C. But

(a b) ·
⋃
C = (a b) · {x | x ∈ C,C ∈ C}

= {(a b) · x | x ∈ C,C ∈ C}
= {(a b) · x | (a b) · x ∈ (a b) · C, (a b) · C ∈ (a b) · C}
= {y | y ∈ D,D ∈ (a b) · C}
=

⋃
(a b) · C

The proof for
⋂

is similar.

Proposition 3.3.13. If X is a nominal set and Y an equivariant subset of X then
Y is a nominal set.

Proof. The axioms of swapping for Y are special cases of those for X. So, all
that is needed is to verify that Y is closed under swapping, i.e., that x ∈ Y ⇐⇒
(a b) · x ∈ Y for each x. But if x ∈ Y then (a b) · x ∈ (a b) · Y = Y and vice versa,
since Y is equivariant.

Definition 3.3.14. Let X, Y be nominal sets with |X| ⊆ |Y |. We say X ⊆Nom Y ,
or X is a nominal subset of Y , if

(a b) ·X x = (a b) ·Y x

for each x ∈ X.
A chain of nominal sets is an increasing sequence X1 ⊆Nom X2 ⊆Nom · · · .

Proposition 3.3.15. Suppose X1 ⊆Nom X2 ⊆Nom · · · is chain of nominal sets.
Then

⋃
iXi is a nominal set with ·X =

⋃
i ·Xi

.
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Proof. It is straightforward to verify that
⋃

iXi is a G-set with the given swapping
operation. To see that every element of

⋃
iXi is I-supported, let x be such an

element. Then there must exist i such that x ∈ Xi. Since Xi is I-supported, x
has a support in I. This completes the proof.

Definition 3.3.16 (Quotient). Suppose X is a nominal set and ≡: X ×X is an
equivariant relation on X. Then the quotient X/≡ is the structure consisting of
|X|/≡ and with swapping defined as

(a b) · S = {(a b) · x | x ∈ S}

for equivalence classes S ∈ X/≡.

Proposition 3.3.17. The quotient of a G-set or nominal set by an equivariant
relation is a G-set or nominal set respectively.

Proof. For the quotient construction, it suffices to show that for an equivalence
class [x] ∈ X/≡,

(a b) · [x] = [(a b) · x] .
To show this, observe

(a b) · [x] = {(a b) · y | y ≡ x}
= {(a b) · y | (a b) · y ≡ (a b) · x}
= {z | z ≡ (a b) · x}

where the second equality follows from the equivariance of ≡. Then the swapping
laws and the I-support property follow from the corresponding properties of X.
For example, any support of x is a support of [x] since if a, b 6∈ w / x then

(a b) · [x] = [(a b) · x] = [x]

This completes the proof.

3.3.2 Abstractions

With the concept of support and the above constructions in hand, we can define
the abstraction construction on nominal sets. Intuitively, an abstraction 〈a〉x is
an element x of a nominal set X with a locally-scoped name a: thus, a can be
renamed in 〈a〉x uniformly without changing the meaning of 〈a〉x as long as there
is no collision with the other names of x. That is, abstraction terms are considered
equal up to α-equivalent renaming of abstracted name-constants.

Definition 3.3.18. Given a name-set A and an arbitrary nominal set X, define
the relation ≡α: (A×X)×(A×X) to be the reflexive, symmetric, transitive closure
of the relation ∼α:

(a, x) ∼α (b, y) if and only if x = (a b) ·X y and a # y .
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Proposition 3.3.19. ≡α is an equivariant equivalence relation.

Proof. Note that ∼α is defined in terms of equality and freshness, both of which
are equivariant relations, and so is equivariant. By Lemma 3.2.14, its reflexive,
transitive, symmetric closure is also equivariant.

Thus, (A×X)/≡α is a nominal set, for any name-set A and nominal set X.

Definition 3.3.20. The abstraction of A over X (written 〈A〉X) is the quotient
nominal set (A × X)/≡α. Given terms a ∈ A and x ∈ X, we write 〈a〉x for the
≡α-equivalence class [(a, x)]α.

Proposition 3.3.21 (Properties of abstraction). Let a ∈ A a name-set and
x ∈ X a nominal set.

1. a, x 7→ 〈a〉x : A,X → 〈A〉X is equivariant.

2. supp(〈a〉x) = supp(x)− supp(a) = supp(x)− {a}.

3. If b ∈ A then b # 〈a〉x if and only if a = b or b # x.

Proof. Let a ∈ A, x ∈ X be given.

1. The equivariance of the abstraction-forming operation follows from the fact
that

(a b) · 〈a′〉x = (a b) · [(a′, x)]α = [((a b) · a′, (a b) · x)]α = 〈(a b) · a′〉(a b) · x .

2. The second equality is obvious.

To show supp(〈a〉x) = supp(x) − supp(a), first note that supp(〈a〉x) ⊆
supp(x) ∪ supp(a). But for any b # a, x we have (a b) · 〈a〉x = 〈b〉(a b) · x =
〈a〉x, by the definition of equality for abstractions. This shows that a 6∈
supp(〈a〉x). Hence supp(〈a〉x) ⊆ supp(x) − supp(a). Conversely, suppose
b ∈ supp(x) − supp(a). Then b ∈ supp(x) but b 6= a. Choose c # a, x, b so
that (b c) · x 6= x. Then

(b c) · 〈a〉x = 〈(b c) · a〉(b c) · x = 〈a〉(b c) · x 6= 〈a〉x .

Hence b ∈ supp(〈a〉x). This shows supp(x) − supp(a) ⊆ supp(〈a〉x), which
completes the proof.

3. This follows immediately from the fact that supp(〈a〉x) = supp(x)− {a}.

Because abstractions are formed using quotient, it can be difficult to work
directly with elements of an abstraction, for example in defining a function f :
〈A〉X → Y . Instead, it is often more convenient to work in terms of representatives
a, x of the equivalence classes 〈a〉x. The following proposition identifies functions
f : A×X × Y → Z that can be “lifted” to functions f ′ : 〈A〉X × Y → Z.
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Proposition 3.3.22. Let f : A × X × Y → Z be equivariant and assume that
whenever a # y, we have a # f(a, x, y). Then there exists a unique function
f ′ : 〈A〉X × Y → Z such that f ′(〈a〉x, y) = f(a, x, y) for any a, x, y.

Proof. Let f be as given. We will define a relation Rf as follows: Let w : 〈A〉X and
y be given. Assume that a # y and w = 〈a〉x for some x. Then Rf (w, y, f(a, x, y))
holds.

To see Rf is functional in its first two arguments, suppose Rf (w, y, f(a, x, y))
and Rf (w, y, f(a′, x′, y)) both hold, where a, a′ # y and 〈a〉x = w = 〈a′〉x′. So
a # f(a, x, y) and a′ # f(a′, x′, y). If a = a′ then x = x′ and we are done.
Otherwise, assume a # a′, a # x′ and x = (a a′) · x′. Hence,

f(a′, x′, y) = (a a′) · f(a′, x′, y) = f(a, (a a′) · x′, y) = f(a, x, y).

This shows that Rf (w, y, z) is functional in w, y.
Define f ′(w, y) as the unique z such that Rf (w, y, z) holds. Clearly, f ′ satisfies

f ′(〈a〉x, y) = f(a, x, y). This equation specifies the value of f ′ at every point in its
domain so f ′ is unique.

3.3.3 The Category of Nominal Sets

I-supported nominal sets and equivariant functions form the objects and arrows
of a category of nominal sets, which we denote Nom(I). This category is closed
under the formation of finite products, sums, function spaces, and the power set
construction. Therefore,

Proposition 3.3.23. Nom(I) is a Cartesian closed category with a subobject
classifier (i.e., a topos).

The category of G-sets for a particular G is isomorphic to the functor category
SetG. Nom(I) is essentially the same as the category of continuous G-sets with
respect to some topology on G, which is in turn equivalent to a sheaf category
defined in terms of the topology on G. As a special case, when I = P<ω(A),
the set of all finite subsets of A, the corresponding sheaf category is the Schanuel
topos [67]. However, it is not clear just what topological properties G should have in
general in order to assure that minimum supports exist. The presentation we have
chosen (using support ideals) seems more natural and direct. But the connection
between nominal logic and this corner of category theory deserves further attention.

Note that an equivariant function f : X → Y , viewed as a set of ordered pairs,
is an equivariant relation on X × Y , identified by an arrow pf : 1 → P(X × Y ).
Conversely, an equivariant element of X corresponds to an equivariant function
from 1 → X, where 1 is the terminal object of Nom(I). Thus, in category-
theoretic terms, the equivariant elements of X are so-called constants or global
elements. These observations justify the reuse of the term equivariant for functions,
relations, and values. It is important to note that many elements of a given nominal
set may not be equivariant, and (as witnessed by A), nominal sets may have no
equivariant elements at all.
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3.4 Nominal Lattices and Fixed Points

In this section we extend some basic results from lattice and fixed-point theory to
nominal sets. See [28] for additional background.

In ordinary set theory, sets can be constructed by taking least fixed points of
monotone set operations (on the power set lattice of some set). A very common
example is the construction of the set of terms of a language specified using a BNF
grammar. For example, given the λ-calculus grammar

e ::= x | λx.t | t t′

and a set V of variable names, we can construct a monotone set operator

τ(S) = V ] (V × S) ] (S × S) .

This function is obviously monotone, and so must have a least and greatest fixed
point, by the Knaster-Tarski theorem. In fact, it is also continuous, that is, if
S0 ⊆ S1 ⊆ · · · is an increasing chain of countably many sets, then

τ(
⋃
i

Si) =
⋃
i

(τ(Si))

Therefore, by Kleene’s fixed-point theorem, τ ’s least fixed point is τω(∅). That is,
its fixed point is reached after at most countably many steps from ∅. Moreover,
lfp(τ) is essentially the set of λ-terms over variables from V , not considered up to
α-equivalence.

We consider a more general form of nominal BNF grammars which includes
syntax for name-sets and name-abstractions. We will regard certain symbols x, y
in such a grammar to be name-symbols associated with name-sets Ax, Ay, and the
notation x.t, y.e will indicate the abstractions 〈Ax〉St, 〈Ay〉Se. For example, an
appropriate “nominal BNF” grammar for the λ-calculus

e ::= x | λx.t | t t′

should interpret the x-case as a name-set A and the λx.t-case as an abstraction
over A:

τ(S) = Ax ] 〈Ax〉S ] (S × S)

In the rest of this section, we will address the question of when such operators
have fixed points in nominal sets equipped with lattice structure.

3.4.1 Nominal Fixed Point Theory

By the Knaster-Tarski theorem, a monotone operation on any set with lattice
structure (including, for example, a nominal set) has least and greatest fixed points.
However, under many circumstances we want to know whether the fixed points are
equivariant. For example, in a fixed point construction on a nominal powerset
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P(X), we want to know whether lfp(τ) and gfp(τ) are nominal subsets of X,
that is, whether they are equivariant as elements of P(X). Clearly, there are
trivial monotone operators τ on nominal sets such that lfp(τ) or gfp(τ) is not
a nominal set, for example τ : P(A) → P(A) where τ(S) = {a} for some fixed
a ∈ A. In this case lfp(τ) = gfp(τ) = {a} which is not a nominal set since it
is not closed under swapping. Obviously, τ is not an equivariant function, and so
τ(S) may not be equivariant even when S is.

On the other hand, if τ is an equivariant, monotone operation on nominal sets,
then we can find least and greatest fixed points among the nominal sets. We will
show a more general form of this result for an arbitrary nominal set equipped with
complete lattice structure compatible with equivariance.

Definition 3.4.1 (Nominal lattice). A function is monotone if x ≤ y implies
f(x) ≤ f(y).

L is a nominal lattice provided it has a lattice structure (|L|,≤,∧,∨) and a
nominal-set structure (|L|, ·L) such that ≤,∧,∨ are equivariant relations and func-
tions respectively, and ·L is monotone.

A complete nominal lattice is a nominal lattice that is complete as a lattice,
with

∧
and

∨
equivariant.

A (nominal lattice) map from L to L′ is an equivariant, monotone function
from L to L′.

Note that nominal powersets are complete nominal lattices with respect to ⊆,
since they are closed under arbitrary union and intersection and inclusion, union,
and intersection are equivariant.

We call an element x ∈ L such that τ(x) ≤ x a pre-fixed point of τ , and dually
if x ≤ τ(x) then x is a post-fixed point of τ . An element x that is both a pre- and
post-fixed point is a fixed point, i.e., x = τ(x).

Theorem 3.4.2 (Nominal Knaster-Tarski). If L is a complete nominal lattice
and τ : L→ L is a map on L, then

gfp(τ) :=
∨
{x ∈ L | x ≤ τ(x)}

and
lfp(τ) :=

∧
{x ∈ L | τ(x) ≤ x}

are equivariant elements of L and are the least and greatest fixed points of τ re-
spectively.

Proof. By the ordinary Knaster-Tarski theorem, lfp(τ) and gfp(τ) are least and
greatest fixed points of τ in L as a lattice, respectively. We must show that they
are equivariant with respect to the swapping action inherited from L.

For lfp(τ), we need to show that (a b)·lfp(τ) = lfp(τ). Writing Pre(τ) for the
set of pre-fixed points of τ , we need to show that (a b)·

∨
Pre(τ) =

∨
Pre(τ). Since∨

is equivariant, it suffices to show that (a b) · Pre(τ) = Pre(τ), or in particular,



3.4. NOMINAL LATTICES AND FIXED POINTS 53

that x ≤ τ(x) iff (a b) · x ≤ τ((a b) · x). This is the case by the equivariance of ≤
and τ .

The proof for gfp(τ) is dual.

Thus, lfp(τ) is also the least pre-fixed point, and gfp(τ) is the greatest post-
fixed point of τ .

Definition 3.4.3. A nominal lattice map τ : L → L is continuous provided for
every ω-chain x1 ≤ x2 ≤ · · · in L,

τ(
∨
i

xi) =
∨
i

(τ(xi)) .

Theorem 3.4.4 (Nominal Kleene Fixed Point). If τ : L→ L is a continuous
map on the complete nominal lattice L, then lfp(τ) is equivariant and

lfp(τ) = τω(0)

Proof. This follows immediately from the nominal Knaster-Tarski theorem and
Kleene’s theorem for ordinary lattices.

Corollary 3.4.5. If X is a nominal set and τ : P(X) → P(X) is a continuous
map on P(X) then lfp(τ) is a nominal set.

3.4.2 Some Continuous Operations

Many of the standard set-forming operations such as product, sum, and so on are
continuous (considered as binary operators on the lattice of sets). Moreover, any
set operation built up out of basic sets and such continuous operators is continuous.
Thus, a wide variety of inductive constructions can be performed without explicit
mention of continuity.

To duplicate this pleasant situation for nominal abstract syntax, we need to
check that the basic constructions such as products and sums are continuous; this
is straightforward. We also need to check that the operations are equivariant ;
this is sufficient to guarantee that the operations preserve nominal sets. We must
do the same for the abstraction construction since we wish to use it to construct
nominal abstract syntax. This will be enough to guarantee that operators formed
using products, sums, abstractions, and basic nominal sets are continuous maps.

Proposition 3.4.6. Let A be a name-set. The following constructions are contin-
uous maps in each argument:

1. X, Y 7→ X × Y

2. X, Y 7→ X + Y

3. X 7→ 〈A〉X,
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Moreover, any operation constructed using these operations on nominal sets is
continuous.

Proof. All of the transformations are clearly monotone.
The equivariance of all the transformations follows from the fact that in each

case the arguments and result are nominal sets, hence closed under swapping. Thus
for products we have

(a b) · (X × Y ) = X × Y = (a b) ·X × Y

Sums are similar. For abstractions,

(a b) · 〈A〉X = 〈A〉X = 〈A〉(a b) ·X

For products and sums, continuity can be proved as for ordinary set product
and disjoint union constructions. For abstractions, note that we only consider
continuity in the second argument; we will not need continuity in the first name-
set argument since name-sets are not allowed to be constructed by induction. We
need to show ⋃

i

〈A〉Xi = 〈A〉
⋃
i

Xi

Let x ∈
⋃

i 〈A〉Xi be given. Then for some i, x ∈ 〈A〉Xi, so for some a ∈ A and
y ∈ Xi, x = 〈a〉y. Hence x = 〈a〉y ∈ 〈A〉

⋃
iXi. Conversely, let x ∈ 〈A〉

⋃
iXi be

given. Then x = 〈a〉y for some a ∈ A and y ∈
⋃

iXi. Hence y ∈ Xi for some i. So
x = 〈a〉y ∈ 〈A〉Xi ⊆

⋃
i 〈A〉X i.

For the last part, equivariance and continuity are preserved under composition
and application.

3.5 Nominal Terms

The primary motivation for nominal sets is in developing a convenient model of ab-
stract syntax with binding, i.e., nominal abstract syntax. We have now developed
enough of the theory of nominal sets to show how this can be done. In this section,
we define a universe of nominal terms, or terms constructed using term symbols,
names, and abstractions. We will show that swapping, equality, and freshness can
be decided effectively for nominal terms, give induction and recursion principles
for them, and define a capture-avoiding substitution operation on nominal terms.

In the next chapter, we will develop nominal logic, a logic codifying some of
the behavior of nominal sets. This development will rely on this chapter in two
slightly different ways: the syntax of nominal logic will be constructed using the
universe of nominal terms, and the semantics of nominal logic will be developed
using abstract nominal sets. In addition, in Chapter 5, the Herbrand models will
be constructed using nominal terms.
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3.5.1 The Universe of Nominal Terms

Let Sym be a nominal set containing (equivariant) constant and function symbols
and consider the function

τ(S) = 1 | Sym× S | S × S | A | 〈A〉t

If S is a nominal set, then so is τ(S). Consequently, 0 ⊆Nom τ(0) ⊆Nom · · · is a
chain of nominal sets, so

⋃
i τ

i(0) is also a nominal set. We call this nominal set
NT, or the set of nominal terms. Note that NT is the least fixed point of τ . We
also refer to the subset of NT constructed using only unit, pairing, and function
symbol application as the set of first-order terms, or T.

We adopt a more readable notation for elements of NT. We write 〈〉 for the
first case, f(t) for the second case, 〈t, u〉 for the third, a for the fourth, and a.t
for the fifth. Thus, nominal terms may be written according to the nominal BNF
grammar

t ::= 〈〉 | f(t) | 〈t, u〉 | a | a.t

Alternatively, we may write constant symbols c〈〉 as c and function symbol appli-
cations f(〈t1, 〈t2, . . . , 〈〉 · · ·〉〉) as f(~t).

3.5.2 Induction

The construction of NT suggests an induction principle, which we state as follows.

Theorem 3.5.1. Let X be a nominal set. Suppose P is an equivariant relation
on NT×X, and

1. P (〈〉, x) holds,

2. P (f(t), x) holds whenever P (t, x) holds,

3. P (〈t, u〉, x) holds whenever P (t, x), P (u, x) hold,

4. P (a, x) holds whenever a ∈ A,

5. P (a.t, x) holds whenever a # x and P (t, x).

Then P (t, x) holds for all t ∈ NT.

Proof. Assume that 1–5 hold. We prove that P (t, x) holds for all t ∈ τ i(0) for all
i; the desired result follows immediately. Let x be given.

If i = 0 then the conclusion is vacuous.
If i = n + 1 and P (t, x) holds for all t ∈ τn(0), then let t ∈ τn+1(0) be given.

There are several cases. Those for 〈〉, f(t), 〈t, u〉 are standard, and that for a name
a is easy. For the case t an abstraction in 〈A〉τn(0), let a be given and assume
a # x. Assume t = b.u for some name b # x and term u. By induction, P (u, x)
holds, so P (b.u, x) holds by (5).
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This induction principle can be generalized much further. We will use more
general forms of induction over nominal terms without explicit proofs of all the
principles.

3.5.3 Recursion

Using the induction principle, we can define functions by (primitive) recursion on
nominal terms.

Theorem 3.5.2. Let X, Y be nominal sets and let Ff : Sym × X × Y → X,
F1 : 1×Y → X, F× : X×X×Y → X, FA : A×Y → X, and Fabs : A×X×Y → X
be equivariant functions such that a # Fabs(a, x, y) whenever a ∈ A, x ∈ X and
a # y. Then there is a unique function F : NT → X such that

F (〈〉, y) = F1((), y) (3.12)

F (f(t), y) = Ff (f, F (t, y), y) (3.13)

F (〈t, u〉, y) = F×(F (t, y), F (u, y), y) (3.14)

F (a, y) = FA(a) (3.15)

F (〈a〉t, y) = Fabs(a, t, y) (3.16)

Proof. We define Rf (t, y, x), a relation such that if F (t, y) = x is one of the equa-
tions (3.12)–(3.16), then RF (t, x) is true. We prove that RF is functional by induc-
tion on t, y and define F to be the corresponding function. The only tricky case is
for abstraction: there we use Proposition 3.3.22. Any other function satisfying the
given equations must be equal to F , as can also be shown by induction on t.

This recursion principle can be also be generalized much further, and the more
general forms will be used without proof.

3.5.4 Computing swapping, equality, and freshness

Using the recursion principle for nominal terms we can define a swapping function
as follows.

Definition 3.5.3 (Ground swapping). We define swapping as follows for ground
nominal terms:

〈〉(a↔a′) = 〈〉
f(t)(a↔a′) = f(t(a↔a′))
〈t, u〉(a↔a′) = 〈t(a↔a′), u(a↔a′)〉

b(a↔a′) = (a a′) ·A b (b ∈ A)
(b.t)(a↔a′) = (b(a↔a′)).(t(a↔a′))

We must first verify that the abstraction case satisfies the criterion of Theo-
rem 3.5.2.

Lemma 3.5.4. If b # a, a′ then b # (b.t(a↔a′).
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Proof. Recall that (b.t)(a, a′↔ =)(b(a↔a′)).(t(a↔a′)). But since b # a, a′, we
have b(a↔a′) = b, so b # b.(t(a↔a′)) = b.t(a, a′↔).

Thus, swap defines a function on nominal terms. This function correctly and
efficiently calculates the result of swapping on two terms:

Proposition 3.5.5. The swap function can be computed in linear time, and
t(a↔b) = (a b) ·NT t.

Proof. Obviously ·(a↔b) performs a single traversal over the term. That ·(a↔b)
calculates real swapping can be shown by induction on t.

In addition, we can define functions calculating whether two nominal terms are
equal and whether a name is fresh for a term as follows.

Definition 3.5.6 (Ground freshness). We compute freshness as follows for
ground terms:

fresh(a, b) =

{
true a 6= b
false a = b

fresh(a, 〈〉) = true

fresh(a, f(~t)) = fresh(a, t1) ∧ · · · ∧ fresh(a, tn)
fresh(a, a.t) = true
fresh(a, b.t) = a 6= b ∧ fresh(a, t)

Definition 3.5.7 (Ground equality). We define equality as follows for ground
terms:

eq(a, a) = true
eq(〈〉, 〈〉) = true

eq(f(t), f(u)) = eq(t, u)
eq(〈t1, u1〉, 〈t2, u2〉) = eq(t1, u1) ∧ eq(t2, u2)

eq(a.t, a.u) = eq(t, u)
eq(a.t, b.u) = a 6= b ∧ fresh(a, u) ∧ eq(t, u(a↔b))

eq(t, u) = false otherwise

These functions correctly decide equality and freshness for nominal terms.

Proposition 3.5.8. fresh is computable in linear time, and fresh(a, t) = true if
and only if a # t.

Proof. fresh(a, t) performs a single traversal over t, which takes linear time. To
show that fresh calculates freshness, the proof is by induction t. The only tricky
case is for abstractions, which follows from Proposition 3.3.21(3).

Proposition 3.5.9. The eq function is computable in quadratic time. In addition,
eq(t, u) = true iff t = u.
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Proof. For the complexity bound, the only interesting case is the second one for
abstraction. In this case, to solve a problem of size 2n + 2 we need to solve a
freshness problem of size n (taking O(n) time), a swapping problem of size n
(taking O(n) time, and an equality problem of size 2n. If abstractions are nested
then we will need to perform work 2n+ 2(n− 2) + 2(n− 4) + ..., which is bounded
by O(n2).

To show that eq calculates nominal term equality, it suffices to show this by
simultaneous induction on t, u. The only interesting case is for abstraction, but
this case follows from the fact that

〈a〉t = 〈b〉u ⇐⇒ (a = b ∧ t = u) ∨ (a # u ∧ t = (a b) · u)

3.5.5 Capture-avoiding substitution

Capture-avoiding substitution is an important operation for many applications of
abstract syntax. In nominal abstract syntax, substitution is not provided “for
free”, but it is not hard to define once and for all for a nominal term language.

We define a general form of capture-avoiding substitution as follows.

Definition 3.5.10. Given a nominal term language, we define the capture-avoid-
ing substitution of u for v in t by induction on t as:

t{u/v} =



u (t = v)
a (a = t 6= v, a ∈ A)
〈〉 (〈〉 = t 6= v)
〈t1{u/v}, t2{u/v}〉 (〈t1, t2〉 = t 6= v)
f(t′{u/v}) (f(t′) = t 6= v)
〈a〉(t′{u/v}) (〈a〉t′ = t 6= v, a # t, u, v)

That this is a function follows from the recursive definition principle for nom-
inal terms. In addition, it is not difficult to verify that, for a sublanguage of
nominal terms corresponding to the λ-calculus, that is, for the least subset Λ of
NT satisfying

var : V → Λ, app : Λ× Λ → Λ, lam : 〈V 〉Λ → Λ

we have ptq{puq/var(x)} = t[u/x], where t, u are ordinary λ-terms and ptq, puq are
their representations using nominal terms, and t[u/x] is ordinary capture-avoiding
substitution in the λ-calculus, as defined in Chapter 1.

3.6 Notes

The definition of nominal sets in this chapter differs from that of Pitts [108] in only
one respect: instead of requiring nominal sets to be finitely supported, nominal sets
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may contain objects with infinite support as long as supports are small with respect
to a support ideal I, and no name-sets are small. This seemingly minor change
required redoing much of the theory of nominal sets, but will make it possible to
prove completeness for NL in Chapter 5.

Much of the development and many of the proofs of properties of nominal sets
in this chapter are based on Gabbay and Pitts’ work [42, 39, 43, 108]. The overall
development is similar, but the presence of support ideals complicates matters, so
this chapter is not simply a restatement of their results.

Pierce [106] and Lambek and Scott [66] are useful sources for basic category the-
ory and the relationship between topos theory and intuitionistic logic; Mac Lane
and Moerdijk [67] provides a thorough treatment of topos theory, logic, topol-
ogy and sheaf theory, and the relationships among them, and in particular the
functor category SetG which is isomorphic to the category of G-sets. In particu-
lar, Pitts’ finite-support nominal sets were inspired by the Schanuel topos, i.e., the
category of continuous G-sets, where the topology on G is generated by the finitely-
supported subgroups of G. I have avoided making category theory prerequisite for
this chapter. There may well be interesting insights to be gained by taking a more
topological or categorical approach to these issues. Menni [76] presents a general,
categorical treatment of N-quantification and binding, and Schöpp and Stark [114]
have developed a dependent type theory with names and binding based in part on
Menni’s work and on an analysis of the Schanuel topos.





Chapter 4

Nominal Logic

Logic: The art of thinking and reasoning in strict accordance with the limitations
and incapacities of the human misunderstanding.

—Ambrose Bierce

Nominal logic, introduced by Pitts [108], is a first-order theory for reasoning
about nominal sets. We introduce a revised form of nominal logic (NL). Our
formulation of NL differs from Pitts’ in several respects:

• It includes name-constants of name-sort (representing the names inhabiting
name-sets) as well as N-quantification over name-constants.

• Its semantics is given in terms of ideal-supported nominal sets, and there is
an explicit case for N.

• Its proof system, NL⇒ is a sequent calculus which makes use of name-
constants and a structured context to simplify reasoning about N.

• Important properties like completeness and a generalization of Herbrand’s
theorem hold for our formulation (see Chapter 5).

In this section, we present the syntax, semantics, and a proof system for NL.
The issues of soundness, completeness, and Herbrand models will be addressed in
Chapter 5.

4.1 Syntax

LetNSort,DSort be disjoint, countable sets of name-sort and data-sort identifiers.
The sorts of NL are constructed using the following grammar:

σ ::= 1 | δ | ν | 〈ν〉σ | σ × σ (4.1)

where δ ∈ DSort, ν ∈ NSort.

61
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We assume that the set of names A is partitioned into countable name-sets
Aν , one for each name-sort symbol, inhabited by name-constants aν , bν′ , . . ., and
countable name-sets V σ, one for each sort, inhabited by variables xσ, yσ′ , . . .. We
write A for the set of all name-constants and V for the set of all variables. Two
name-constants or variables of the same sort are said to be compatible.

Let Sym be a countable set of term symbols c, c′, f, f ′, p, p′, . . .. The terms of
NL are constructed by the following BNF grammar:

t, u, a, b ::= aν | xσ | f(t) | 〈t, t′〉 | 〈〉 | (a b) · t | 〈a〉t (4.2)

where f ∈ Sym, xσ ∈ V , aν ∈ A, and the notation ~x denotes a sequence
(x1, . . . , xn). We typically use the letters a, b for terms of name-sort and t, u for
arbitrary terms. There are two built-in function symbols, swap and abs; we re-
gard the notations (a b) · t and 〈a〉t as abbreviations for the terms swap〈a, b, t〉
and abs〈a, t〉. Note that the case for abstraction, 〈a〉t, does not use the dot no-
tation and so abstractions are not subject to (meta-level) α-equivalence. Instead,
α-equivalence for abstractions will be axiomatized at the object level.

A term c〈〉, where c : 1 → σ, is called a constant of σ. We often omit the
application to unit for constants, writing just c. If f : σ1 × · · · × σn → σ, then we
write f(t1, . . . , tn) as an abbreviation for f(〈t1, 〈· · · , tn〉 · · ·〉).

We write FV (t) and FN(t) for the sets of free variables and name-constants of
t, respectively, and use set-theoretic notation a /∈ FN(t), x /∈ FV (t), rather than
freshness a #NT t, x #NT t. This is to prevent confusion between the meta-level,
where nominal terms are used to take care of the details of abstract syntax, and
the object-level, that is, the semantics of nominal logic.

The formulas of NL are defined by the following nominal BNF grammar:

φ ::= > | ⊥ | a # t | t ≈ u | p(t) | φ ⊃ ψ | φ ∧ ψ | φ ∨ ψ
| ∀xσ.φ | ∃xσ.φ | Naν .φ

where p ∈ Sym. Note here, that N, ∃, and ∀ are identified up to α-equivalence at
the meta-level. That is, we view ∀x.p(x) and ∀y.p(y) as the same formula, since
they are represented by the same nominal terms (using abstraction for the bound
variables.) There are two built-in relation symbols, eq and fresh. We regard t ≈ u
and t # u as abbreviations for eq〈t, u〉 and fresh〈t, u〉. In addition, we take (a b)·φ
to be an abbreviation for the formula φ((a b) ·~a, (a b) · ~X), where ~a = FN(φ) and
~X = FV φ.

We omit the sort-tags on name-constants and variables when clear from context.
We take the syntactic name-swapping t(a↔b) and capture-avoiding substitution
operation t{u/x} to be as given in Section 3.5.

Observe that name-constant symbols are regarded as a separate class of meta-
level names, distinct from variables and ordinary constants and function symbols.
Therefore, the name-constant aν is not the same term as the name-sorted variable
aν . This distinction is important in avoiding the kind of inconsistency that arises
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in Pitts’ system if ground terms of sort ν are present (see [108, Cor. 1, Sec. 5] and
Section 5.4).

Remark 4.1.1 (Warning). Note that (a b) · φ and φ(a↔b) are not different
notations for the same operation. For example,

(a b) · Na.p(a, x) = Na′.p(a′, (a b) · x)

where α-renaming is necessary to propagate the swapping under the quantifier,
and the swapping is left suspended on X, whereas

( Na.p(a, x))(a↔b) = Nb.p(b, x) .

In addition, the swapping operator may swap arbitrary (well-formed) terms, for
example ((a Y ) ·X (X X) · a) ·φ is a legal application of a swapping to a formula.
Intuitively, (a b) · x is semantic swapping of the values of a, b in the value of x,
whereas t(a↔b) is syntactic swapping of the symbols a, b in the term or formula t.

4.1.1 Languages, Contexts, and Well-Formedness

As usual in logic, we need to specify the sort and term languages over which we
will operate.

Definition 4.1.2 (Languages). A language L is a structure

L = (NSort,DSort, {f : σ → σ′, . . .}, {p : σ → prop, . . .})

identifying the name- and data-sorts, and listing additional function and relation
symbols along with their sorts.

The built-in functions and relation symbols have types

swapνσ : ν × ν × σ → σ

absνσ : ν × σ → 〈ν〉σ
eqσ : σ × σ → prop

freshνσ : ν × σ → prop

The subscripts are usually omitted.

In addition, we will use contexts to track the uses of variables and name-
constants. Contexts will also contain information about freshness.

Definition 4.1.3 (Contexts). A context Σ is a sequence of variables and name-
constants as generated by the following grammar:

Σ ::= · | Σ, xσ | Σ#aν

The set of all contexts is called Ctxt.
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aν ∈ Σ
Σ ` a : ν

xσ ∈ Σ
Σ ` x : σ Σ ` 〈〉 : 1

f : σ → σ′ ∈ L Σ ` t : σ

Σ ` f(t) : σ′

Σ ` t1 : σ1, t2 : σ2

Σ ` 〈t1, t2〉 : σ1 × σ2

Σ ` a, b : ν, t : σ

Σ ` (a b) · t : σ

Σ ` a : ν, t : σ

Σ ` 〈a〉t : 〈ν〉σ

Figure 4.1: Well-formedness rules for terms

Σ ` >,⊥ : prop

p : σ → prop ∈ L Σ ` t : σ

Σ ` p(t) : prop

Σ ` φ : prop

Σ ` ¬φ : prop

Σ ` φ : prop, ψ : prop

Σ ` φ ∧ ψ, φ ∨ ψ, φ ⊃ ψ : prop

Σ, xσ ` φ : prop

Σ ` ∀xσ.φ,∃xσ.φ : prop

Σ#aν ` φ : prop

Σ ` Naν .φ : prop

Figure 4.2: Well-formedness rules for formulas

We write aν ∈ Σ, xσ ∈ Σ if aν or xσ appears in Σ respectively. We write Σ; Σ′

for the sequential composition of two contexts, i.e.,

Σ; · = Σ

Σ; Σ′#a = (Σ; Σ′)#a

Σ; Σ′, x = (Σ; Σ′), x

Let L be a language and Σ a context. A term t is well-formed (at sort σ)
provided Σ ` t : σ is derivable using the typechecking rules of Figure 4.1. A
formula φ is well-formed provided Σ ` φ : prop is derivable using the typechecking
rules of Figure 4.2. (The rules with multiple conclusions abbreviate several rules
each with the same hypotheses and different conclusions.) We write TΣ(σ) and FΣ

for the sets of terms of sort σ and formulas well-formed with respect to context Σ.
Note that the set Ctxt of all contexts, T∅(σ), and F∅ are each nominal subsets of
the term universe T. In what follows, all formulas and terms are assumed to be
well-formed with respect to some language and context.

We identify collections of αProlog declarations with languages in the obvious
way.

Example 4.1.4. Consider the αProlog signature

n : type. z : n. s : n→ n. iszero(n). (4.3)

for unary arithmetic. Well-formed terms and formulas include iszero(z), s(z) # z,
and s(s(z)).

Example 4.1.5. Consider the αProlog signature

id : name type. exp : type.

var : id→ exp. app : exp× exp→ exp. lam : 〈id〉exp→ exp (4.4)
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for the syntax of λ-terms. Well-formed terms and formulas include a # app(x, y),
var(a), and lam(〈a〉x).

Lemma 4.1.6. If Σ, x : σ,Σ′ ` u : τ and Σ ` t : σ then Σ,Σ′ ` u{t/x} : τ .
If Σ, x : σ,Σ′ ` φ : prop and Σ ` t : σ then Σ,Σ′ ` φ{t/x} : prop.
If Σ ` t : σ then Σ(a↔b) ` t(a↔b) : σ.
If Σ ` φ : prop then Σ(a↔b) ` φ(a↔b) : prop.

Proof. The proof in each case is by induction on the first derivation, and is easy.

Note that if a follows x in Σ, then we may not substitute a term containing a
for x. The importance of this will be clarified later, when we show how to read
freshness constraints from contexts.

4.2 Semantics

In this section, let a fixed language L be given. We will show how to interpret
the nominal language L in a collection of nominal sets Nom∗ with set of names
A∗, name-group G∗, and support ideal I∗ over A∗. We require Nom∗ to contain a
terminal element 1∗, and to be closed under products and abstraction.

Definition 4.2.1 (Sort interpretations). A basic sort interpretation is a pair of
mappings δ 7→ S[[δ]] : DSort → Nom∗ from data sorts to nominal sets in Nom∗,
and ν 7→ S[[ν]] : NSort → {A ∈ Nom∗ | A a name-set}, an injective mapping
from name-sorts to name-sets. It can be extended to a full sort interpretation as
follows:

• S[[1]] = 1.

• For any name-sort ν and sort σ, S[[〈ν〉σ]] = 〈S[[ν]]〉S[[σ]].

• For any sorts σ, σ′, S[[σ × σ′]] = S[[σ]]× S[[σ′]].

The universe M of a sort interpretation is the union

M =
⋃
σ

S[[σ]]

of all the interpretations of all the sorts.

Definition 4.2.2 (Valuations). A valuation is a finite-domain partial function
ρ : A → M satisfying ρ(xσ) ∈ S[[σ]] for each xσ ∈ V and ρ(aν) ∈ S[[ν]] for each
aν ∈ A.

A valuation ρ matches a context Σ (written ρ : Σ) if FV (Σ) ⊂ Dom(ρ) and for
every sub-context of Σ of the form Σ′#a, we have ρ(a) # ρ(x) for every x ∈ Σ′.

The set of all valuations (matching a context Σ) is called V al (V al(Σ)).
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We write ρ[x 7→ v] for the valuation that maps x to v and otherwise simulates
ρ.

Example 4.2.3. Consider the valuation [x 7→ a, y 7→ b]. This is well-formed with
respect to the contexts x, y; y, x; a, x, y; and a, x#b, y, and so on, but not with
respect to x, y#a or x#a, y#b, etc.

Remark 4.2.4 (Nominal set of valuations). Note that the set of all finite-
domain valuations V al can be viewed as a nominal set, namely, V al =

⋂
σ V

σ →
S[[σ]]. In addition, the valuation update operation ρ, x, v 7→ ρ[x 7→ v] : V al×V σ×
S[[σ]] → V al is equivariant. Also, the construction V al(Σ) = {ρ ∈ V al | ρ : Σ} is
equivariant, so supp(V al(Σ)) = supp(Σ).

Definition 4.2.5 (Term interpretations). A basic term interpretation is a map-
ping f 7→ T [[f ]] such that if Σ ` f : σ → σ′, then T [[f ]] is an equivariant function
mapping S[[σ]] → S[[σ′]].

If Σ ` t : σ and ρ : Σ then the value T [[t]]ρ of t is defined by the rules

T [[a]]ρ = ρ(a) (4.5)

T [[x]]ρ = ρ(x) (4.6)

T [[〈〉]]ρ = 〈〉 (4.7)

T [[f(t)]]ρ = T [[f ]](T [[t]]ρ) (4.8)

T [[〈t1, t2〉]]ρ = (T [[t1]]ρ, T [[t2]]ρ) (4.9)

T [[(t1 t2) · t]]ρ = (T [[t1]]ρ T [[t2]]ρ) ·S[[σ]] T [[t]]ρ (t : σ) (4.10)

T [[〈t1〉t2]]ρ = 〈T [[t1]]ρ〉T [[t2]]ρ (4.11)

Proposition 4.2.6. If ρ : Σ and Σ ` t : σ then T [[t]]ρ ∈ S[[σ]].

The proof is straightforward.

Definition 4.2.7 (Formula interpretations). A basic formula interpretation is
a mapping from uninterpreted predicate symbols p : σ → prop to an equivariant re-
lation P [[p]] on S[[σ]] (or, a nominal subset of S[[σ]]). A basic formula interpretation
is extended to ≈ and # formulas as follows:

P [[freshνσ]] = {(t, u) | t ∈ S[[ν]], u ∈ S[[σ]], t # u} (4.12)

P [[eqσ]] = {(t, u) | t = u ∈ S[[σ]]} (4.13)

Definition 4.2.8 (Structures). A structure M = (M,S[[·]], T [[·]],P [[·]]) consists
of a universe, a sort interpretation, a term interpretation, and a formula interpre-
tation.

The satisfiability relation �M relating contexts, M-valuations and formulas is
defined by the rules in Figure 4.3. The judgment Σ : ρ �M φ is well-formed when
ρ : Σ and Σ ` φ : prop.
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Σ : ρ � > for any ρ : Σ
Σ : ρ 6� ⊥ for any ρ : Σ
Σ : ρ � ¬φ if Σ : ρ 6� φ
Σ : ρ � φ ∧ ψ if Σ : ρ � φ and Σ : ρ � ψ
Σ : ρ � φ ∨ ψ if Σ : ρ � φ or Σ : ρ � ψ
Σ : ρ � φ ⊃ ψ if Σ : ρ � ψ whenever Σ : ρ � φ
Σ : ρ � p(t) if ρ(t) ∈ [[p]]
Σ : ρ � ∀xσ.φ if Σ, x : ρ[x 7→ v] � φ for all v ∈ [[σ]], x 6∈ Σ
Σ : ρ � ∃xσ.φ if Σ, x : ρ[x 7→ v] � φ for some v ∈ [[σ]], x 6∈ Σ
Σ : ρ � Naν .φ if Σ#a : ρ[a 7→ v] � φ for v ∈ [[ν]]− supp(ρ), a 6∈ Σ

Figure 4.3: Satisfiability relation for nominal logic

Remark 4.2.9 (Abuse of notation). When there is no possibility of confusion,
we write [[·]] for S[[·]], T [[·]],P [[·]], as appropriate; we also write ρ(t) for T [[t]]ρ when
the term interpretation is clear from context. The superscript on �M is omitted
when clear from context.

Definition 4.2.10 (Models). We say M is a model of φ or φ is valid in M
(M � φ) if Σ : ρ �M φ for each Σ ` φ : prop and ρ : Σ, and M is a model of Γ
if M � φ for every φ ∈ Γ.

4.2.1 Examples

Example 4.2.11 (Definable sets of names). Consider a unary predicate sym-
bol p : ν → prop over a name-sort ν. Because of equivariance, p(x) is either true
of every name or of no names. Therefore, there are only two unary predicates on
a name-sort, equivalent to truth and falsity, and only two definable subsets of [[ν]],
namely [[ν]] and ∅.

Example 4.2.12 (Definable relations on names). Now consider a binary
predicate q : ν × ν → prop. By equivariance, the behavior of q is determined
by the two formulas Q1 = Na.q(a, a) and Q2 = Na. Nb.q(a, b). Hence, there are
four possible binary relations on names, equivalent to truth, falsity, equality, and
freshness, according as both, neither, Q1 only, and Q2 only hold for q respectively.

This implies that there can be no nontrivial, equivariant partial ordering on
names, that is, no reflexive, transitive, antisymmetric relation ≤. For if a ≤ b holds
for a 6= b then so does b ≤ a by equivariance, and we have a ≈ b, contradicting
the antisymmetry property of ≤.

Example 4.2.13 (Theorems). We now consider some valid formulas.

1. Na, b.p(a, b) ⊃ p(b, a). This reduces to checking that a#b : ρ � p(a, b) implies
a#b : ρ � p(b, a), which follows from the equivariance of [[p]].
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2. Na. Nb.a # b. For any valuation ρ : a # b, we have a#b : ρ � a # b since
a 6= b.

3. ∀x. Na, b.(a b) · x ≈ x. Applying the rules for �, this asks whether for any
v ∈ [[σ]], a # v, and b # a, v, we have (a b) · v = v. This is evident from
Proposition 3.2.16.

4. ∀x. Na, b.〈a〉x ≈ 〈b〉x . This asks whether for any v ∈ [[σ]] and a # b # [x 7→
v], we have 〈a〉x = 〈b〉x, i.e.

(a, v) ≡α (b, v) .

Since a 6= b, the only way that this could be is if [x 7→ v] � x ≈ (a b) · x and
[x 7→ v] � a # x; both are clearly true because a, b # v = [x 7→ v](x).

Example 4.2.14 (Non-theorems). Now we consider some invalid formulas.

1. ∀a, x, y.a # f(x, y) ⊃ a # x ∧ a # y. This formula has a countermodel
given by taking f(x, y) = 0 for some constant 0 and taking x, y, a = a. Then
a # 0 = f(a, a) but a # a is false.

2. Na.φ(a, a) ⊃ Na. Nb.φ(a, b). This formula has a counterexample given by
taking φ(x, y) to be x ≈ y. Then Na.a ≈ a holds but Na, b.a ≈ b does not.

3. Na. Nb.φ(a, b) ⊃ Na.φ(a, a). This formula has a counterexample given by
taking φ(x, y) = x # y. Then Na, b.a # b is valid but Na.a # a is not.

4.2.2 Semantic Properties

First we show that nominal models in general satisfy the freshness and equivariance
principles. Freshness means that for any finite collection of values we can find a
name fresh for all of the values simultaneously.

Theorem 4.2.15 (Logical freshness). The formula ∀xσ.∃aν .a # x is valid in
any nominal structure.

Proof. Let v ∈ [[σ]] be given. Then S = supp[[σ]](v) ∈ I. Since Aν 6∈ I, choose
a ∈ Aν − S. Then [x 7→ v, a 7→ a] � a # x because a 6∈ supp(v). The choice of v
was arbitrary, so M � ∀x.∃a.a # x.

Note that this property subsumes Pitts’ freshness axiom F4, which states
that ∀~x.∃a.a # ~x, because any finite sequence ~x can be translated to a n-tuple
〈x1, . . . , xn〉 such that a # x1 ∧ · · · ∧ a # xn ⇐⇒ a # 〈x1, . . . , xn〉.

Lemma 4.2.16 (Swapping and validity). Let ρ be a valuation and Σ ` a, b : ν.
The following are equivalent:

1. Σ : ρ � φ



4.2. SEMANTICS 69

2. Σ : ρ � (a a) · φ

3. Σ : ρ � (a b) · (a b) · φ.

Proof. The proof is by induction on the structure of φ using the definition of
(a b) · φ. All the cases are straightforward.

Theorem 4.2.17 (Logical equivariance). Let φ be a formula and a, b terms of
some name-sort ν. Then if Σ : ρ � φ then Σ : ρ � (a b) · φ.

Proof. Proof is by induction on the structure of φ.

• If Σ : ρ � p(t) (where p may be either ≈, #, or some other relation symbol)
then ρ(t) ∈ [[p]]. Set v = ρ(a), v′ = ρ(b). Then

ρ((a b) · t) = (v v′) · ρ(t) ∈ [[p]]

by the equivariance of [[p]] (see Lemma 3.2.14), so Σ : ρ � (a b) · p(t).

• If Σ : ρ � > then Σ : ρ � (a b) ·> = > trivially.

• Since Σ : ρ 6� ⊥, the case for ⊥ is vacuous.

• If Σ : ρ � ¬φ then Σ : ρ 6� φ by Lemma 4.2.16. So Σ : ρ 6� (a b) · (a b) · φ. By
the contrapositive of the induction hypothesis, we must have Σ : ρ 6� (a b) ·φ.

• If Σ : ρ � φ ∧ ψ then Σ : ρ � φ and Σ : ρ � ψ. By induction, then,
Σ : ρ � (a b) · φ and Σ : ρ � (a b) · ψ so Σ : ρ � (a b) · (φ ∧ ψ). The case for
∨ is dual.

• If Σ : ρ � φ ⊃ ψ then whenever Σ : ρ � φ it follows that Σ : ρ � ψ. By
induction, then, if Σ : ρ � (a b) · φ then Σ : ρ � (a b) · (a b) · φ, and then by
Lemma 4.2.16, Σ : ρ � φ, so Σ : ρ � ψ. By induction again, Σ : ρ � (a b) · ψ
so Σ : ρ � (a b) · (φ ⊃ ψ).

• If Σ : ρ � ∀xσ.φ then Σ, x : ρ[x 7→ v] � φ for all v ∈ [[σ]]. Then Σ, x :
ρ[x 7→ v] � (a b) · φ also for each v ∈ [[σ]]. So Σ : ρ � ∀x.(a b) · φ =
(a b) · ∀x.φ{(a b) · (a b) · x/x}, and since (a b) · (a b) · x ≈ x, we have
Σ : ρ � (a b) · ∀x.φ. The case for ∃ is dual.

• If Σ : ρ � Naν .φ then Σ#a : ρ[a 7→ v] � φ for aν 6∈ Σ, v ∈ [[ν]] − supp(ρ).
Obviously ρ[a 7→ v] : Σ#a, so by induction we have Σ#a : ρ[a 7→ v] � (a b)·φ,
and we may conclude that Σ : ρ � Na.(a b) · φ = (a b) · Na.φ.

This concludes the proof.

We now show some important properties of the satisfiability relation which will
be needed later on. First, satisfiability is preserved up to changing the context to
another one compatible with ρ.
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Lemma 4.2.18 (Context change). If Σ′ ` φ : prop and ρ : Σ′ and Σ : ρ � φ
then Σ′ : ρ � φ.

Proof. By induction on the structure of φ. The cases for propositional and atomic
formulas are straightforward. The quantifier cases are more interesting because Σ′

may mention different names than Σ. We do the ∀ and Ncases as representative
examples.

If φ = ∀x.ψ, then we know Σ, x : ρ[x 7→ v] � ψ for all v ∈ [[σ]]. Without
loss of generality, assume x is fresh for Σ′ as well as Σ. Let v ∈ [[σ]] be given.
Then ρ[x 7→ v] : Σ′, x since ρ : Σ. Then by induction, Σ′, x : ρ[x 7→ v] � ψ, so
Σ′ : ρ � ∀x.ψ.

If φ = Na.ψ, then we know Σ#a : ρ[a 7→ v] � ψ where a 6∈ Σ and v ∈
[[ν]] − supp(ρ). Without loss of generality, assume a is fresh for Σ′ as well. Then
ρ[a 7→ v] : Σ′#a. By induction, Σ′#a : ρ � ψ, so Σ′ : ρ � Na.ψ.

Theorem 4.2.19 (Semantic freshness). If aν is fresh for Σ, φ, then Σ : ρ � φ
iff Σ#a : ρ[a 7→ v] � φ for v ∈ [[ν]]− supp(ρ).

If xσ is fresh for Σ, φ, ρ, then Σ : ρ � φ iff Σ, x : ρ[x 7→ v] � φ for any v ∈ [[σ]].

Proof. For the forward direction, apply Lemma 4.2.18 with Σ′ = Σ#a and ρ′ =
ρ[a 7→ v] for some v ∈ [[ν]] − supp(ρ). Clearly Σ′ ` φ : prop, and since ρ : Σ and
a # ρ, we have ρ : Σ′, so we must have Σ#a : ρ � φ.

For the reverse direction, the result follows from Lemma 4.2.18 and the facts
that if ρ[a 7→ v] : Σ#a then ρ : Σ and if Σ#a ` φ : prop and a does not appear in
φ then Σ ` φ : prop.

The second part is straightforward.

Theorem 4.2.20 (Semantic equivariance). Let a, b be compatible names. Then
Σ : ρ � φ if and only if Σ(a↔b) : ρ(a↔b) � φ(a↔b).

Proof. The proof is a straightforward induction on the structure of φ. The only
difficult cases are those involving quantifiers, but we can assume that the bound
names involved are fresh for a and b so there is no problem. For example, in the
∀ case, the proof goes as follows.

Suppose Σ : ρ � ∀x.ψ. Assume without loss that x is fresh for a, b,Σ, ρ.
Then Σ, x : ρ[x 7→ v] � ψ for every v ∈ [[σ]]. Let v ∈ [[σ]] be given. Then
Σ, x : ρ[x 7→ v(a↔b)] � ψ holds. By induction, we have

(Σ, x)(a↔b) : (ρ[x 7→ v(a↔b)])(a↔b) � ψ(a↔b)

Moreover, using various equivariance properties, this is equivalent to

Σ(a↔b), x(a↔b) : ρ(a↔b)[x(a↔b) 7→ v(a↔b)(a↔b)] � ψ(a↔b)

Because x # a, b, we have x(a↔b) = x, and because (a↔b) is an involution, we
have v(a↔b)(a↔b) = v, so

Σ(a↔b), x : ρ(a↔b)[x 7→ v] � ψ(a↔b)

Since v was arbitrary, we may conclude that Σ(a↔b) : ρ(a↔b) � φ(a↔b).
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4.3 A Sequent Calculus

So far we have established validity and invalidity for several formulas of nominal
logic semantically. In this section we introduce a Gentzen-style sequent calculus
for NL. This system is an extension of a standard sequent calculus for classical
first-order logic.

The judgments are sequents of the form Σ : Γ ⇒ ∆, where Σ is a context, and Γ
and ∆ are finite (multi)sets of formulas well-formed with respect to Σ. Intuitively,
a sequent Σ : Γ ⇒ ∆ means “Assuming all the formulas of Γ are true, at least one
of the formulas of ∆ is true”.

The standard sequent calculus rules for of first-order logic are presented in
Figure 4.4. The additional rules of NL are shown in Figure 4.6 and Figure 4.7.
The notation Σ|a in the Σ# rule is defined in Section 4.3.4. Some convenient
admissible rules are shown in Figure 4.5. These rules will be proved to be admissible
in Section 4.4; that is, they can be simulated using the base rules of NL⇒.

4.3.1 Basic Properties

The sequent calculus for NL satisfies the following basic properties.

Lemma 4.3.1 (Weakening). If Σ : Γ ⇒ ∆ is derivable then Σ : Γ,Γ′ ⇒ ∆,∆′

has a derivation of the same height.

Lemma 4.3.2 (Contraction). If Σ : Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′ is derivable then Σ :
Γ,Γ′ ⇒ ∆,∆′ has a derivation of the same height.

Lemma 4.3.3 (Substitution). If Σ, xσ; Σ′ : Γ ⇒ ∆ is derivable and Σ ` t : σ
then Σ; Σ′ : Γ{t/xσ} ⇒ ∆{t/xσ}, has a derivation of the same height.

Lemma 4.3.4 (Exchange). If Σ : Γ ⇒ ∆ is derivable and a and b are compatible
then Σ(a↔b) : Γ(a↔b) ⇒ ∆(a↔b) has a derivation of the same height.

The proofs of these properties are by straightforward structural induction on
derivations.

4.3.2 The Non-Logical Rules

The rules dealing with equality, freshness, swapping, and abstraction are referred
to as non-logical rules because they deal with atomic formulas rather than logical
connectives. In this section we give some intuition for the meanings and purposes
of these rules.

• (S1)–(S3): These axioms describe basic properties of swapping. From them,
additional properties are derivable, for example using (S2) and (S3):

(a b) · b ≈ (a b) · (a b) · a ≈ a

gives the dual form of (S3).
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Σ : Γ, A⇒ A,∆
hyp

Σ : Γ ⇒ >,∆ >R
Σ : Γ,⊥ ⇒ ∆

⊥L

Σ : Γ ⇒ φ,∆ Σ : Γ ⇒ ψ,∆

Σ : Γ ⇒ φ ∧ ψ,∆ ∧R
Σ : Γ, φ1, φ2 ⇒ ∆

Σ : Γ, φ1 ∧ φ2 ⇒ ∆
∧L

Σ : Γ ⇒ φ1, φ2,∆

Σ : Γ ⇒ φ1 ∨ φ2,∆
∨R

Σ : Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

Σ : Γ, φ ∨ ψ ⇒ ∆
∨L

Σ : Γ, φ⇒ ψ,∆

Σ : Γ ⇒ φ ⊃ ψ,∆
⊃R

Σ : Γ ⇒ φ,∆ Σ : Γ, ψ ⇒ ∆

Σ : Γ, φ ⊃ ψ ⇒ ∆
⊃L

Σ : Γ, φ⇒ ∆

Σ : Γ ⇒ ¬φ,∆ ¬R
Σ : Γ ⇒ φ,∆

Σ : Γ,¬φ⇒ ∆
¬L

Σ, x : Γ ⇒ φ,∆ (x 6∈ Σ)

Σ : Γ ⇒ ∀x.φ,∆ ∀R
Σ ` t : σ Σ : Γ,∀xσ.φ, φ{t/x} ⇒ ∆

Σ : Γ,∀xσ.φ⇒ ∆
∀L

Σ ` t : σ Σ : Γ ⇒ ∃xσ.φ, φ{t/x},∆
Σ : Γ ⇒ ∃xσ.φ,∆

∃R
Σ, x : Γ, φ⇒ ∆ (x 6∈ Σ)

Σ : Γ,∃x.φ⇒ ∆
∃L

Σ : Γ, t ≈ t⇒ ∆
Σ : Γ ⇒ ∆

≈R
Σ : Γ, t ≈ u, φ(t), φ(u) ⇒ ∆

Σ : Γ, t ≈ u, φ(t) ⇒ ∆
≈S

Figure 4.4: Sequent calculus for classical first-order equational logic

Σ : Γ, φ⇒ φ,∆
hyp∗

Σ : Γ ⇒ φ,∆ Σ : Γ′, φ⇒ ∆′

Σ : Γ,Γ′ ⇒ ∆,∆′ cut

Σ : Γ, (a b) · φ⇒ ∆

Σ : Γ, φ⇒ ∆
EV L

Σ : Γ ⇒ (a b) · φ,∆
Σ : Γ ⇒ ∆, φ

EV R

Figure 4.5: Some admissible rules of NL⇒
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(S1) (a a) · x ≈ x
(S2) (a b) · (a b) · x ≈ x
(S3) (a b) · a ≈ a
(E〈〉) (a b) · 〈〉 ≈ 〈〉
(E×) (a b) · 〈x, y〉 ≈ 〈(a b) · x, (a b) · y〉
(Ef ) (a b) · f(x) ≈ f((a b) · x)
(Ep) p(x) ⊃ p((a b) · x)
(F1) a # x ∧ b # x ⊃ (a b) · x ≈ x
(F2) aν # bν

′
(ν 6≡ ν ′)

(F3a) a # a ⊃ ⊥
(F3b) a # b ∨ a ≈ b
(A1) a # x ∧ x ≈ (a b) · y ⊃ 〈a〉x ≈ 〈b〉y
(U) x1 ≈ 〈〉

Figure 4.6: Equational and freshness axioms

Σ : Γ, P,Q1 ⇒ ∆ · · · Σ : Γ, P,Qn ⇒ ∆
Σ : Γ, P ⇒ ∆

Ax P ⊃
∨
Q an axiom instance

Σ ` t : 〈ν〉σ Σ#aν , xσ : Γ, t ≈ 〈a〉x⇒ ∆ (a, x /∈ Σ)

Σ : Γ ⇒ ∆
A2

Σ ` t : σ1 × σ2 Σ, xσ1
1 , x

σ2
2 : Γ, t ≈ 〈x1, x2〉 ⇒ ∆ (x1, x2 /∈ Σ)

Σ : Γ ⇒ ∆
P

Σ|a ` u : σ Σ : Γ, a # u⇒ ∆

Σ : Γ ⇒ ∆
Σ#

Σ#a : Γ ⇒ ∆ (a /∈ Σ)

Σ : Γ ⇒ ∆
F

Σ#a : Γ ⇒ φ,∆ (a /∈ Σ)

Σ : Γ ⇒ Na.φ,∆
NR

Σ#a : Γ, φ⇒ ∆ (a /∈ Σ)

Σ : Γ, Na.φ⇒ ∆
NL

Figure 4.7: NL⇒ sequent rules
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• (E〈〉), (E×), (Ef ), (Ep): These equivariance axioms assert that swapping
has no effect on constants, commutes with built-in function symbols, and
preserves the validity of atomic formulas. Together these amount to the
Equivariance principle mentioned in Chapter 1. Note that (Ef ) includes
equivariance for swapping and abstraction and (Ep) includes equivariance for
freshness and equality as special cases.

• (F1)–(F3): These freshness axioms define the behavior of the # predicate
and relate it to swapping. (F1) asserts that swapping two fresh names has
no effect; (F2) that different name-sorts are disjoint; and (F3a–F3b) that for
pairs of names, freshness coincides with inequality.

• (Σ#): This rule can be used to extract freshness information from the context
Σ. Intuitively, Σ|a is Σ with all variables that might mention a removed. The
Σ# rule and Σ|a notation are discussed further in Section 4.3.4.

• (F ): Read bottom-up this rule says we can always generate a completely fresh
name a. This embodies the Freshness principle mentioned in Chapter 1.

• (A1): This axiom indicates that abstractions are equal up to α-equivalence.
Two abstractions are equal provided their bodies are equal up to swapping
the abstracted names and the name abstracted on one side is fresh for the
other. This defines α-equivalence in terms of swapping. This is a logical
version of Definition 3.3.18.

• (U), (P ), (A2) These rules are surjectivity laws for units, pairing, and ab-
straction. The (U) rule says that the only element of the unit sort is 〈〉. The
(P ) rule says that any element of the pair sort can be decomposed into a
pair. The (A2) rule is a surjectivity property indicating that any abstraction
can be “freshened” to a fresh name-constant a and some body x.

• (≈R), (≈S): These rules deal with equality. The (≈R) rule indicates that
equality is reflexive, whereas (≈S) is the substitution property. The latter
can be used to derive symmetry, transitivity and congruence properties of
equality as well [93].

Note that the numbering of the A, F , and S axiom groups reflects that of the
axioms of Pitts’ system, for comparison with [108].

4.3.3 The New-Quantifier Rules

The rules NR and NL are symmetric; we consider just NR. The N-quantifier ought
to satisfy the “some/any” equivalences

Na.φ(a, ~x) ⇔ ∃a.a # ~x ∧ φ(a, ~x) ⇔ ∀a.a # ~x ⊃ φ(a, ~x) (4.14)
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where ~x = FV ( Na.φ). So at first sight a sequent rule such as

Γ, a # ~x⇒ φ

Γ ⇒ Na.φ (4.15)

(where FV ( Na.φ) = ~x and a is fresh) might seem appropriate. Such rules were
proposed by Gabbay and Pitts [42, 108] in earlier papers on FM and nominal logic.
However, these rules are not well-behaved with respect to substitution. Deduction
rules should be closed under substitution; this property greatly simplifies the proof
of the cut-elimination cases for ∀ and ∃. But (4.15) is not closed under substitution,
for substituting a non-variable term such as a constant c for one of the ~x results
in a non-instance. The obvious approach to introducing a rule for the Freshness
Principle has the same problem.

One approach to fixing this problem (due to Gabbay, and used in [40, 41]) is
to generalize the rule to something like

Γ, a # ~t⇒ φ(a,~t)

Γ ⇒ Na.φ(a,~t) (4.16)

where φ(a,~t) is a decomposition of φ into a name-free context with n+1 holes, one
for a and one for each of the n terms ~t. This decomposition is called a slice of φ
over a, and has the desirable property that if φ(a,~t) is a slice, then φ(a,~t){u/x} =
φ(a,~t{u/x}) is also a slice. This results in a rule that is closed under substitution,
but the resulting system is rather difficult to explain and analyze.

We propose a much cleaner approach using a structured context Σ to summarize
all the information about freshness that is needed for the freshness rule F and

N-rules. To deal with these rules, all we need to know is the order in which
variables and name-constants have been introduced. A name-constant that has
been introduced by Nmore recently than a variable can be assumed to be fresh
for that variable. Our rule for NR is therefore

Σ#a : Γ ⇒ φ

Σ : Γ ⇒ Na.φ
NR

(4.17)

Intuitively, this rule states that to prove Na.φ from Γ, it suffices to show φ from
Γ under the assumption that a is completely fresh in the current context. On the
other hand the left-rule

Σ#a : Γ, φ⇒ ψ

Σ : Γ, Na.φ⇒ ψ
NL

(4.18)

says that to prove ψ from Γ and Na.φ, it suffices to prove ψ from Γ and φ assuming
that a is completely fresh. (Compare these rules with the informal proof principles
for Ndiscussed in Section 3.2.5). In both cases, recall that N-quantified formulas
are subject to α-equivalence, so there is no loss of generality involved in assuming
that the bound variable is fresh (does not appear in Σ).

Both the rules and the cut-elimination proof of NL⇒ are more straightforward
than for any other proof system for nominal logic. The price that we pay for this
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simplicity is that the semantics is more complicated because of the presence of an
explicit context. However, this is essentially a cosmetic difference, and keeping
track of variables in the semantic judgments has advantages as well.

4.3.4 Contexts and Freshness

We formally define the notation Σ|a used in the Σ# rule.

Definition 4.3.5 (Context restriction). Let Σ be a context and a ∈ Σ. Then
the context restriction of Σ to a is defined recursively as

Σ#a|a = Σ

Σ#b|a = Σ|a#b

Σ, x|a = Σ|a

In words, the context restriction removes all variables from Σ that may mention
a, that is, those to the right of a. The Σ# rule says that it is safe to assume a # t
if t is well-formed in Σ|a. This allows us to use freshness information derivable
from Σ in a proof. Note that name-constants on either side of a are guaranteed to
be different from a, so the restriction operation only needs to remove variables.

Contexts are equivalent up to rearranging variables and name-constants as long
as freshness relationships do not change. For example, x, y#a#b and y, x#b#a
are logically equivalent contexts. In addition, some contexts are “stronger” (more
restrictive) than others, for example x, y#a#b is more restrictive than x#a, y#b,
since a may appear in y in the latter but not the former. We now make these
intuitive notions formal.

Definition 4.3.6. We define the is weaker than relation ≤ on contexts as the least
partial order satisfying:

1. Σ, x, y ≤ Σ, y, x

2. Σ#a#b ≤ Σ#b#a

3. Σ#a, x ≤ Σ, x#a

4. Σ ≤ Σ#a (if a 6∈ Σ)

5. Σ ≤ Σ, x (if x 6∈ Σ)

6. Σ ≤ Σ′ implies Σ; Σ′′ ≤ Σ′; Σ′′

We say Σ,Σ′ are equivalent (written Σ ≡ Σ′) if Σ ≤ Σ′ and Σ′ ≤ Σ.

Clearly, ≡ is a congruence respecting the structure of contexts, by property
(6). Moreover, Σ ≤ Σ′ if and only if there is a finite chain of uses of reflexivity,
transitivity, and properties (1)–(6) above.

Context restriction respects weakening.
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Lemma 4.3.7. If a ∈ Σ ≤ Σ′ then Σ|a ≤ Σ′|a.

Proof. The proof is by induction on the derivation of Σ ≤ Σ′. The only interesting
cases are the ones involving a.

In the case of Σ#a#b ≤ Σ#b#a, we have Σ#a#b|a = Σ#b = Σ#b#a|a.
If Σ#a, x ≤ Σ, x#a then Σ#a, x|a = Σ ≤ Σ, x = Σ, x#a|a.
If Σ ≤ Σ#b then b 6= a so Σ|a ≤ Σ|a#b = Σ#b|a.

Proposition 4.3.8 (Context weakening). If Σ ≤ Σ′ and

1. Σ ` t : σ then Σ′ ` t : σ

2. Σ ` φ : prop then Σ′ ` φ : prop

3. Σ : Γ ⇒ ∆ then Σ′ : Γ ⇒ ∆.

Proof. Parts (1) and (2) are trivial since the order of the names and variables in
Σ is irrelevant to typing.

Part (3) is a straightforward induction on the derivation, using parts (1), (2),
and Lemma 4.3.7 as appropriate.

From now on we may use this property whenever convenient without explicit
citation.

4.3.5 Example Derivations

We first show an important property of N: namely, it is equivalent to either an
existential or universal formula.

Lemma 4.3.9. Let φ(b) be a well-formed formula in Σ, bν. Let b # Σ abbreviate

b # ~x ∧ b # ~b, where ~x = FV (Σ) and ~b = FN(Σ). Assume aν 6∈ Σ. Then the
following are equivalent:

∀b.b # Σ ⊃ φ(b) (4.19)

Na.φ(a) (4.20)

∃b.b # Σ ∧ φ(b) (4.21)

Proof. First, note that Σ#a ` a # Σ.
To prove (4.20) from (4.19), we have

...
Σ#a : · ⇒ a # Σ

Σ#, hyp
Σ#a : φ(a) ⇒ φ(a)

hyp

Σ#a : a # Σ ⊃ φ(a) ⇒ φ(a)
⊃L

Σ#a : ∀b.b # Σ ⊃ φ(b) ⇒ φ(a)
∀L

Σ : ∀b.b # Σ ⊃ φ(b) ⇒ Na.φ(a)
NR
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To prove (4.21) from (4.20), we have the derivation

...
Σ#a : · ⇒ a # Σ

Σ#, hyp
Σ#a : φ(a) ⇒ φ(a)

hyp

Σ#a : φ(a) ⇒ a # Σ ∧ φ(a)
∧R

Σ#a : φ(a) ⇒ ∃b.b # Σ ∧ φ(b)
∃R

Σ : Na.φ(a) ⇒ ∃b.b # Σ ∧ φ(b)
NL

To prove (4.19) from (4.21), we have

Σ, b, b′ : φ(b′) ⇒ φ(b′)
hyp

Σ, b, b′ : b′ # Σ, b # Σ, (b b′) · φ(b) ⇒ φ(b′)
≈

Σ, b, b′ : b′ # Σ, b # Σ, φ(b) ⇒ φ(b′)
EV

Σ, b, x : b # Σ, φ(b) ⇒ b′ # Σ ⊃ φ(b′)
⊃R

Σ, b : b # Σ, φ(b) ⇒ ∀b.b # Σ ⊃ φ(b)
∀R

Σ, b : b # Σ ∧ φ(b) ⇒ ∀b.b # Σ ⊃ φ(b)
∧L

Σ : ∃b.b # Σ ∧ φ(b) ⇒ ∀b.b # Σ ⊃ φ(b)
∃L

This completes the proof.

We now provide several additional derivations of valid sequents in NL.

1. Σ : · ⇒ Na.a # x, where x ∈ Σ.

Σ#a : a # x· ⇒ a # x

Σ#a : · ⇒ a # x

Σ : · ⇒ Na.a # x
NR

2. Σ : · ⇒ Na. Nb.(a b) · x ≈ x

Σ#a#b : (a b) · x ≈ x⇒ (a b) · x ≈ x

Σ#a#b : · ⇒ (a b) · x ≈ x
Ax

Σ#a : · ⇒ Nb.(a b) · x ≈ x
NR

Σ : · ⇒ Na. Nb.(a b) · x ≈ x
NR

3. Σ : a # x⇒ Nb.(a b) · x ≈ x

Σ#b : a # x, (a b) · x ≈ x⇒ (a b) · x ≈ x

Σ#b : a # x⇒ (a b) · x ≈ x
Ax

Σ : a # x⇒ Nb.(a b) · x ≈ x
NR

4. Σ : Nb.(a b) · x ≈ x⇒ a # x

Σ#b : a # x⇒ a # x

Σ#b : b # (a b) · x⇒ a # x
EV,Ax

Σ#b : (a b) · x ≈ x⇒ a # x
≈S

Σ : Nb.(a b) · x ≈ x⇒ a # x
NL
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4.4 Proof-Theoretic Properties

In this section we will discuss some of the proof-theoretic properties of NL⇒. First,
we show that several structural rules are admissible in NL. We have already seen
several examples, namely contraction, weakening, substitution, and renaming lem-
mas. The proofs of these properties are straightforward extensions of the proofs
for ordinary first-order logic. In addition, we show that the general hypothesis
and equivariance rules (in which the principal formula is arbitrary) are admissible
assuming only atomic versions of these rules. Next, we show cut-elimination. We
conclude with a discussion of issues such as consistency, Skolemization, and the
relationship of NL⇒ to Pitts’ axiomatization.

4.4.1 General Equivariance and Hypothesis Rules

The equivariance axiom shown in Figure 4.6 and the hypothesis rule in Figure 4.4
are apparently restrictive in that the hypothesis rule and the equivariance axiom
are restricted to apply only to atomic formulas. This restriction greatly simplifies
proof search, as well as simplifying the proof of cut-elimination given in the next
section. Nevertheless, it is not a real restriction, since general equivariance rules
(on the right and left) and a general hypothesis rule are admissible.

Lemma 4.4.1 (Admissibility of EV L, EV R). The EV L and EV R rules

Σ : Γ, (a b) · φ⇒ ∆

Σ : Γ, φ⇒ ∆
EV L

Σ : Γ ⇒ (a b) · φ,∆
Σ : Γ ⇒ φ,∆

EV R

where φ is an arbitrary formula, are admissible.

Proof. The proof is by induction on the weight of a derivation: the number of
logical rules (that is, hyp and left and right rules) used in the derivation. We
proceed by induction to show that if the hypothesis of an instance of EV L or
EV R has a derivation then the conclusion of the respective rule has a derivation
of the same weight.

We first consider EV L. The only interesting cases are when (a b)·φ is principal
on the left, otherwise the induction step is straightforward. Furthermore, only the
cases for hyp and ⊃L are nontrivial.

If the derivation is of the form

Γ, (a b) · A⇒ (a b) · A,∆

then we may derive Γ, A⇒ (a b) · A,∆ as follows:

Σ : Γ, (a b) · A⇒ (a b) · A,∆
Σ : Γ, A⇒ (a b) · A,∆

Ep

This derivation has the same weight, 1, as the first.
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If the derivation is of the form

Σ : Γ, (a b) · P ⊃ (a b) ·Q⇒ (a b) · P,∆ Σ : Γ, (a b) ·Q⇒ ∆

Σ : Γ, (a b) · P ⊃ (a b) ·Q⇒ ∆
⊃L

then using the admissibility of EV R and EV L on the left and EV R on the right
we obtain

Σ : Γ, (a b) · P ⊃ (a b) ·Q⇒ (a b) · P,∆
Σ : Γ, P ⊃ Q⇒ P,∆

EV L,EV R
Σ : Γ, (a b) ·Q⇒ ∆

Σ : Γ, Q⇒ ∆
EV L

Σ : Γ, P ⊃ Q⇒ ∆
⊃L

This transformation is obviously weight-preserving by induction.
For EV R, the interesting cases are those for hyp and ⊃R where (a b) · φ is

principal on the right. Suppose the derivation is of the form

Γ, (a b) · A⇒ (a b) · A,∆

Then we can derive

Γ, (a b) · (a b) · A⇒ A,∆
≈, hyp

Γ, (a b) · A⇒ A,∆
Ep

This derivation has the same weight, 1, as the first.
If the derivation is of the form

Γ, (a b) · P ⇒ (a b) ·Q,∆
Γ ⇒ (a b) · P ⊃ (a b) ·Q,∆ ⊃R

then since EV L and EV R are admissible for all subderivations of this derivation,
by induction we can derive

Γ, (a b) · P ⇒ (a b) ·Q,∆
Γ, P ⇒ Q,∆

EV L,EV R

Γ ⇒ P ⊃ Q,∆
⊃R

This transformation is obviously weight-preserving by induction.

Lemma 4.4.2 (Admissibility of hyp∗). The hyp∗ rule

Σ : Γ, φ⇒ φ,∆
hyp∗

where φ is an arbitrary formula, is admissible.

Proof. The cases for the ordinary connectives of first-order logic are standard.
The case for φ = Na.P is as follows. By induction, we may assume that Σ#a#a′ :
Γ, P (a′) ⇒ P (a′),∆ is derivable. We derive

Σ#a#a′ : Γ, P (a′) ⇒ P (a′),∆

Σ#a#a′ : Γ, P (a) ⇒ P (a′),∆
EV L

Σ#a : Γ, P (a) ⇒ Na.P,∆
NR

Σ : Γ, Na.P ⇒ Na.P,∆
NL
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where nonlogical axioms are used to derive (a a′) · P (a) = P (a′) from P (a). Using
the induction hypothesis, the judgment Σ#a#a′ : Γ, P (a′) ⇒ P (a′),∆ is derivable,
since it is an instance of hyp∗ with a smaller principal formula.

4.4.2 Cut-Elimination

In this section we show that the cut-rule can be eliminated from derivations. This
is an important property that ensures that NL is a sensible sequent proof system.

Lemma 4.4.3 (Admissibility of cut). If Σ : Γ ⇒ ∆, φ and Σ : Γ′, φ⇒ ∆′ have
cut-free derivations then so does Σ : Γ,Γ′ ⇒ ∆,∆′.

Proof. As usual, the proof is by induction on the complexity of the cut formula φ,
and a sub-induction on the sum of the heights of the derivations Π of Γ ⇒ ∆, φ and
Π′ of Γ′, φ ⇒ ∆′. That is, in each case, we may assume the induction hypothesis
holds for any less complex cut-formula φ, or for the same cut-formula with smaller
derivations in place of Π or Π′.

The cases are divided into several (nonexclusive) classes:

• Base cases in which one of the derivations is an axiom;

• Right-commuting cases in which the cut formula is not principal in Π;

• Left-commuting cases in which the cut formula is not principal in Π′,

• Principal cases in which the cut formula is principal on both sides.

Many of the cases, however, involve only standard rules of first-order equational
logic, and are completely standard (see [93] for detailed proofs of these cases for a
similar sequent calculus). The new left-commuting and right-commuting cases are
straightforward. We give an example of a new case:

If Π′ ends with NL and the cut-formula is not principal, i.e. we have

Σ#a : Γ, φ, ψ ⇒ ∆

Σ : Γ, φ, Na.ψ ⇒ ∆
NL

then we may derive

Σ#a : Γ, ψ ⇒ ∆, φ Σ#a : Γ, φ, ψ ⇒ ∆

Σ#a : Γ, ψ ⇒ ∆
cut

Σ : Γ, Na.ψ ⇒ ∆
NL

where we obtain Σ#a : Γ, ψ ⇒ ∆ from Σ : Γ, Na.ψ ⇒ ∆ using an easily derived
inversion principle for NL.

This leaves the possibility of new principal cut cases; in fact, there is only one
new principal cut, arising from NR and NL.
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In this case, the derivations are of the form

Π
Σ#a : Γ ⇒ φ,∆

Σ : Γ ⇒ ∆, Na.φ
NR

Π′

Σ#a : Γ′, φ⇒ ∆′

Σ : Γ′, Na.φ⇒ ∆′ NL

where without loss of generality we assume that the same fresh name a 6∈ Σ was
used for in both sub-derivations. Since the formula φ is smaller than Na.φ, we can
obtain a derivation Π′′ of Σ#a : Γ,Γ′ ⇒ ∆,∆′ from Π and Π′ by the induction
hypothesis. Then using rule F we may derive

Π′′

Σ#a : Γ,Γ′ ⇒ ∆,∆′

Σ : Γ,Γ′ ⇒ ∆,∆′ F

This completes the proof for this case.

Theorem 4.4.4 (Cut-elimination). If Γ ⇒ ∆ has any derivation then it has a
cut-free derivation.

Proof. The proof is by induction on the number of cuts in a derivation. If there
are none then the derivation is already cut-free. If any derivation using n cuts has
a cut-free derivation, suppose we have a derivation Π using n+1 cuts. There must
be a cut rule whose subderivations are cut-free, that is, Π = Π[Π′] where Π′ starts
with a cut and is cut-free. Using Lemma 4.4.3, we can obtain a cut-free derivation
Π′′ of the conclusion of this cut. Replacing this derivation in Π, we have Π[Π′′], a
derivation using n cuts, to which the induction hypothesis applies.

4.4.3 Other Issues

Syntactic Consistency

For many logics, consistency is an important immediate consequence of cut-elimi-
nation, since there is obviously no cut-free proof of the sequent ⇒ ⊥. This method
of proving consistency is especially useful for logics motivated in terms of proof
theory, such as linear logic and intuitionistic logic, since the proof theories of such
logics are much simpler than their model theories.

Syntactic consistency is less obvious for a sequent calculus with nonlogical
rules, such as NL⇒, since the nonlogical rules might be inconsistent. However,
Negri and von Plato have shown that for a sequent calculus with non-logical rules,
if there is a derivation of Γ ⇒ ⊥ then there is such a derivation using nonlogical
rules alone [93, Ch. 6]. This reduces consistency of the logic to consistency of
the nonlogical axioms. The same technique can be used to show that NL⇒ is
consistent, since the nonlogical rules of NL⇒ are valid in term models of nominal
logic. This fact is a special case of Herbrand’s theorem for nominal logic which
will be proved in the next chapter.
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Skolemization

In first-order classical logic, it is safe to remove existential quantifiers from formulas
by introducing new function symbols. For example, we can replace a formula such
as ∀x.∃y.∀z.P (x, y, z) with ∀x.∀z.P (x, f(x), z) where f is a new function symbol.
This can be viewed as a choice principle for first-order logic analogous to the Axiom
of Choice in set theory. In higher-order logic, this choice principle can be given as
an explicit theorem, using a higher-order function f :

∀xa.∃yb.P (x, y) ⊃ ∃fa→b.∀xa.P (x, f(x)) . (4.22)

Since nominal logic is based on ideas from FM-set theory, in which the Axiom of
Choice may not hold, it should not be surprising that Skolemization is not valid in
NL. However, the reason is rather technical. Suppose a theory Γ contains an axiom
φ = ∀x.∃a.a # x. If we add a function symbol f to a nominal language and replace
the above axiom with φ′ = ∀x.f(x) # x then we get an inconsistent theory. The
reason is that while a function f mapping each x to a name fresh for x exists (using
the Axiom of Choice), such a function cannot be equivariant, but all the function
symbols of a nominal language are assumed to be equivariant. Moreover, a fresh
name choice function on a name set A, f : A → A, cannot even be I-supported,
since an I-supported function on A must be constant everywhere except a small
subset of I, whereas a fresh name choice function cannot be constant anywhere.
So the higher-order choice principle would not be valid in a higher-order nominal
logic either.

On the other hand, as Pitts has observed, there is no problem with unique choice
principles in NL. In addition, there seems to be no problem with choice principles
over “closed” sorts, that is, when the objects being chosen are guaranteed to have
empty support.

Relationship with Pitts’ Nominal Logic

It is a natural question to ask whether the sequent calculus NL⇒ really defines
the same logic as Pitts’ axiomatization (up to minor differences such as the use of
name-constants in Nrather than variables). We believe that these minor differences
can be easily reconciled, and Pitts’ system shown to be equivalent to ours.

4.5 Notes

The approach to dealing with nonlogical axioms within a sequent calculus employed
in this chapter is due to Negri and von Plato (see [93, Ch. 6]).

Pitts’ original version of nominal logic was the basis of this work. Our version
of NL was also influenced by other systems, including the nominal equational logic
used in nominal unification and rewriting [36, 126, 127]. The sequent calculus
of Section 4.3 is a major revision of the sequent calculus FLSeq of Gabbay and
Cheney [41], which in turn is based on prior work on a natural deduction calculus
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called Fresh Logic (FL) by Gabbay [40]. Caires and Cardelli [14] developed a
sequent calculus for reasoning about concurrent processes that may calculate with
or hide names, using a N-quantifier. In this system, information about freshness
is maintained in a side-context consisting of freshness assertions, but freshness
formulas are not present; their system uses an auxiliary concept called “free terms”
similar to slices. Schöpp and Stark’s system [114] uses bunched contexts [98] which
generalize the structured contexts Σ used here. In their system, the resources of
bunched logic are identified with the names of nominal logic. Contexts may be
constructed using either Γ,Γ′, indicating that Γ and Γ′ refer to separate name-
spaces, or Γ; Γ′, which permits Γ and Γ′ to refer to overlapping name-spaces. Our
contexts Σ, x and Σ#a correspond to their contexts Γ; x and Γ, a respectively.



Chapter 5

Model Theory

A theory has only the alternative of being right or wrong. A model has a third
possibility—it may be right but irrelevant.

—Manfred Eigen

In this chapter we prove several important results about nominal set models
of NL. First, we address the issues of soundness and completeness. We review the
problems with completeness with respect to finite support nominal sets, and then
show that NL is both sound and complete with respect to ideal-supported nominal
sets. Then we study theories of NL that have nominal term models (or Herbrand
models), that is, models constructed from constants, function symbols, names,
and abstractions. We generalize the idea of a universal theory to nominal-universal
theory and prove a generalization of Herbrand’s Theorem, that term models always
exist for such theories. This is an important ingredient of the semantics for Horn
clause nominal logic programming, which is the focus of the next chapter.

5.1 The Incompleteness of Finite-Support Models

Pitts introduced a semantics based on nominal sets in which all elements are
finitely supported. This class of models is equivalent (in our notation) to P<ω(A)-
supported nominal sets, since P<ω(A) consists of precisely the finite subsets of A.
We refer to nominal sets in Nom(P<ω(A)) as finite-support nominal sets.

The finite-support semantics is intuitively appealing because abstract syntax
trees are usually finite objects that mention only finitely many names. But several
desirable properties which hold for first-order logic and structures fail for nominal
logic and finite-support nominal structures. For example, the compactness theorem
fails:

Remark 5.1.1 (Noncompactness). There exists a set of formulas such that
every finite subset has a finite-support model but the whole has no finite-support
model.

85
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Suppose {aν
i }i∈ω is an infinite sequence of names of the same sort ν. Consider

Γ = {¬(ai # xδ) | i ∈ ω}. For any finite subset Γ0 of Γ, let n be the largest index of
an ai occurring in Γ0. Let M be the finite-support model in which δ is interpreted
as the set of finite sequences of names. Then each formula ¬(ai # x) ∈ Γ0 is
satisfied by taking x = [a1, . . . , an]. Nevertheless, Γ is not satisfiable in any finite-
support model, since it asserts that there is an x with infinite support.

Indeed, the closely related property of completeness fails for finite-support
models as well. Completeness implies compactness, so Remark 5.1.1 provides a
counterexample to completeness. In fact, Pitts gave a direct counterexample to
completeness in [108, Sec. 5, Example 4], in which the theory Γ is finite and closed.

The failure of the completeness theorem is a serious problem for any logic.
There appear to be several reasonable approaches to solving this problem. We
could search for an alternative logic which is complete with respect to finite support
nominal sets; such a logic is unlikely to be first-order. Or we could introduce a new
semantics with respect to which nominal logic is complete. This is the approach
we have taken.

In the next two sections we show that nominal logic actually is sound and
complete with respect to ideal-supported nominal set models.

5.2 Soundness

As a first step, we show

Proposition 5.2.1. If a ∈ Σ, ρ : Σ, and Σ|a ` t : σ then Σ : ρ � a # t.

Proof. We first show that ρ(a) # ρ(x) for each x ∈ Σ|a. Proof by induction on the
construction of Σ|a. For Σ′#a|a = Σ′, if x ∈ Σ′ then ρ(a) # ρ(x) since ρ : Σ′#a.
For Σ′, y|a = Σ′|a, if x ∈ Σ|a then x ∈ Σ′|a so proceed by induction. Similarly for
the case Σ′#b|a = Σ′|a#b.

Now we show that Σ : ρ � a # t by induction on the derivation of Σ|a ` t : σ.
If t is a name-constant b, then it is not a since a 6∈ Σ|a, so ρ(a) # ρ(b). If t is
a variable x ∈ Σ|a, then by the above argument a # ρ(x). The cases for t = 〈〉,
t = f(t′), and t = 〈t1, t2〉 are straightforward.

Remark 5.2.2. To state the soundness and completeness properties in full gen-
erality we need to use infinite contexts Σ, since an infinite set of formulas may
mention infinitely many names. This is for bookkeeping reasons only, so that we
can talk about infinite sets of formulas. To work with infinite contexts, it is neces-
sary to generalize the universe of nominal terms to allow infinite terms supported
by some support ideal; however, this is straightforward. It is also straightforward
to generalize the other definitions involving contexts to the infinite case.

For example, the context implicitly used in the compactness counterexample
is Σ = (a1#a2# · · · ), x. If the context x#a1#a2# · · · had been used instead, then
Γ would not have been finitely satisfiable since the context guarantees that ai is
fresh for each x.
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Definition 5.2.3. Let Γ be a set of formulas (possibly infinite), and φ a formula,
both well-formed with respect to a (possibly infinite) context Σ. We write Σ : Γ ` φ
when Σ : Γ0 ⇒ φ for some finite subset Γ0 ⊆ Γ.

We write Σ : Γ � φ to indicate that whenever Σ,M � Γ, we also have Σ,M � φ.

We will first show that all the basic axioms concerning freshness and swapping
are valid for nominal models.

Proposition 5.2.4 (S1–S3, E1, Ef , E×, Ep). The swapping and equivariance ax-
ioms are valid in nominal models.

Proof. The swapping axioms follow immediately from the definition of nominal
sets. E1, Ef , E×, Ep follow from the fact that unit, function symbols, pairing, and
relation symbols are interpreted as equivariant constants, function symbols, and
relations respectively. In particular, the built-in function symbols for swapping,
abstraction, freshness, and equality are interpreted as equivariant functions.

Lemma 5.2.5 (F1). If (a b) ∈ A[2], a # x, and b # x then (a b) · x = x.

Proof. Suppose a, b #X x. Then a, b 6∈ suppX(x). By the definition of support, we
have (a b) ·X x = x.

The following lemmas are immediate consequences of the fact that different
name-sorts are interpreted as disjoint name-sets, and that supp(a) = {a} for a a
name, respectively.

Lemma 5.2.6 (F2). If A,B are distinct name-sets, a ∈ A, b ∈ B, then a # b.

Lemma 5.2.7 (F3a, F3b). If A is a name-set and a, b ∈ A then a # b ⇐⇒ a 6= b.

Lemma 5.2.8 (A1). 〈a〉x = 〈b〉y if and only if a = b and x = y or a # y and
x = (a b) · y.

Lemma 5.2.9 (U). If x ∈ 1 then x = 〈〉.

Proposition 5.2.10. If Σ : Γ ⇒ ∆ then Σ : Γ �
∨

∆.

Proof. It will suffice to show that all of the proof rules and axioms of Figures 4.4–
4.7 are valid with respect to �. The cases for the first-order and equational logic
rules are standard. We will use Theorem 4.2.19 and Theorem 4.2.17 several times
without explicit reference.

(Ax): We have already shown that all the basic equational and freshness axioms
are valid. It is an easy matter to show that if

∧
P ⊃

∨
Q is a valid formula then

Σ : Γ,
∧
P,Q1 ⇒ ∆ · · · Σ : Γ,

∧
P,Qn ⇒ ∆

Σ : Γ,
∧
P ⇒ ∆

is a valid inference rule.
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(A2): Suppose the derivation is of the form:

Σ ` t : 〈ν〉σ Σ#a, x : Γ, t ≈ 〈a〉x⇒ ∆

Σ : Γ ⇒ ∆
A2

Assume Σ : ρ � Γ. By Proposition 4.2.6 we must have ρ(t) ∈ [[〈ν〉σ]]. Choose fresh
v ∈ [[ν]] − supp(ρ), and choose v′ ∈ [[σ]] such that ρ(t) = 〈v〉v′. Let ρ′ = ρ[a 7→
v, x 7→ v′]; since v is fresh for ρ, we have ρ′ : Σ#a, x, and moreover, Σ#a, x : ρ′ �
t ≈ 〈a〉x. Hence Σ#a, x : ρ′ � Γ, t ≈ 〈a〉x so by induction Σ#a, x : ρ′ �

∨
∆. But

since a and x are fresh for ∆, we also have Σ : ρ �
∨

∆.
(P ): The proof of the soundness of the surjectivity rule for pairing is standard

and straightforward.
(Σ#): Suppose we have a derivation of the form:

Σ|a ` t : σ Σ : Γ, a # t⇒ ∆

Σ : Γ ⇒ ∆
Σ#

Let Σ : ρ � Γ be given. Then by Proposition 5.2.1, we know Σ : ρ � a # t, so
Σ : ρ � Γ, a # t and by the induction hypothesis we can conclude Σ : ρ �

∨
∆.

(F ): Suppose we have a derivation of the form:

Σ#aν : Γ ⇒ ∆
Σ : Γ ⇒ ∆

F

where a 6∈ Σ. We need to show that whenever Σ : ρ � Γ we have Σ : ρ �
∨

∆. Let
Σ : ρ � Γ be given. Choose v ∈ [[ν]] fresh for ρ. Then we have Σ#a : ρ[a 7→ v] � Γ.
By induction, we know that Γ �

∨
∆. Since Σ#a : ρ[a 7→ v] � Γ we can conclude

Σ#a : ρ[a 7→ v] �
∨

∆ also, and since a is fresh we can also conclude Σ : ρ �
∨

∆.
( NL): Suppose we have a derivation

Σ#a : Γ, φ⇒ ∆

Σ : Γ, Naν .φ⇒ ∆

where a # Γ,∆. Let ρ be given and assume Σ : ρ � Γ, Naν .φ. Choose fresh
v ∈ [[ν]] − supp(ρ). Then by the definition of �, Σ#a : ρ[a 7→ v] � Γ, φ, so
Σ#a[a 7→ v] : ρ �

∨
∆ by induction. Since a is fresh for ∆, we have Σ : ρ �

∨
∆.

( NR): Suppose we have a derivation

Σ#a : Γ ⇒ φ,∆

Σ : Γ ⇒ Naν .φ,∆

where a 6∈ Σ,Γ,∆. Let ρ be given and assume Σ : ρ � Γ. Choose v ∈ [[ν]]−supp(ρ)
fresh, and let ρ′ = ρ[a 7→ v]. Then we have Σ#a : ρ′ � Γ, hence by induction we
know Σ#a : ρ′ � φ ∨

∨
∆. There are two cases depending on which disjunct is

satisfied by ρ′. If Σ#a : ρ′ �
∨

∆ then clearly Σ : ρ � Na.φ ∨
∨

∆ since a is fresh
for Na.φ ∨

∨
∆ and v # ρ. Otherwise, Σ#a : ρ′ � φ. Since a is fresh for Σ and v

fresh for ρ, we may conclude that Σ : ρ � Na.φ, and clearly also Σ : ρ � Na.φ∨
∨

∆.
Hence, in either case, we have Σ : ρ � Na.φ ∨

∨
∆ as desired.
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Theorem 5.2.11 (Soundness). If Γ ` φ then Γ � φ.

Proof. Let Γ0 be a finite subset of Γ with Γ0 ⇒ φ derivable. By the previous
lemma, Γ0 � φ, so Γ � φ.

5.3 Completeness

Following the usual approach to proving completeness, we prove that every con-
sistent theory has a nominal model.

Theorem 5.3.1 (Henkin’s Theorem for NL). If Γ is consistent then it has a
nominal model.

Proof. We construct (using the Axiom of Choice) a maximal consistent theory Γ∗

and language L∗ extending Γ and L in the usual way such that every existential
formula ∃x.φ(x) ∈ Γ∗ has a witnessing constant c∗ ∈ L∗ such that φ(c∗) ∈ Γ∗.
Given such a maximal consistent set we will show how to define a nominal model,
by showing that the internal notion of support defined by Γ∗ generates a support
ideal.

Let L∗ be the extended language used in constructing Γ∗. Note that L∗ may
contain added constants for which no equivariance axiom is assumed; their in-
terpretations in the model might therefore not be equivariant and could even be
infinitely supported.1 We define the sort-interpretations [[σ]] as T(σ)/≡σ, where
T(σ) = {t : σ | FV (t) = ∅} is the set of well-formed ground terms of sort σ in L∗,
and ≡σ: T(σ)× T(σ) is defined by

t ≡σ u ⇐⇒ (t ≈ u) ∈ Γ∗ . (5.1)

We write [t] for the equivalence class of t under ≡σ, for t : σ.
We wish to endow T(σ) with an appropriate nominal set structure. To do so,

we must identify an appropriate set of names. Note that L is defined in terms of
the names A used for name-constants and variables in L-formulas. However, L∗
may include new constants of name-sort, and there is also the ≡σ to contend with.
Therefore, we will define a new set of names A∗ for the language L∗ and term sets
T(σ)/≡σ.

We define A∗
ν = {[a] | a ∈ T(ν)} = T(ν)/≡ν = [[ν]], and A∗ to be the union of

the A∗
ν . We define a swapping action on each T(σ) as follows:

([a] [b]) ·[[σ]] [t] = [(a b) · t] . (5.2)

For this function to be well-defined, we need to show that swapping is a ≡σ-
congruence for each sort σ. That is, if a ≡ν a

′, b ≡ν b
′, t ≡σ t

′, then (a b) · t ≡σ

(a′ b′) · t′. This is tedious but straightforward, since the congruence laws for
the swapping function symbol are valid in nominal logic and so all the needed

1This is why completeness cannot be shown using finite support models.
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axiom instances must be in Γ∗. Once this is done, it is not difficult to verify that
each T(σ)/≡σ is a G∗-set, where G∗ is the name-group of all finite sort-respecting
permutations on A∗. Note that, for the new non-equivariant constants of L∗, we
may have [(a b) · c] 6= [c].

To show that each [[σ]] is a nominal set, we need to show that there is a support
ideal I containing supports for all elements of M =

⋃
σ[[σ]]. We define

supp∗([t]) = {[a] ∈ A∗ | ¬(a # t) ∈ Γ∗} .

That is, supp∗(x) is the set of names that are not fresh for the term representing
t according to Γ∗.

We now show that for every σ and every x ∈ [[σ]], supp∗(x)/x. Suppose [t] ∈ [[σ]].
Let compatible [a], [b] 6∈ supp∗([t]) be given. Then ¬(a # t),¬(b # t) 6∈ Γ∗ so
a # t, b # t ∈ Γ∗ since Γ∗ is maximal. Moreover, a # t ∧ b # t ⊃ (a b) · t ≈ t ∈ Γ∗

since it is an axiom of NL. Therefore, we must have (a b) · t ≈ t ∈ Γ∗, hence

[t] = [(a b) · t] = ([a] [b]) · [t]

as desired. Therefore, supp∗([t]) / [t]. Since [t] ∈ [[σ]] and σ were arbitrary, this
shows that every element of every domain [[σ]] is supported in I.

Now we define
I = {S | ∃x ∈M. S ⊆ supp∗(x)}

Obviously, I contains a support for every x ∈ M . To show that I is a support
ideal, we need to show that the properties (1–4) defining a support ideal hold:

1. If T ⊆ S ∈ I then for some x, T ⊆ S ⊆ supp∗(x), so T ∈ I.

2. If S, T ∈ I then S ⊆ supp∗([x]) and T ⊆ supp∗([y]). Then

S ∪ T ⊆ supp∗([x]) ∪ supp∗([y]) = supp∗([x], [y]) = supp∗([〈x, y〉])

so S ∪ T ∈ I. Here we use various properties of freshness, swapping, and
pairing, including surjectivity.

3. For any name [a], we have supp∗([a]) = {[b] | ¬([b] # [a]) ∈ Γ∗}. By the
axioms F3a, F3b, we know ¬(a # a) ∈ Γ∗ and a # b∨ a ≈ b ∈ Γ∗. This shows
that [a] ∈ supp∗([a]) and that if [b] ∈ supp∗([a]) then [a] ≈ [b] since otherwise
we would have a # b and ¬(a # b) ∈ Γ∗, a contradiction. So {[a]} ∈ I.

4. We need to show that no name-set A∗
ν = [[ν]] is in I, that is, for any name-sort

ν and set S ∈ I we can find a name a ∈ [[ν]]−S. If S ∈ I then S ⊆ supp∗([x])
for some [x] ∈M . Since Γ∗ is closed under applications of the rules (F ) and
(Σ#), for any [x] ∈ M , there must be an [a] ∈ [[ν]] such that (a # x) ∈ Γ∗.
Therefore, ¬(a # x) 6∈ Γ∗ for each i, and so [a] 6∈ supp∗([x]), hence [a] 6∈ S.
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Thus, we may consider [[σ]] as a nominal set with the swapping action (5.2).
We may therefore define a nominal set model M with sort interpretation as above,
[[c]] = [c], [[f(t)]] = [f ]([[t]]), where [f ]([t]) = [f(t)], and [[p]] = {[t] | p(t) ∈ Γ∗}.
It is easy to verify that the interpretations of the constant, function, and relation
symbols c, f, p ∈ L are equivariant constants, functions, and relations respectively,
using the equivariance rules. This shows that M is a nominal structure; moreover,
it is a model of Γ∗ and so also Γ.

Consequently, M is a nominal set model of Γ supported by I.

Theorem 5.3.2 (Completeness). If Γ � φ then Γ ` φ.

Proof. Suppose Γ � φ. Then Γ,¬φ is not satisfiable by Theorem 5.3.1, so incon-
sistent. Consequently Γ,¬φ ` φ. Since Γ, φ ` φ obviously, we get Γ ` φ by using
the law of excluded middle.

Corollary 5.3.3 (Compactness). If Γ is finitely satisfiable then Γ is satisfiable.

Corollary 5.3.4 (Löwenheim-Skolem). If a set of nominal logic formulas Γ
over a language L is satisfiable, then it has models of all infinite cardinalities
κ ≥ max(|Γ|, |L|).

5.4 Herbrand’s Theorem

First-order (sorted) logic satisfies an important property called Herbrand’s The-
orem: every collection of universal formulas has a model built up out of closed
terms. Term models are interesting because logic programming takes place in the
universe of terms. Because terms are finite, term models have finite support so we
do not have to consider arbitrary support ideals. In many applications of nominal
logic, the objects we wish to reason about are terms, and so term models are of
primary interest.

However, Herbrand’s Theorem need not be true of an arbitrary theory, and in
particular, it is not true of Pitts’ formulation of NL since its Hilbert-style first-
order axiomatization includes existential formulas, in particular, in the freshness
axiom F4

(F4) ∀~x.∃a.a # ~x

The existence of closed equivariant terms of name-sorts ν lead to inconsistency,
because

∀aν .a # t

is provable for any closed term t. If t : ν then instantiating a to t yields t # t, a
contradiction.

In NL⇒, we fixed this problem by adding non-equivariant constants for names.
Only constants of non-name sort are assumed equivariant. Since name-constants
are closed terms, it is no longer the case that closed terms have empty support, so
∀aν .a # t is not valid for all closed terms t. Furthermore, a term may be closed and
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equivariant while still mentioning names: for example, l(〈a〉a) is equivariant since
a is bound. In NL, on the other hand, there is no closed term for this equivariant
value.

In this section, we will interpret nominal terms in the universe of nominal terms,
using semantic swapping and abstraction for syntactic swapping and abstraction
respectively. That is, we interpret

[[f ]] = x 7→ f(x) : NT(σ) → NT(σ′)

provided f : σ → σ′, and interpret unit, pairing, swapping, and abstraction as the
respective semantic versions in NT. This is in contrast to the previous section,
where in the proof of Henkin’s Theorem we interpreted swapping and abstraction
in a nominal structure consisting of first-order terms from T quotiented by an
equivalence relation. It would not have been possible to use nominal term ab-
straction and swapping directly there because a general consistent theory Γ may
identify distinct nominal terms such as f(x) and 〈a〉x. However, in this section we
will consider only nominal-universal theories, for which nominal term models will
be shown to be complete. Therefore, we can use nominal terms in a “deep” way to
simplify the proof: the equivalence relation for identifying terms up to abstraction
is still there, but we have already done all the work necessary to avoid talking
about it explicitly.

We write NT(σ) = {[[t]] | · ` t : σ} for the set of all nominal term interpretations
of well-formed terms of sort σ. Note that the recursive definitions of swapping,
freshness, and equality of Section 3.5 can be used to calculate with nominal terms
via their first-order representations. We will use this fact in proofs.

In the rest of this section, let L be a fixed language.

Definition 5.4.1. The Herbrand sort interpretation over L is the sort interpre-
tation generated by

[[δ]] = NT(δ)

and the Herbrand universe is the universe of this interpretation.

Definition 5.4.2. The nominal Herbrand term interpretation over L is the term
interpretation generated by

[[f ]](x) = f(x)

Definition 5.4.3. A Herbrand structure is a structure over the Herbrand universe
and term interpretation.

Proposition 5.4.4. Any Herbrand structure is a model of NL.

Proof. Any Herbrand structure is a (finite-support) nominal structure by assump-
tion, so this is just a consequence of the soundness of NL for nominal structures.
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Intuitively, once a language L is given, the definition of swapping, the behavior
of equality and freshness, and the Herbrand sort and term interpretations are fixed.
The remaining information about a given model is captured by the set of atomic
formulas true in it.

Recall that formulas t ≈ u, t # u are called constraints. Other atomic formulas
p(~t) are called basic formulas.

Definition 5.4.5. The Herbrand base over L, written BL, consists of all basic
L-formulas. An Herbrand interpretation is a subset of BL.

Proposition 5.4.6. Any Herbrand interpretation B generates a unique Herbrand
model H � B. Conversely, any Herbrand model H is generated by a unique Her-
brand interpretation.

Proof. Let B be an Herbrand interpretation. Let H be the structure over the
Herbrand universe and term interpretation and with [[p]] defined as {t | p(t) ∈ B}.
Since B is equivariant, [[p]] is also equivariant. Thus, H is a Herbrand structure; it
is a model of B since every element of B is valid in H.

Let H be an Herbrand model. Let B = {A | H � A} be the set of all basic
formulas true in H. Clearly B is a Herbrand base, and it generates H using the
construction in the previous paragraph.

Corollary 5.4.7. Nominal logic is consistent.

Proof. By the Proposition 5.4.4, any Herbrand structure is a model of NL. Her-
brand structures exist: for example, ∅ generates a nominal structure by Proposi-
tion 5.4.6.

The main result of this section is a nominal version of Herbrand’s theorem: that
every theory of a particular form (in this case, every nominal-universal theory) has
an Herbrand model.

Definition 5.4.8. A nominal-universal (or N∀-) formula is a formula of the form

φ ::= ψ | C ⊃ φ | Na.φ | ∀x.φ

where ψ is a quantifier-free formula mentioning only basic formulas, and C is
a constraint. Thus, a N∀-formula consists of a sequence of N/∀-quantifiers and
≈/#-constraints, followed by a quantifier-free body not mentioning # or ≈.

A nominal-universal theory (or N∀-theory) is a set Γ of closed N∀-formulas.

The reason that constraints are allowed only in restricted positions is to pre-
vent equality and freshness from being redefined. If positive freshness or equality
formulas were permitted then theories like Γ = {∀xν , yν .y # f(x)} would be al-
lowed, which are not satisfiable in an Herbrand universe because ¬(a # f(a))
where f(a) is an uninterpreted term. Also, theories with unsatisfiable formulas
like Na.a # a would be allowed. This is a familiar problem with incorporating
equational reasoning into logic programming.

We now show several technical lemmas concerning Herbrand models, substitu-
tion, and the relationship between Herbrand and general models.
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Lemma 5.4.9. If ρ : Σ, x and u : σ is ground then ρ[x 7→ [[u]]](t) = ρ(t{u/x}).
If H is a nominal Herbrand model and ρ an H-valuation and t is ground then

Σ, x : ρ[x 7→ [[t]]] � φ iff Σ : ρ � φ{t/x}.

Proof. Straightforward induction on the definition of T [[t]]ρ and Σ : ρ � φ.

Lemma 5.4.10. If H is a nominal Herbrand model and ρ an H-valuation then
Σ : ρ � ∀xσ.φ iff Σ : ρ � φ{t/x} for every ground t : σ.

Proof. If ρ � ∀x.φ, then ρ[x 7→ v] � φ for all v ∈ [[σ]]. Let ground t : σ be given;
then ρ[x 7→ [[t]]] � φ. By Lemma 5.4.9, ρ � φ{t/x}. The choice of t was arbitrary,
so ρ � φ{t/x} for every ground term t.

If ρ � φ{t/x} for every ground term t : σ, then let v ∈ [[σ]] be given. By
definition there is a ground term t : σ such that v = [[t]]; and by assumption,
ρ � φ{t/x}. Then by Lemma 5.4.9, ρ[x 7→ [[t]]] � φ so ρ[x 7→ v] � φ. The choice of
v was arbitrary, so ρ[x 7→ v] � φ for each v ∈ [[σ]], and so ρ � ∀x.φ.

The following fact is an important consequence of the previous lemma.

Corollary 5.4.11. Let φ = N~a.∀~x.ψ be a closed formula, where xi : σi, and let H
be an Herbrand model. Then H � φ if and only if H � ψ{t1/x1} · · · {tm/xm} for
all ground ti : σi.

The proof is a straightforward induction on the number of quantifiers of φ. We
next show that any ground constraint valid in an Herbrand model H is valid in
any model of NL.

Lemma 5.4.12. If H is an Herbrand model and C is a ground constraint and
H � C then M � C for any structure M.

Proof. Note that H � a # u iff [[a]] #NT [[u]] iff fresh(a, u) = true and H � t ≈
u iff [[t]] = [[u]] iff eq(t, u). By the soundness of NL, it suffices to show that if
fresh(a, t) = true or eq(t, u) = true then ⇒ a # t or ⇒ t ≈ u respectively is
derivable in NL, since then M � a # t or t ≈ u respectively for any model M.

For formulas a # u, the proof is by induction on the definition of fresh.
If t = b and a 6= b, i.e., a and b are distinct name-constants, then

Σ|a ` b : ν Σ : a # b ⇒ a # b

Σ : · ⇒ a # b
Σ#

If t = 〈〉, then
Σ|a ` c : σ Σ : a # 〈〉 ⇒ a # 〈〉

Σ : · ⇒ a # 〈〉 Σ#

If t = f(t′), then we must have H � a # t′, so Σ : · ⇒ a # t′. Then we may
derive

Σ#b|b ` f(t′), t′ : ~σ Σ#b : b # f(t′), t′ ⇒ a # f(t′)

Σ#b : · ⇒ a # f(t′)
Σ#2

Σ : · ⇒ a # f(t′)
F
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where Σ#b : b # f(t′), t′ ⇒ a # f(t′) follows using F1, the derivations of ⇒ a # u,
cut, and equivariance.

If t = 〈t1, t2〉, then we must have H � a # t1, t2, so Σ : · ⇒ a # t1, t2. Then we
may derive

Σ#b|b ` 〈t1, t2〉, t1, t2 : ~σ Σ#b : b # 〈t1, t2〉, t1, t2 ⇒ a # 〈t1, t2〉
Σ#b : · ⇒ a # 〈t1, t2〉

Σ#3

Σ : · ⇒ a # 〈t1, t2〉
F

where Σ#b : b # 〈t1, t2〉, t1, t2 ⇒ a # 〈t1, t2〉 follows using F1, the derivations of
⇒ a # ti, cut, and equivariance.

Finally, if t = 〈b〉t′ then there are two cases. If b = a then we have

Σ#b|b ` a, t, 〈a〉t : ~σ Σ#b : b # a, t, 〈a〉t⇒ a # 〈a〉t
Σ#b : · ⇒ a # 〈a〉t Σ#

Σ : · ⇒ a # 〈a〉t F

where Σ#b : b # a, t, 〈a〉t ⇒ a # 〈a〉t follows since b # 〈a〉t ⇐⇒ a # (b a) · 〈a〉t
and (b a) · 〈a〉t ≈ 〈a〉t since a, b # 〈a〉t. On the other hand, if a 6≈ b then we must
have H � a # t, so by induction ⇒ a # t. In addition we must have ⇒ a # b since
a 6= b. This case is similar to that for an arbitrary function symbol.

For equations t ≈ u the proof is by induction on the definition of eq. However,
all of the cases involving unit, pairing, name-constants, function symbols, or ab-
stractions over the same name are easy, since in these cases equality is syntactic.
The only interesting case is when t = 〈a〉t′ and u = 〈b〉u′ where a 6= b. In this
case we know fresh(a, u′) = true and eq(t′, u′(a↔b)) = true. Consequently by
induction we can derive Σ : · ⇒ a # u′ and Σ : · ⇒ t′ ≈ (a b) · u′. Using (A1) we
have

Σ : 〈a〉t′ ≈ 〈b〉u′ ⇒ 〈a〉t′ ≈ 〈b〉u′

Σ : a # u′, t′ ≈ (a b) · u′ ⇒ 〈a〉t′ ≈ 〈b〉u′ A1

Using cut twice we can therefore derive Σ : · ⇒ 〈a〉t′ ≈ 〈b〉u′.
Proposition 5.4.13. Let M be a model and H be the Herbrand model generated
by the base B = {A | M � A}, and let φ be closed. Then

1. If φ is quantifier-free, then M � φ if and only if H � φ.

2. If φ is a N∀-formula and M � φ then H � φ.

Proof. For (1), the proof is by induction on the structure of φ.
If φ is basic, then M � φ implies φ ∈ B, so H � φ. Similarly, if H � φ then

φ ∈ B so M � φ.
If φ is a conjunction φ1 ∧ φ2 then by induction M � φ1, φ2 so H � φ1, φ2 so

H � φ, and similarly for the reverse direction. If φ is a negation ¬ψ then M 6� ψ
so by induction H 6� ψ so H � ¬ψ, and similarly for the reverse direction. (This is
why we need “if and only if”). The remaining propositional cases are similar.

For (2), there are four cases: φ is quantifier-free, of the form C ⊃ ψ, of the
form ∀x.ψ(x), or of the form Na.ψ(a), where ψ is N∀.
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• If φ is quantifier-free, then (1) applies.

• If φ = C ⊃ ψ is a constrained formula, then suppose M � C ⊃ ψ. Assume
H � C. By Lemma 5.4.12, since C is a ground constraint and H � C, we
must have M � C; hence, M � ψ, so by the induction hypothesis H � ψ.

• If φ = ∀x.ψ(x), then assume M � ∀x.ψ(x). Then M � ψ(x), so M � φ(t)
for each closed term t. By induction, H � ψ(t) for each closed term t. Hence
by Lemma 5.4.10, H � ∀x.ψ(x), or H � φ.

• Finally, if φ = Na.ψ(a), then assume M � Na.ψ(a). Then M � ψ(a) for fresh
a. We wish to show that H � Na.ψ(a). Let a be fresh. Then M � ψ(a), so
by induction H � ψ(a). Since a was fresh, H � Na.ψ(a).

This completes the proof.

Definition 5.4.14 (Instances of N∀-formulas). The set of ground instances
GI(φ) of a closed N∀-formula φ is defined as follows:

GI(ψ) = {g · ψ | g ∈ G} (ψ quantifier-free)

GI(C ⊃ φ) =

{
GI(φ) (� C)
∅ (� ¬C)

GI( Na.φ) = GI(φ)

GI(∀xσ.φ) =
⋃
t:σ

GI(φ{t/x})

Note that in the case for C ⊃ φ, C is always ground, so is either valid or
unsatisfiable. We write Γ �� Γ′ to indicate that Γ � Γ′ and Γ′ � Γ.

Lemma 5.4.15. If φ is a closed N∀-formula, then the set GI(φ) of all instances
of φ satisfies φ �� GI(φ).

Proof. The proof is by induction on the structure of φ. If φ is quantifier-free,
then all of its instances are similar up to a permutation, and so all are equivalent
formulas and their conjunction is equivalent to φ. If φ = C ⊃ ψ and C holds then
φ = C ⊃ ψ �� ψ �� GI(ψ) = GI(φ). If C does not hold, then φ �� > �� ∅ =
GI(φ). If φ = Na.ψ then φ �� ψ �� GI(ψ) = GI(φ). Finally, if φ = ∀xσ.ψ then
by Lemma 5.4.10, φ �� {ψ{t/x} | t : σ} ��

⋃
t:σ GI(ψ{t/x}) = GI(φ).

Theorem 5.4.16 (Herbrand’s Theorem for NL). If Γ is N∀-theory of NL then
Γ is satisfiable if and only if it has a nominal Herbrand model. In addition, if Γ is
unsatisfiable then there is a finite set of ground instances of formulas in Γ that is
unsatisfiable.
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Proof. For the forward direction, if Γ is satisfiable, it has some model M. Let
B = {A ∈ BL | M � A}, the set of all basic formulas true in M. Note that B
must be equivariant since satisfiability in M is equivariant, so B is an Herbrand
interpretation. Let H be the Herbrand model generated by B. Then by Proposi-
tion 5.4.13, if φ is nominal-universal and M � φ then H � φ. In particular, for
any φ ∈ Γ, we have M � φ so H � φ since φ is N∀, and so H � Γ.

For the reverse direction and second part, if Γ is unsatisfiable, then Γ ��
GI(Γ), so the latter is unsatisfiable. Moreover, by compactness, GI(Γ) has a finite
unsatisfiable subset.

We conclude with an important consequence of Herbrand’s theorem which we
will need later. Specifically, for sufficiently simple formulas such as closed atomic
formulas and propositional combinations thereof, validity relative to P can be
tested by considering only Herbrand models.

Corollary 5.4.17. Let Γ be a closed N∀-theory and φ a closed quantifier-free
formula. Then Γ � φ if and only if for every Herbrand model H � Γ we have
H � φ.

Proof. For the forward direction, if Γ � φ then all models of Γ, including Herbrand
ones, model φ. For the reverse direction we prove the contrapositive. If Γ 6� φ then
for some model M � Γ, M � ¬φ. Hence, Γ∪ {¬φ} is satisfiable; moreover since φ
is quantifier free, ¬φ is N∀ so Γ ∪ {¬φ} is still a nominal-universal theory. Hence
there must be an Herbrand model H � Γ ∪ {¬φ}, hence H 6� φ.

5.5 Notes

We have developed a semantics with respect to which nominal logic is complete.
Pitts left the question of finding such a semantics open [108], and Gabbay proposed
an infinitary rule for recovering completeness with respect to finitely supported
models [40]. More recently, Gabbay [44] has investigated a more general approach
to support, in which the set of names is uncountable and all supports are required
to be at most countable. It is also possible to prove that nominal logic is complete
with respect to such models as well; however, the presence of uncountable sets
means that the Skolem-Löwenheim theorem fails, and such a model theory omits
potentially interesting models with “countably infinite but small” supports.

The concept of support ideals is not new; the closely related structure of sub-
group filters is used in Fraenkel-Mostowski set theory to prove the relative inde-
pendence of variants of the Axiom of Choice and other principles; see Truss [124]
and Felgner [35] for a discussion of this method.





Chapter 6

Nominal Logic Programming

Logic is the beginning of wisdom, not the end.

—Spock

The traditional approach to the semantics of logic programming, pioneered by van
Emden, Kowalski and Apt [128, 8], is to define an operational semantics describing
the possible program states and transitions performed by an idealized, nondeter-
ministic interpreter for the language, define a denotational (or declarative) seman-
tics identifying a program with a canonical model of the formulas comprising the
program, and show that the two semantics agree. That is, any solution to a query
found by the operational semantics is a correct answer, and if a query has an an-
swer in the denotational semantics then this answer (or a generalization thereof)
can be found by the operational semantics.

In this chapter, we study the semantics of nominal logic programming based on
Horn clauses. In Section 6.1, we present an idealized, nondeterministic operational
semantics for αProlog as a set of state-transition rules. Since αProlog programs
involve freshness constraints, this semantics is based on that of constraint logic
programming [61, 62]. In Section 6.2, we review and extend the results concerning
Herbrand models of N∀ theories in Section 5.4 and show that nominal Horn clause
programs possess least Herbrand models, providing a van Emden-Kowalski style
least-fixed-point semantics for αProlog programs. In Section 6.3, we prove that
the operational and denotational semantics agree: if G is derivable from P , then
it is true in the least Herbrand model of P (soundness); conversely, if G is true
in the least Herbrand model, then G is derivable in the operational semantics
(completeness). Following Jaffar et al., we prove both algebraic and logical versions
of the soundness and completeness results.

6.1 Operational Semantics

An operational semantics models the behavior of an abstract machine or interpreter
for a language. For a logic programming language, the machine state is a set of

99
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subgoals remaining to be solved. The allowed transitions among states correspond
to backchaining; transitions are labeled by substitutions. A query G is successful
if there is a path from the state G to ∅; the answer to a query is the concatenation
of the substitutions along the path.

In αProlog, the presence of freshness subproblems complicates this picture.
We wish to allow answers to be qualified by (satisfiable) freshness subproblems,
for example, to permit the answer {a # X, b # X} to the query (a b) · X =
X. Constraint logic programming offers a suitable framework for dealing with
freshness constraints; in the operational semantics of a CLP language, a state
consists of a pair 〈G | C〉 consisting of the remaining subgoals G and a set of
constraints C. From the CLP point of view, unification is just another constraint
solving procedure and substitutions may be regarded as equational constraints in
solved form. In fact, this insight leads to a considerably simpler presentation of
the semantics, since the low-level details of constraint solving algorithms can be
separated from the high-level issues of deduction, soundness, and completeness.
Of course, unification and constraint solving algorithms must still be developed to
obtain a practical implementation, but this is a separate issue, which we study in
Chapter 7.

In αProlog, the constraints consist of equational constraints t ≈ u, freshness
constraints t # u, and logical equivalence constraints A ⇐⇒ A′. We abbreviate
A ⇐⇒ A′ as A ∼ A′. In contrast to ordinary (constraint) logic programming,
the constraint p(~t) ∼ p(~u) is not equivalent to ~t ≈ ~u, because of equivariance. For
example, p(a) ∼ (a b) · p(a) ∼ p(b) but a 6≈ b.

Definition 6.1.1 (Constraints). The atomic constraints c are t ≈ u and t # u.
A compound constraint C is a sequence c1, . . . , cn of atomic constraints, considered
to indicate the conjunction of the listed constraints. Constraints are well-formed if
the formulas comprising them are well-formed.

The atomic constraints are interpreted as the corresponding nominal logic for-
mulas, and compound constraints C are interpreted as conjunctions of the formulas
in C.

Definition 6.1.2 (Goals and Programs). A goal G is a conjunction of atomic
formulas and constraints. A nominal Horn clause or program clause is a closed
formula N~a.∀ ~X.G ⊃ A, often abbreviated A :− G, where A is a basic formula and
G is a goal. A program P is a set of program clauses. Goals, program clauses, and
programs are well-formed provided their component formulas are well-formed.

Definition 6.1.3 (State). A state is a pair Σ : 〈G | C〉, where G is a goal
and C a constraint. States are well-formed provided G and C are simultaneously
well-formed with respect to Σ.

The transition rules in Table 6.1 express the operational semantics of αProlog
programs. It is assumed in each rule that C is a set of constraints, P is a set of

N∀-closed program clauses, G is a sequence of atomic formulas, and all formulas
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Table 6.1: Operational semantics rules for αProlog

G −→ G′ provided
C Σ : 〈c,G | C〉 −→ Σ : 〈G | C, c〉 C, c consistent
S Σ : 〈G | C〉 −→ Σ; Σ′ : 〈G | C ′〉 Σ; Σ′ : C ′ ` C
B Σ : 〈A,G | C〉 −→ Σ#~a, ~X : 〈A′ ∼ A,G′, G | C〉 N~a.∀ ~X.G′ ⊃ A′ ∈ P

occurring in C,G,P , are well-formed. A query G is successful if there is a path
from 〈G | ∅〉 to a satisfiable constraint set 〈∅ | C〉, and the resulting answer is C.

The simplification rule −→S deserves some explanation. It is used to simplify
constraints. For example, if C = f(X, 〈a〉X) ≈ f(Y, 〈b〉b), then C can be replaced
by the simpler constraint C ′ = X ≈ a, Y ≈ a, since C ′ corresponds to a unifier of
C. Put another way, C ′ � C, so the simplification rule can be used to transition
from C to C ′. Also, as we shall see in Chapter 7, some constraint solving steps
introduce additional name-constants, so we permit the context to grow.

Note that in the simplification example just given, C � C ′ as well, so we could
“simplify” by replacing the unifier C ′ with the original problem C. There is nothing
logically wrong with this. In this chapter we wish to abstract away from the details
of how constraints are solved, and this includes such matters as the definition of
solved forms which are considered to be simplified. These matters are addressed
in Chapter 7, and the S-rule is a high-level abstraction for all of the constraint
simplification algorithms developed there.

Remark 6.1.4 (Backchaining and equivariance). Equivariance is the biggest
complication in the operational semantics of αProlog. In Table 6.1, the C and S
rules are standard from constraint logic programming. However, the B rule is
nonstandard. In ordinary CLP, the backchaining rule is as follows:

Σ : 〈A,G | C〉 −→B≈ Σ, ~X : 〈~t ≈ ~u,G′, G | C〉 (∀ ~X.G′ ⊃ A′ ∈ P)

where A = p(~t), A′ = p(~u). That is, in ordinary (constraint) logic programming,
term equality is sufficient to decide equivalence of atomic formulas, and syntactic
unification is used in backchaining. In nominal logic programming, it might seem
natural to extend this definition, using nominal equality and unification instead of
first-order equality and unification:

Σ : 〈A,G | C〉 −→B≈ Σ#~a, ~X : 〈~t ≈ ~u,G′, G | C〉 ( N~a.∀ ~X.G′ ⊃ A′ ∈ P)

This approach is sound: all the answers derivable by backchaining based on nominal
equality are correct with respect to the denotational semantics we present in the
next section. However, it is not complete, for there are programs and queries
that have answers that cannot be derived using B≈, because the names generated
during a backchaining step are required to be fresh.
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For example, given the program

Na.p(a).

the query p(b) has no answer, since the following partial derivation gets stuck and
there are no other possible derivations:

b : 〈p(b) | ∅〉 −→B≈ b#a : 〈p(b) ≈ p(a) | ∅〉

There is an alternative backchaining rule based on equality that is complete:

Σ : 〈A,G | C〉 −→B′
≈ Σ#~b, ~X : 〈A′ ≈ A,G′, G | C〉 ( N~a.∀ ~X.G′ ⊃ A′ ∈ P)

where ~b ⊆ ~a. This rule relaxes the requirement that all the N-quantified names a
be chosen fresh. Instead, some “stale” names may be chosen.

Using B′
≈, we can derive

b : 〈p(b) | ∅〉 −→B′
≈ b : 〈p(b) ≈ p(b) | ∅〉

by instantiating the program clause using the stale name b.
This rule is, however, highly nondeterministic. It provides no guidance as to

how the names in a program clause are to be instantiated. In fact, this is a hard
problem, and it is equivalent to the problem of solving constraints of the form
A ∼ A′.

We prefer the approach taken in rule B for two reasons. First, it reduces
the nondeterminism in the operational semantics to an acceptable level. While
the underlying hard search problem is still there, it is kept separate from the
high-level logical behavior of the program. Second, it corresponds closely to an
operational interpretation of the respective left-rules for N, ∀, and ⊃, providing
a direct intuitive justification of backchaining in terms of our proof system for
nominal logic.

Now we show an important, but straightforward, type soundness property for
monomorphic αProlog programs. Although the implementation of αProlog pro-
vides polymorphic typing, we have not yet investigated the combination of poly-
morphism and nominal logic. Investigation of type soundness for polymorphic
programs is left for future work.

Theorem 6.1.5 (Type soundness). If P is a well-formed program and S is a
well-formed state and Σ : S −→∗ Σ′ : S ′ using the transitions of Table 6.1 then
Σ′ : S ′ is well-formed.

Proof. The proof is routine based on the assumption that G and P are well-formed,
and that in the simplification rule, implicitly C ′ must be well-formed.
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6.1.1 Examples

Example 6.1.6 (Typechecking). We first demonstrate how to solve a query
tc([], lam(〈a〉lam(〈a〉var(a))), T ). The context Σ and many intermediate steps are
left out for conciseness.

〈tc([], lam(〈a〉lam(〈a〉var(a))), T ) | ∅〉
−→B 〈x1 # [], tc([(x1, T1)|G1], E1, U1) |

tc([], lam(〈a〉lam(〈a〉var(a))), T ) ∼ tc(G1, lam(〈x1〉E1), arr(T1, U1))〉
−→S 〈tc([(x1, T1)|G1], E1, U1) |

T ≈ arr(T1, U1), G1 ≈ [], E1 ≈ lam(〈x1〉var(x1))〉
−→∗ 〈mem((X3, T3), G3) | tc([(x2, T2), G2], E1, U2) ∼ tc(G3, var(X3), T3)

x2 # T1, T ≈ arr(T1, arr(T2, U2)), G2 ≈ [(x1, T1)], E2 ≈ var(x2)〉
−→∗ 〈∅ | x2 # T1, T ≈ arr(T1, arr(T2, T2))〉

Thus the answer for T is T ≈ arr(T1, arr(T2, T2)) as desired. Note that x2 #
T1 can be simplified away because at this stage, the context Σ is of the form
a, T#x1, G1, T1, E1, U1#x2, . . . so Σ : C ` x2 # T1 ∧ C follows by the Σ# rule
(writing φ = T ≈ arr(T1, arr(T2, T2))). There are no essentially different answers
to the initial query. In the previous example, all of the equivariance constraints
were trivial, that is, the equivariance axioms are not needed to solve the atomic
∼-constraints.

Example 6.1.7 (Equivariance). The α-inequivalence predicate neq is a typical
program for which equivariance is needed. Consider the following execution:

neq(lam(〈x〉var(y)), lam(〈z〉var(z)))
−→B 〈neq(lam(〈x〉var(y)), lam(〈z〉var(z))) ∼ neq(lam(〈x1〉E), lam(〈x1〉E ′),

neq(E,E ′) | ∅〉
−→S 〈neq(E,E ′) | E ≈ var(y), E ′ ≈ var(x1)〉
−→B 〈neq(var(y), var(x1)) ∼ neq(var(x2), var(y2)) | · · ·〉
−→S E ≈ var(y), E ′ ≈ var(x1)

where neq(var(y), var(x1)) ∼ neq(var(x2), var(y2)) requires equivariance so that
the permutation (y x2)(x1 y2) can be applied.

6.2 Denotational Semantics

A denotational semantics gives mathematical meaning to expressions and pro-
grams in a programming language. Basic datatypes such as integers and strings
are associated with mathematical integers and lists of characters; procedures are
associated with functions; and basic formulas are associated with relations.

The standard approach to denotational semantics for logic programming is
to view a program as a theory (in an appropriate logic) and associate it with
some canonical model (or a class of models). In first-order logic programming,
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the natural domain in which to interpret terms and program clauses is the first-
order Herbrand universe consisting of terms and Herbrand models. In fact, first-
order Horn clause programs possess unique least Herbrand models. Moreover, such
models can also be obtained by calculating the least fixed point of an appropriate
continuous operator. This property is essential for proving completeness.

This section relies heavily on definitions and concepts from lattice theory, which
are reviewed in Section 3.4. We now show that least Herbrand models exist for
nominal Horn clause programs and that the least Herbrand model is the least fixed
point of an appropriate one-step deduction operator, following the development
given by Lloyd [69] and Jaffar et al. [62].

6.2.1 Least Herbrand Models

It is a well-known fact that least Herbrand models exist for Horn clause theories
in first-order logic. Building on the nominal version of Herbrand’s Theorem, we
extend this result to nominal logic.

Proposition 6.2.1. Let P be a program and M a nonempty set of Herbrand
models of P. Then

⋂
M is also a Herbrand model of P.

Proof. Obviously, the sort and term interpretation of
⋂
M is the Herbrand inter-

pretation. We therefore need to show that
⋂
M � φ for each φ ∈ P . For this

we rely heavily on Corollary 5.4.11, which states that a nominal-universal formula
N~a.∀ ~X.φ is valid in a Herbrand model H just in case H � θ(φ) for every valuation

θ. The proof is otherwise standard, but we give the details for completeness.
Let φ be a rule A :− G. Then for every H ∈ M, H � φ, so we know that

whenever H � θ(G), it follows that H � θ(A). Assume that
⋂
M � θ(G) for some

θ. LetH ∈M be given. Clearly, H � θ(G) soH � θ(A). SinceH was arbitrary, we
have θ(A) ∈

⋂
M, i.e.

⋂
M � θ(A). Therefore,

⋂
M � A :− G. Since

⋂
M � φ

for any φ ∈ P , we have
⋂
M � P , so

⋂
M is a Herbrand model of P .

An immediate consequence is that a ⊆-least Herbrand model

HP =
⋂
{H | H � P}

exists for any nominal Horn theory P . Moreover, HP consists of all ground atoms
provable from P , as we now show.

Theorem 6.2.2. Let P be a set of program clauses. Then HP = {A ∈ BL | P �
A}.

Proof. If A ∈ HP , then A is valid in every Herbrand model of P , so by Corol-
lary 5.4.17, A is valid in every model of P . Conversely, if P � A then since
HP � P we have HP � A; thus A ∈ HP .
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6.2.2 Fixed Point Semantics

Note that the set of all Herbrand interpretations {B ⊂ P(BL) | supp(S) = ∅}
forms a complete nominal lattice with a top element BL and bottom element ∅.
The join and meet operations are ∪ and ∩, respectively.

Definition 6.2.3. Let S be a Herbrand interpretation and P a set of program
clauses. Define the transformation τP : P(BL) → P(BL) by

τP(S) = {θ(A) | (A :− G) ∈ P , S � θ(G)}

where θ is a ground valuation.

Proposition 6.2.4. τP is monotone, equivariant, and continuous.

Proof. It is easy to see that τP is monotone.
For equivariance, let compatible names a, b be given. Then

(a b) · τP(S) = (a b) · {θ(A) | (A :− G) ∈ P , S � θ(G)}
= {(a b) · θ(A) | (A :− G) ∈ P , S � θ(G)}
= {θ((a b) · A) | (A :− G) ∈ P , S � θ(G)}
= {θ((a b) · A) | ((a b) · A :− (a b) ·G) ∈ P ,

(a b) · S � θ((a b) ·G)}
= {θ(A) | (A :− G) ∈ P , (a b) · S � θ(G)}
= τP((a b) · S)

For continuity, let ~S be an ω-chain of subsets of BP . We need to show that

τP(
⋃
i

Si) =
⋃
i

τP(Si) .

For the ⊆ direction, suppose that A ∈ τP(
⋃

i Si). Then A = θ(A′) and

θ(G1), . . . , θ(Gn) ∈
⋃
i

Si

for some clause A′ :− G′ ∈ P . Since there are finitely many Gi, there is a fixed Sj

such that θ(G1), . . . , θ(Gn) ∈ Sj. Hence A ∈ τ(Sj) ⊆
⋃

i τP(Si).
For the ⊇ direction, suppose that A ∈

⋃
i τP(Si). Then for some j, A ∈

τP(Sj), hence A = θ(A′) and θ(G1), . . . , θ(Gn) ∈ Sj ⊆
⋃

i Si. Consequently, A ∈
τP(

⋃
i Si).

Theorem 6.2.5. HP = lfp(τP) = τω
P (∅).

Proof. Clearly τω
P (∅) = lfp(τP) by Theorem 3.4.4. We show that HP ⊆ τω

P (∅)
and lfp(τP) ⊆ HP .



106 CHAPTER 6. NOMINAL LOGIC PROGRAMMING

For HP ⊆ τω
P (∅), we show that M = τω

P (∅) is a model of P . To see that
M is a model of P , we consider each clause A :− G of P . We wish to show
that M � A :− G, that is, for any ground valuation θ, M � θ(G) ⊃ θ(A).
Let θ be a substitution and assume M � θ(G). By the definition of τP we have
θ(A) ∈ τP(M), but since M is a fixed point of τP we have τP(M) = M. Hence
θ(A) ∈ M, so A :− G is valid in M, and M � P , as desired. Because HP is the
least model of P , HP ⊆ τω

P (∅).
For lfp(τP) ⊆ HP , we show thatHP is a pre-fixed point of τP , that is, τP(HP) ⊆

HP . Suppose A ∈ τP(HP). Then for some A′ :− G′ ∈ P , and some substitution
θ, we have A = θ(A′) and HP � θ(G′). Since HP � P , and HP � θ(G′), it follows
that HP � θ(A′), so HP � A. Hence A ∈ HP , as desired, so HP is a pre-fixed
point of τP . But τω

P (∅) is the least fixed point of τP , and by the Knaster-Tarski
theorem, the least fixed point is the least pre-fixed point, so the desired result is
immediate.

We have thus extended the standard denotational semantics for first-order logic
programs to the nominal case.

6.2.3 Examples

We consider some simple example programs and their least models.
Consider the program

p(a, X) :− a ≈ X

The corresponding transformation τ is

τP(S) = {p(a, v) | S � a ≈ v}

This operator reaches a fixed point after one step, namely

HP = {p(a, a) | a ∈ ν}

Consider the program

fv(var(x), [x]).
fv(app(E,E ′), L) :− fv(E,L1), fv(E

′, L2), union(L1, L2, L).
fv(lam(〈x〉E), L) :− fv(E,L′), remove(x, L′, L).

where union merges two lists without introducing repeated elements. The least
model for fv looks something like this:

{fv(var(x), [x]), . . .}
∪ {fv(app(var(x), var(y)), [x, y]), . . .}
∪ {fv(lam(〈x〉app(var(x), var(y))), [y]), . . .}
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6.3 Soundness and Completeness

Soundness and completeness for the operational semantics relative to the denota-
tional semantics is one of the most important properties to establish for any logic
programming language. For first-order Horn clause programs, a ground formula
is true in the least Herbrand model HP iff it has a successful derivation in the
operational semantics. These soundness and completeness results are crucial for
establishing that logic programs are both algorithmically and logically sensible.

Soundness and completeness properties for constraint logic programming come
in two varieties: algebraic, and logical. Algebraic soundness and completeness mean
that any concrete answer (ground valuation) solving a query can be derived using
the operational semantics and vice versa. Logical soundness and completeness
mean that any query is logically equivalent to a disjunction of constraints, and is
typically harder to establish. This terminology is due to Jaffar et al. [62].

In this section we first show algebraic soundness, then algebraic completeness,
and finally logical soundness and completeness.

6.3.1 Algebraic Soundness

Theorem 6.3.1 (Algebraic Soundness). If Σ : 〈G | ∅〉 −→∗ Σ; Σ′ : 〈∅ | C〉
and M � P then Σ; Σ′ : C �M G.

Proof. Let M � P be given. First we show that if Σ : 〈G | C〉 −→ Σ; Σ′ : 〈G′ | C ′〉
then Σ; Σ′ : G′, C ′ � G,C. We consider the possible cases.

• If the transition was of the form

Σ : 〈c,G | C〉 −→C Σ : 〈G | C, c〉

then it is immediate that Σ : c,G,C � G,C, c.

• If the transition was of the form

Σ : 〈G | C〉 −→S Σ; Σ′ : 〈G | C ′〉

where Σ; Σ′ : C ′ ⇒ C then clearly, by the soundness of NL, we have Σ; Σ′ :
C ′ � C so we also have Σ; Σ′ : G,C ′ � G,C.

• Finally, if the transition was of the form

Σ : 〈A,G | C〉 −→B Σ; Σ′ : 〈A′ ∼ A,G′, G | C〉

where Σ′ = #~a, ~X, with N~a.∀ ~X.G′ ⊃ A′ ∈ P , then we need to show Σ; Σ′ :
A′ ∼ A,G′, G, C � A,G,C. Let ρ : Σ; Σ′ be an M-valuation such that
Σ; Σ′ : ρ � A′ ∼ A,G′, G, C. We need to show Σ; Σ′ : ρ � A,G,C. Obviously
Σ; Σ′ : ρ � G,C by assumption, so the only difficult part is showing Σ; Σ′ :
ρ � A. However, since N~a.∀ ~X.G′ ⊃ A′ ∈ P , and M � P , we must have
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Σ; Σ′ : ρ � G′ ⊃ A′, so combined with the fact that Σ; Σ′ : ρ � G′, we have
Σ; Σ′ : ρ � A′. Since Σ; Σ′ : ρ � A′ ∼ A, we also have Σ; Σ′ : ρ � A. Since ρ
was arbitrary, we have Σ; Σ′ : A′ ∼ A,G′, G, C � A,G,C, as desired.

It follows immediately that if Σ : 〈G | C ′〉 −→∗ Σ′ : 〈G′ | C〉 then Σ′ : G′, C �
G,C ′; the desired result follows if C ′ = ∅ and G′ = ∅.

6.3.2 Algebraic Completeness

We now consider the question of (algebraic) completeness: if a goal is satisfiable,
then it is operationally reducible to a satisfiable constraint. Since P is a nominal-
universal Horn theory, any satisfiable formula is satisfiable in HP . The idea of the
proof is to exploit the fact that HP is constructed by a fixpoint operator.

Some auxiliary definitions and notation involving valuations are now given.

Definition 6.3.2. We say that ground valuations θ and θ′ are disjoint if their
domains are disjoint; the sum of two disjoint valuations θ, θ′ is θ + θ′, defined by

(θ + θ′)(X) =

{
θ(X) X ∈ dom(θ)
θ′(X) X ∈ dom(θ′)

We say that θ′ extends θ (written θ′ ≥ θ) if there exists a θ′′ such that θ′ = θ+ θ′′.

It is easy to verify the following properties of valuations, sums, and extensions:

Lemma 6.3.3. If θ, θ′ are disjoint valuations then θ + θ′ is a valuation.
If Σ : M, θ � φ, θ′ : Σ′, Σ′ ≥ Σ, and θ′ ≥ θ then Σ′ : M, θ′ � φ.

Theorem 6.3.4 (Algebraic Completeness). Assume Σ : HP , θ � G. Then
there exists a constraint C, context Σ′ ≥ Σ, and valuation θ′ ≥ θ such that Σ :
G −→∗ Σ′ : C and Σ′ : θ′ � C.

Proof. SinceHP , θ � G andHP = τω
P , there must be a finite iteration τi = τ i

P(∅) of
τP such that τi, θ � G. Therefore, we prove by induction on i that if τi, θ � G then
there exists Σ′, θ′, C such that Σ : G −→∗ Σ′ : C, Σ′ ≥ Σ, θ′ ≥ θ, and Σ′ : θ′ � C.

If τ0 = ∅, then � G, so G must consist entirely of constraints, and we have

Σ : 〈G | ∅〉 −→C Σ : 〈∅ | G〉 .

The desired constraint is G itself and the desired valuation is θ.
For the induction step, assume the induction hypothesis holds for i = n. Sup-

pose Σ : τn+1, θ � G. We proceed by induction on the number of goals in G. If
|G| = 0, then G is empty, so Σ : G −→∗ Σ : >. Otherwise, |G| = k + 1 for some
k such that the (inner) induction hypothesis holds for k. Let G = G′, A; then
|G′| = k and Σ : τn+1, θ � G′ so by the inner induction hypothesis applied to G′,
choose C ′, Σ′ ≥ Σ, and θ′ such that Σ : G′ −→∗ Σ′ : C ′ and Σ′ : θ′ � C ′. Now,
concerning A, there are two cases: either Σ′ : τn, θ � A or Σ′ : τn, θ 6� A. In the
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first case, clearly Σ′ : τn, θ
′ � A so by the outer induction hypothesis there exists a

C ′′ and θ′′ ≥ θ′ such that A −→∗ C ′′ and θ′′ � C ′′, thus

Σ : 〈G′, A | ∅〉 −→∗ Σ′ : 〈C ′, A | ∅〉
−→C Σ′ : 〈A | C ′〉
−→∗ Σ′′ : 〈C ′′ | C ′〉
−→C Σ′′ : 〈∅ | C ′′, C ′〉

so the desired C is C ′′, C ′, for which it is easily verified that Σ′′ : θ′′ � C ′′, C ′.
Otherwise, Σ : τn+1, θ � A but Σ : τn, θ 6� A. So it must be that θ(A) ∈

τ(τn)− τn, in other words, that there exists a θ0 and ( N~a.∀ ~X.G0 ⊃ A0) ∈ P such

that � θ0(A0) ∼ θ(A), #~a, ~X : τn, θ0 � G, and FV (A0, G0) ∩ FV (A,G′) = ∅.
Since the free variables of A and A0, G0 are distinct, θ′ and θ0 are disjoint; we
define θ′′ = θ′ + θ0. Note that � θ0(A0) ∼ θ(A) implies Σ′′ : θ′′ � A0 ∼ A where

Σ′′ = Σ′#~a, ~X. Then Σ′′ : τn, θ
′′ � G0, so by the outer induction hypothesis on G0,

there exists C0, Σ′′′, and θ′′′ such that Σ′′ : G0 −→∗ Σ′′′ : C0 and Σ′′′ : θ′′′ � C0.
Now certainly Σ′′′ : θ′′′ � C0, A0 ∼ A,C ′ since Σ′′′ and θ′′′ extend all the contexts
and valuations involved. Moreover,

Σ : 〈G′, A | ∅〉 −→∗ Σ′ : 〈C ′, A | ∅〉
−→C Σ′ : 〈A | C ′〉
−→B Σ′′ : 〈A0 ∼ A,G0 | C ′〉
−→C Σ′′ : 〈G0 | A0 ∼ A,C ′〉
−→∗ Σ′′′ : 〈C0 | A0 ∼ A,C ′〉
−→C Σ′′′ : 〈∅ | C0, A0 ∼ A,C ′〉

and we can construct the desired context, constraint, and valuation. This exhausts
all cases and completes the proof.

Note that nowhere was the simplification rule −→S needed. Hence the opera-
tional semantics consisting only of −→B,−→C is complete. The simplification rule
is only needed to reduce complicated constraints to human-readable forms.

6.3.3 Logical Soundness and Completeness

So far we have shown that completeness holds in the weak sense that a valid so-
lution can be derived in the operational semantics. In this section we consider
logical completeness, that is, that “the answers returned by the operational seman-
tics cover all of the constraints which imply the goal [62]”.

The usual way to prove this is to show that G is logically equivalent to the
disjunction of all its derivable solutions (possibly infinitely many), and use com-
pactness to show that there must be a finite subset of the disjunction. However,
the presence of structured contexts in nominal logic means that we must be care-
ful when dealing with potentially infinite sets of formulas since they may mention
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infinitely many variables and name-constants. One way to deal with this would
be to use infinite contexts, as in Chapter 5; however, this approach is somewhat
cumbersome for this situation. Instead, we will use auxiliary notation to represent
the existential closure of a constraint with respect to a context.

Definition 6.3.5 (Nominal-Existential Closure). Given a context Σ and con-
straint C, we write ∃Σ[C] for the nominal-existential closure of C with respect to
Σ, or the result of quantifying the name-constants of Σ using Nand variables of Σ
using ∃. This can be computed as follows:

∃ · [C] = C

∃Σ, x[C] = ∃Σ[∃x.C]

∃Σ#a[C] = ∃Σ[ Na.C]

For example, if some context and goal, such as a, T : tc([], lam(〈a〉var(a)), T ),
reduces to a constraint C in an extended context, such as a, T, b, U : T ≈ f(〈b〉U),
then the N∃-closure relative to the context U is is Nb.∃U [T ≈ f(〈b〉U)] = ∃U.T ≈
f(〈b〉U). It is not difficult to show that

Lemma 6.3.6. Σ : θ � ∃Σ′[C] if and only if there exists a θ′ : Σ′ such that
Σ; Σ′ : θ + θ′ � C.

This, combined with the Algebraic Soundness Theorem above, gives a sharp-
ened result that shows that if a constraint is derivable, then its closure under the
context extension involved in the derivation is also a logical answer to the goal.

Corollary 6.3.7 (Logical Soundness). If Σ : G −→∗ Σ; Σ′ : C then Σ :
P ,∃Σ′[C] � G.

We now show that a goal is logically equivalent to the closures of all the con-
straints to which it reduces.

Proposition 6.3.8. For given G and Σ, let C = {∃Σ′[C] | Σ : G −→∗ Σ; Σ′ : C}.
Then Σ : HP � G ⇐⇒

∨
C.

Proof. For the forward direction, let HP , θ � G. By Theorem 6.3.4, there exists
a Σ′, θ′, and C such that Σ; Σ′ : θ + θ′ � C and Σ : G −→∗ Σ; Σ′ : C; moreover,
Σ : θ � ∃Σ′[C] by Lemma 6.3.6. Hence, Σ : θ �

∨
C, so HP , θ � G ⊃

∨
C, so

HP � G ⊃
∨
C since θ was arbitrary.

For the reverse direction, assume Σ : HP , θ �
∨
C. Then for some ∃Σ′[C ′] ∈ C,

we have Σ : HP , θ � ∃Σ′[C]. By the definition of C, we have Σ : G −→∗ Σ; Σ′ : C.
Therefore, by Corollary 6.3.7, Σ : P ,∃Σ′[C] � G. Consequently, Σ : HP , θ � G

Theorem 6.3.9 (Logical Completeness). If Σ : HP , C � G then there is a
finite set of constraints Ci and contexts Σi such that Σ : G −→∗ Σ; Σi : Ci and
C ⊃

∨
i ∃Σi[Ci].

Proof. This follows from the previous theorem and the compactness of nominal
logic (Corollary 5.3.3).
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6.4 Notes

The least-Herbrand-model and least-fixed-point semantics of logic programs are
due originally to van Emden and Kowalski [128] and Apt and van Emden [8].
Lloyd [69], Hogger [55], and Nerode and Shore [94] are good contemporary treat-
ments of classical logic programming semantics.

Constraint logic programming was introduced by Jaffar and Lassez [60]; Co-
hen [22] provides a short survey and Jaffar and Maher [61] a comprehensive and
detailed survey of CLP including a discussion of semantics, existing implemen-
tations and implementation techniques, and applications. Jaffar et al. [62] is a
self-contained exposition of the semantics of constraint logic programs. It may be
possible to implement αProlog’s functionality within an existing constraint logic
programming language or framework such as CIAO Prolog [52].

Another popular form of logic programming semantics is proof-theoretic seman-
tics, introduced by Miller et al. [82]. Darlington and Luo [27] and Leach, Nieva, and
Rodŕıguez-Artalejo [68] have developed proof-theoretic semantics for Horn clause
and hereditary Harrop clause constraint logic programming. The latter techniques
seem particularly suitable for investigating the proof-theoretic semantics of nomi-
nal logic programming.





Chapter 7

Nominal Constraint Solving

Computers are useless. They can only give you answers.

—Pablo Picasso

The semantics in the previous chapter took a high-level view of nominal logic
programming as reduction of goals to constraints, without concern for the details
of constraint-solving and unification algorithms that might be used to solve the
constraints. However, algorithms for solving these problems are of course necessary
in a concrete implementation. In this chapter we consider these nominal constraint
solving problems.

We first (Section 7.1) establish lower bounds on the complexity of the problems:
in particular, we show that solving a single freshness, unification, or equivariant
unification problem is NP-hard. In addition, we show that the first two problems
are in NP; equivariant unification is conjectured to be in NP.

Next (Section 7.2) we supply algorithms for solving general nominal constraint
problems and prove their soundness and completeness. These algorithms are high-
level, and much could be done to improve their efficiency in practice (although
the NP-hardness of nominal constraint problems indicates that it is unlikely that
polynomial-time algorithms for these problems exist).

We conclude by showing that the semantics of the previous section can be
combined with the constraint solving algorithms of this chapter to form a sound,
complete implementation of nominal logic programming. However, such an imple-
mentation is still far from practical. We discuss the problems with the constraint
solving algorithms and how they could be addressed. In particular we discuss Ur-
ban, Pitts, and Gabbay’s nominal unification algorithm [126, 127], which is used
in αProlog. Urban et al.’s algorithm efficiently solves a special case of nominal
unification and freshness constraint problems; we refer to the terms used in this
algorithm as nominal patterns and to the algorithm itself as nominal pattern uni-
fication. We also discuss some work currently in progress on identifying αProlog
programs for which nominal pattern unification is complete.

113
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7.1 Complexity

In this section, we study the complexity of solving general nominal constraints. We
rely on standard definitions of the complexity classes, the concept of polynomial
time reduction and NP-completeness, and standard NP-complete problems, as
can be found in any complexity theory book such as Garey and Johnson [45] or
Papadimitriou and Stieglitz [99].

In this section, we write A for a fixed name-set, A # A for the “fresh product”
set {(a, b) ∈ A × A | a # b}, and A(n) for the n-th iterated fresh product. Thus,
A(n) is the set {(a1, . . . , an) ∈ A(n) | a1 # a2 # · · · # an}. (We write x # y # z . . .
to indicate that x # y, x # z, y # z, etc.) Note that A # A and A(n) are nominal
sets.

7.1.1 Basic Problems

We write ≤P for polynomial-time reduction. Let S be a constraint problem, con-
sisting of a subset of a specified domain Dom(S) (often left implicit). We write S∗

for the problem of determining simultaneous satisfiability of sets of problems from
S and write S ]S ′ for the problem of determining satisfiability of a single element
of S or of S ′. Note that S ≤P S∗ and S ≤P S ∪ T for any S, T , and T ≤P S for
any T ⊆ S.

Nominal constraints are solved over the Herbrand universe of nominal terms.
We use θ for a ground term valuation, and #NT and =NT are (semantic) freshness
and equality over nominal terms, usually abbreviated # and =. The similarity re-
lation t ∼ u on nominal terms holds when t and u are equal modulo a permutation,
that is,

t ∼ u ⇐⇒ ∃π ∈ G.π · t = u .

We define the following decision problems:

FreshSat = {a #? t | ∃θ.θ(a) # θ(t)}
NomSat = {t ≈? u | ∃θ.θ(t) = θ(u)}

EVMatch = {t -? u | u ground,∃θ.θ(t) ∼ u}
EVSat = {t ∼? u | ∃θ.θ(t) ∼ θ(u)}

Constraints of the form t -? u and t ∼? u are called equivariant matching and
equivariant unification respectively. We write SN for the problem S restricted to
name-terms.

In addition, we define the separation problem

Sep = {~a ∈? A(n) | ∃θ.θ(~a) ∈ A(n)}

Intuitively, Sep is the set of all n-tuples of name-sorted terms that can be instan-
tiated so that no name-constants are repeated.

Here, as in Chapter 6 and in logic programming generally, capital letters X, Y
are viewed as unknowns.
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Example 7.1.1. Here are satisfiable instances of the above five problems:

X #? (X Y ) ·X X ≈? (X Y ) · Y 〈X〉(X Y ) ·X -? 〈a〉b
〈X〉(X Y ) ·X ∼? 〈Y 〉b (X, (X Y ) ·X) ∈? A(2)

The following instances are unsatisfiable:

X #? (X Y ) · Y X ≈? f((X Y ) · Y ) 〈X〉X -? 〈a〉b
〈a, a, X〉 ∼? 〈a, X, b〉 (X, (a b) ·X,Y, (a b) · Y ) ∈? A(2)

It is easy to see that Sep is in NP because a satisfying valuation θ is a
polynomial-time checkable certificate for a problem in Sep. For the same reason,
it is easy to see that freshness, equational, and equivariance constraint problems
involving only terms of name-sort are in NP.

In addition, it is straightforward to show that nominal unification and freshness
constraint solving are in NP.

Theorem 7.1.2. FreshSat, NomSat, and EVMatch are in NP.

Proof. According to [127], nominal pattern unification is solvable in quadratic time.
Nominal patterns constraints are constraints such that for every subterm of the
form (a b) · t, 〈a〉t, or a # t, we have a, b are name-constants. If a FreshSat or
NomSat (or more generally (FreshSat]NomSat)∗) problem P is satisfiable by
θ, then let ρ be the subvaluation consisting of θ restricted to variables of name-sort.
Then ρ(P ) is a nominal pattern since it contains no name-sorted variables at all.
Hence the satisfiability of ρ(P ) can be verified in quadratic time. Moreover, ρ can
be constructed and stored in linear time and space.

For EVMatch, note that if θ is a satisfying valuation for s -? t, then |θ(s)| =
|t|, where | · | is the usual size measure on terms. Hence θ is itself a polynomial
time verifiable certificate for s -? t.

However, establishing that equivariant unification is in NP is not so easy, be-
cause the satisfying valuation θ may be exponential in size and it is not easy to see
why the witnessing permutation π should be of size polynomial in the input. We
conjecture that EVSat ∈ NP seems to require developing a specific nondetermin-
istic algorithm with good space behavior. We do not believe this to be difficult in
principle; however, this task is left for future work.

In the rest of this section we will show that Sep is NP-complete and then
reduce Sep to the remaining problems. This shows that they are all NP-hard.

7.1.2 NP-Completeness of Separation

In the this section we prove

Theorem 7.1.3. The problem Sep is NP-complete.
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Proof. Having already seen Sep ∈ NP, we show NP-hardness only. We reduce
from the NP-complete problem Graph 3-Colorability, that is, determining
whether a graph’s vertices can be colored with one of three colors so that no
neighboring vertices are the same color.

Let a (directed) graph G = (V,E) with n vertices and m edges be given. We
assume without loss of generality that V = {1, . . . , n} and E = {e1, . . . , em}. We
write si, ti for the source and target of the edge ei ∈ E. Let C = {r, g, b} be a
three-element subset of A. We define a 3-coloring as an n-tuple ~c ∈ Cn such that
csi
6= cti whenever ei ∈ E.
Define πC = (r g)(g b), a cyclic permutation on A with support C. Choose n+m

permutations τ1, . . . , τn, σ1, . . . , σm so that if Ti = τi · C for each i ∈ {1, . . . , n},
and Sj = σj · C for each j ∈ {1, . . . ,m}, then all of the sets C, T1, . . . , Tn, and
S1, . . . , Sm are disjoint.

Let X1, . . . , Xn ∈ V be n distinct variables.
Idea of the proof. We wish to identify colorings of G with valuations of θ

satisfying some Sep instance ~u. For such a valuation to correspond to a proper
coloring, we must have θ(Xi) ∈ C and θ(Xi) 6= θ(Xj) for each edge (i, j) ∈ E.

Therefore, the instance ~u must force all of the Xi to be elements of C and for
each edge ei force Xsi

and Xti to be different. In addition, ~u should be satisfiable
whenever θ corresponds to a valid 3-coloring.

Observe X 6= πC ·X if and only if X ∈ supp(πC) = C. So it is easy to encode
a single set constraint X ∈ C as a Sep problem

(X, πC ·X) ∈? A(2) .

However, for two variables this does not quite work:

(X1, πC ·X1, X2, πC ·X2) ∈? A(4)

forces X1, X2 ∈ C but also forces X1 6= X2, πC · X1 6= X2, etc. This is too
strong. To prevent interference between subproblems, we isolate them using the
permutations τ1, τ2:

(τ1 ·X1, τ1 ◦ πC ·X1, τ2 ·X2, τ2 ◦ πC ·X2) ∈? A(4)

First note that τ1 ·X1 6= τ1 ◦ πC ·X1 implies X1 6= πC ·X1 so X1 ∈ C and similarly
X2 ∈ C, as before. On the other hand, if X1, X2 are in C, then all four components
are different, since the first two lie in T1 and the last two in T2, and the two sets
are disjoint. It is not hard to show by induction that

~s = (τ1 ·X1, τ1 ◦ πC ·X1, . . . , τn ·Xn, τn ◦ πC ·Xn) ∈? A(2n)

is in Sep if and only if X1, . . . , Xn ∈ C.
Now we need to enforce that whenever ei ∈ E, we have Xsi

6= Xti . For a single
edge, the following instance suffices:

(Xsi
, Xti) ∈? A(2)
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However, as was the case earlier, problems cannot always be combined correctly
because they might interfere. For example, for two edges (1, 2), (1, 3), the problem

(X1, X2, X1, X3) ∈? A(4)

is unsatisfiable because the value of X1 is repeated in any valuation, but [X1 :=
r,X2 := g,X3 := b] is a proper 3-coloring. To get around this problem, we use the
permutations σi to isolate the constraints for each edge ei. For example,

(σ1 ·X1, σ1 ·X2, σ2 ·X1, σ2 ·X3) ∈? A(4)

ensures X1 6= X2 and X1 6= X3. Also, if X1, X2, X3 ∈ C then the first two
components are in S1 and the second two in S2, and S1 ∩ S2 = ∅. So more
generally, the problem

~t = (σ1 ·Xs1 , σ1 ·Xt1 , . . . , σm ·Xsm , σm ·Xtm) ∈? A(2m)

enforces the coloring property for each edge and permits all valid colorings.
Define ~u to be the 2n + 2m-tuple ~s~t. Then ~u ∈? A(2n+2m) is the Sep problem

corresponding to the instance G of Graph 3-Colorability.
Correctness of the reduction. So far we have only described the construc-

tion and the intuition behind it. It is easy to see that ~u can be constructed in
O(m+n) time, since πC , τi, and σj each have representations consisting of at most
three transpositions. We now show carefully that the reduction is correct, that
is, G has a 3-coloring ~c ∈ Cn if and only if ~u has a separating valuation θ. The
backward direction is easy, since (as outlined above) it is easy to show that any
solution θ separating ~u = ~s~t corresponds to a 3-coloring ci = θ(Xi).

The difficulty is showing that ~u is not over-constrained: that is, if ~c is a 3-
coloring then the valuation θ(Xi) = ci separates ~u. Suppose ~c is a 3-coloring
and θ(Xi) = ci. We need to show that i 6= j implies θ(ui) 6= θ(uj) for each
i, j ∈ {1, . . . , |~u|}. Assume i, j ∈ {1, . . . , |~u|} and i 6= j. Suppose without loss of
generality that i < j. There are three cases.

If i is even or j > i+1, then ui = ρ ·Xk and uj = ρ′ ·Xk′ for some permutations
ρ, ρ′ and Xk, Xk′ , and ρ · C and ρ′ · C are disjoint, so

θ(ui) = ρ · ck 6= ρ′ · ck′ = θ(uj)

If i is odd and i + 1 = j and j ≤ 2n, then j is even; set k = j/2. Then
ui = τk ·Xk, uj = τk ◦ πC ·Xk, and we have

θ(ui) = τk · ck 6= τk ◦ πC · ck = θ(uj)

since πC · ck 6= ck.
If i is odd and j = i + 1 and 2n + 1 ≤ i, then j and j − 2n are even; set

k = (j − 2n)/2. Then ui = σk ·Xsk
, uj = σk ·Xtk , and

θ(ui) = σk · csk
6= σk · ctk = θ(uj)

where csk
6= ctk since c is a 3-coloring. So, in any case, θ(ui) 6= θ(uj). QED.
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7.1.3 Freshness Constraint Satisfaction

In this section we reduce the separation problem to freshness constraint. The
reduction takes two steps: first we show that a single instance of Sep reduces to a
set of freshness constraints, then reduce such sets of constraints to single general
constraints.

Theorem 7.1.4. Sep ≤P FreshSat∗N ≤P FreshSat

Proof. For Sep ≤P FreshSat∗N , let ~a be a Sep problem instance, that is, a
sequence of terms ν for which it is desired to find a valuation θ satisfying θ(ai) #
θ(aj) whenever i 6= j. Then consider the set

S = {ai #? aj | i 6= j}

This set is an instance of FreshSat∗N and clearly a solution θ for ~t ∈ Sep is a
solution for S ∈ FreshSat∗. The size of S is quadratic in the size of ~a, so S can
be constructed from ~a in polynomial time.

For the second reduction FreshSat∗ ≤ FreshSat, let S = {a1 # t1, . . . , an #
tn} be an instance of FreshSat∗. Let b be a name not appearing in S. Consider
the problem

b #? ((b a1) · t1, . . . , (b an) · tn) (7.1)

Clearly the above problem can be constructed from S in linear time. We show
that θ satisfies (7.1) if and only if θ satisfies S.

Suppose θ satisfies (7.1), that is, b # θ((b a1) · t1, . . . , (b an) · tn). Then
b # (b θ(ai)) · θ(ti) for each i, and so θ(ai) # θ(ti), so θ(S) holds. Conversely,
suppose θ(S) holds; then θ(ai) # θ(ti) for each i and so b # (b θ(ai)) · θ(ti) for
each i. Consequently b # θ(~t).

Corollary 7.1.5. FreshSat is NP-hard.

7.1.4 Nominal Equational Satisfaction

In this section we consider the reduction of general freshness problems to general
nominal equational constraints. Recall that the following is a theorem of NL:

a # t ⇐⇒ Nb.(a b) · t ≈ t

This reduces freshness constraint solving to solving quantified problems of the
form Nb.(a b) · t ≈ t. This is somewhat circular, since Nb.(a b) · t ≈ t ⇐⇒ b #
a, t∧ (a b) · t ≈ t for some b not syntactically present in a, t. However, even if b is
syntactically fresh for a and t, the single constraint (a b) · t ≈ t is not equivalent
to a # t, since there is the possibility that a ≈ b holds. The way we deal with this
is to use two equality constraints with fresh names b and b′, specifically,

(a b) · t ≈ t ∧ (a b′) · t ≈ t

Since a cannot be equal to both b and b′, this constraint ensures that a # t.
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Proposition 7.1.6. Let a, t : ν be given and b, b′ 6∈ FN(a, t). Then a # t is
satisfiable if and only if (a b) · t ≈ t ∧ (a b′) · t ≈ t is satisfiable.

Proof. For the forward direction, suppose θ � a # t. Without loss of generality,
we may assume that θ does not mention b or b′, since otherwise we may rename θ
to obtain θ′ � a # t because neither a nor t mentions b or b′. Then θ � b # t and
θ � b′ # t so θ � (a b) · t ≈ t ∧ (a b′) · t ≈ t.

For the reverse direction, suppose θ � (a b) · t ≈ t ∧ (a b′) · t ≈ t. Then
θ � (a b) · t ≈ t and θ � (a b′) · t ≈ t. Since a, t : ν, there are only three cases:

1. θ � a ≈ b and θ � a ≈ b′. This case is impossible since b 6= b′, so vacuously
θ � a # t.

2. θ � a # b. Then since θ � (a b) · t ≈ t, we must have θ � a # t.

3. θ � a # b′. Symmetric to (2).

So, in any case, θ � a # t.

This is the key to the reduction from FreshSat∗N to NomSat∗N .

Theorem 7.1.7. FreshSat∗N ≤P NomSat∗N ≤P NomSat.

Proof. By Proposition 7.1.6, each element a # t ∈ S of S ∈ FreshSat∗N can be
transformed to constraints (a b) · t ≈? t, (a c) · t ≈? t, where b, b′ 6∈ S, yielding
an instance S ′ of NomSat. This transformation preserves satisfiability by the
previous lemma.

For the second reduction, we transform the problem S = {t1 ≈? u1, . . . , tn ≈?
un} to (t1, . . . , tn) ≈? (u1, . . . , un), which is obviously equivalent.

Corollary 7.1.8. NomSat is NP-hard.

7.1.5 Equivariant Matching and Satisfaction

Finally, we show that Sep reduces to EVSat. In fact, Sep can be reduced to the
seemingly simpler problem of equivariant matching, that is, equivariant unification
problems with one side ground. To prove this, we need the following obvious fact
about A(n).

Lemma 7.1.9. If ~a,~b ∈ A(n), then there exists a permutation π such that π ·~a = ~b.

Theorem 7.1.10. Sep ≤P EVMatch ≤P EVSat

Proof. Choose some ~b ∈ A(n). For Sep ≤P EVMatch, let ~a ∈? A(n) be an
instance of Sep. We transform the Sep-instance to ~a ∼? ~b. This reduction re-
quires linear time. We must show that ~a ∈? A(n) ∈ Sep if and only if ~a ∼? ~b ∈
EVMatch. For the forward direction, assume θ(~a) ∈ A(n). By the lemma, we

have π ·θ(~a) = ~b, so θ(~a) ∼ ~b. Conversely, if π ·θ(~a) = ~b, where ~b ∈ A(n), it follows
that θ(~a) = π−1 · π · θ(~a) ∈ A(n) since the latter is closed under swapping.

For EVMatch ≤P EVSat, the reduction is by inclusion.

Corollary 7.1.11. EVMatch and EVSat are NP-hard.
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7.2 Algorithms

7.2.1 Abstract Constraint Solving Algorithms

We now define constraint-solving algorithms at an abstract level.

Definition 7.2.1 (Abstract constraint solving algorithms). A constraint
solving problem (P ,S) is a set of problems P and a subset S ⊆ P called the set
of solved forms. A problem instance Σ : P consists of a context Σ and set P
of constraints, well-formed with respect to Σ. A constraint solving algorithm is a
triple A = 〈P ,S,−→〉, where −→: P×P is a rewriting relation on problems in P.

We say that a constraint problem S is solved if S ∈ S, and S is a solution for
P if P −→∗ S and S is solved. We write Solv(P ) for the set of solutions for P .

We say that a constraint set P is stuck if no transition can be taken from P
and P 6∈ S.

For example, a constraint solving algorithm over numerical constraints might
include rules like {x + 1 ≈ 5} ] P −→ {x ≈ 4} ] P , and the solved forms might
be constraint sets in which every equation is of the form {x ≈ n} and no variable
occurs twice. Note that Solv(P ) may be infinite. Also, the choice of solved forms is
arbitrary: we do not require that solved forms be satisfiable, although this property
is desirable. This frees us to consider so-called pre-unification or partial constraint
solving algorithms that reduce complex constraints to simpler, but not necessarily
satisfiable constraints.

Lemma 7.2.2. If P −→ P ′ then Solv(P ′) ⊆ Solv(P ). Moreover, Solv(P ) =⋃
{Solv(Q) | P −→ Q} ∪ (P ∩ S).

Definition 7.2.3 (Properties of abstract constraint solving algorithms).
We say that an algorithm is sound for P if P −→∗ P ′ implies P ′ � P , and
complete for P if P �

∨
Solv(P ). An algorithm is terminating if there are no

infinite reduction sequences. An algorithm is progressive if whenever P is not in
solved form and θ � P there exists a Q such that P −→ Q and θ � Q.

The soundness and completeness properties are directly analogous to the re-
spective properties for a logic or operational semantics. Note that soundness and
completeness together imply P ⇐⇒

∨
Solv(P ).

Termination and progress are important considerations for a constraint solving
algorithm. Algorithms that satisfy all four properties are particularly well behaved.
In fact, a terminating, progressive algorithm is complete:

Theorem 7.2.4. If A is terminating and progressive, then it is also complete.

Proof. Consider the graph T = (P ,−→), that is, whose nodes are problems and
whose edges are transitions. Since A is terminating, this graph is a well-founded
tree.
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We prove that P �
∨
Solv(P ) by well-founded induction on T . If P is stuck

then (by the progress property) it is unsatisfiable so P �
∨
Solv(P ) vacuously. If

P is in solved form, P ∈ Solv(P ) so P �
∨
Solv(P ).

Otherwise, consider Q = {Q | P −→ Q}, the set of all children of P . By
induction, Q �

∨
Solv(Q) for each Q ∈ Q. Moreover, Solv(P ) =

⋃
Q∈Q Solv(Q) ∩

(P∪S), so
∨
Q � Solv(P ). To show P � Solv(P ), it suffices to show that P �

∨
Q.

Suppose θ � P . Then P can take a step to some Q ∈ Q, P −→ Q, such that
θ � Q. Hence, θ �

∨
Q. Since θ was arbitrary, P �

∨
Q.

7.2.2 Name-Name Constraints

We first focus on the restricted language of name-name constraints:

a ::= a | X | (a b) · a′

C ::= a # b | a ≈ b

As shown in Section 7.1, constraint solving for sets of name-name constraints
is an NP-complete problem, so it is unlikely that an efficient algorithm exists
for reducing arbitrary name-name constraints to a satisfiable solved form if one
exists. We present, instead, a complete algorithm that reduces such constraints to
satisfiable solved forms.

Definition 7.2.5. We say a name-name problem is solved if:

1. All equations are of the form X ≈ t, where X appears nowhere else in the
problem.

2. All freshness constraints are of the form a # b, where a, b are distinct vari-
ables or name-constants.

Thus, (a b) ·X ≈ Y is not solved, but X ≈ a, Y ≈ b is; A # (A B) · A is not
solved, but A # B is.

Proposition 7.2.6. Every solved name-name problem is satisfiable.

Proof. We prove this in two stages. First we show that every solved problem
including only freshness constraints is satisfiable. Then we generalize this to show
how to find a valuation for any solved problem.

For the first part, let S be the solved problem. Let ~X = FV (S) and~a = FN(S).

Let ~b be freshly chosen names, one for each free variable in ~X, and let θ be the
valuation mapping Xi to bi for each i. Note that this ensures that if a 6= b then
θ(a) 6= θ(b). We will show that θ � S is satisfiable by induction on the size of
S. If S is empty, obviously θ � S. If S = S ′ ∪ a #? b then by induction we
have θ � S ′. Moreover, since a 6= b we have θ(a) 6= θ(b), i.e. θ(a) # θ(b). Hence
θ � S ′ ∪ {a #? b}.

For the second part, the proof is by induction on the number of equational
constraints in the problem. In the base case, there are no equality formulas so
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Table 7.1: Name-name constraint solving rules

(#1) {a #? b} ] P −→ P
(#2) {(a a′) · b #? b′} ] P −→ {a ≈? b, a′ #? b′} ] P
(#3) {(a a′) · b #? b′} ] P −→ {a #? b, a′ #? b, b #? b′} ] P
(≈1) {t ≈? t} ] P −→ P
(≈2) {(a a′) · b ≈? b′} ] P −→ {b ≈? a, b′ ≈? a′} ] P
(≈3) {(a a′) · b ≈? b′} ] P −→ {a #? b, a′ #? b, b ≈? b′} ] P
(≈4) {a ≈? π ·X} ] P −→ P [π−1 · a/X] ] {X ≈? π−1 · a}

X 6∈ FV (π, a)

the first part applies. In the inductive case, let P = {X ≈ a} ] P ′, where X 6∈
FV (P ′, a). By induction, there is a valuation θ � P ′ Without loss of generality,
assume X 6∈ dom(θ). Because X 6∈ FV (P ′, t), this valuation can be extended to
θ′ that assigns values to all the variables of t, and assigns X the value θ(a).

Now we present a reduction system for solving name-name constraint problems.
We consider constraints equivalent up to symmetry with respect to #? and ≈?, and
consider terms equivalent up to reordering the arguments of transpositions (that
is, (a a′) · t = (a′ a) · t). These conventions greatly simplify the transition system
and proofs, and are not difficult to deal with in an implementation by adding the
symmetric cases.

The reductions are shown in Table 7.1. The context Σ never changes in any
of the transitions, so is omitted. The (#1) and (≈1) rules indicate that trivially
solvable constraints can be removed. The (#2,3) and (≈2,3) rules decompose swap-
pings by case distinction. The (≈4) rule performs variable elimination in the case
that the variable does not occur in the relevant permutation. This rule can be
applied eagerly to avoid nondeterminism due to swappings whenever possible.

Example 7.2.7. These rules can be used to derive all possible solutions to the
following name-name constraints. For example, {A ≈ b,X ≈ Y } is already in
solved form, whereas {A ≈ Y,X ≈ (A b) · Y } can be reduced to several solved
forms:

{A ≈ Y,X ≈ (Y b) · Y } {A ≈ b, X ≈ b} {A ≈ Y,X ≈ b}

Note that the first solution is a generalization of the second and third, obtained by
variable-elimination on A. A fourth possible solution, {A ≈ Y,X ≈ Y, b # Y, Y #
Y }, is ruled out because of the unsatisfiable constraint Y # Y .

Theorem 7.2.8. NNU is terminating.

Proof. We will exhibit a decreasing, well-founded measure on problems P .
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Let µ(t) be defined as follows:

µ(a) = µ(X) = 0

µ((a b) · t) = µ(a) + µ(b) + 3µ(x) + 1

µ(t # u) = µ(t ≈ u) = µ(t) + µ(u)

Let n1 = |FV (P )| be the number of variables remaining in P , n2 =
∑

C∈P µ(P ),
and n3 = ||P ||, the total size of all the terms in P . Consider the measure ν(P ) =
(n1, n2, n3), on N3 ordered lexicographically. We will show that each transition of
NNU decreases ν. The following table summarizes the behavior of the transitions
with respect to n1, n2, n3:

(#1) (#2) (#3) (≈1) (≈2) (≈3) (≈4)
n1 = = = ≥ = = >
n2 = > > = > >
n3 > >

The interesting cases are (#3) and (≈3); they are similar. Consider (#3):

Q1 = {b #? (a a′) · b′} ] P −→ {a #? b′, a′ #? b′, b #? b′} ] P = Q2

Both sides have the same number of free variables, so n1 remains the same. To see
why, note that

n2(Q1) = µ(b) + µ(a) + µ(a′) + 3µ(b′) + 1 + µ(P )

n2(Q2) = µ(a) + µ(b′) + µ(a′) + µ(b′) + µ(b) + µ(b′) + µ(P )

Clearly, n1(Q2)− n2(Q2) = 1, so n2 decreases in a (#3) transition.

Theorem 7.2.9. NNU is sound.

Proof. It suffices to show that each rewriting rule is sound: that is, if P −→ P ′

then P ′ � P . For (#1) and (≈1), this is obvious.
For (#2,3) and (≈2,3), each implication is easy to prove using properties of

nominal logic. For example, for (#2), we need to show P, a ≈ b, a′ # b′ � P, b #
(a a′) · b′. Since a ≈ b, we have a′ ≈ (a a′) · a ≈ (a a′) · b, so (a a′) · b # b′, and by
equivariance b # (a a′) · b. The other proofs are similar.

Finally, for (≈4), we need to show P [π−1 · t/X], X ≈ π−1 · t � P, π · X ≈ t.
Using the substitution principle to reverse the substitution of π−1 · t for X, we can
derive P from P [π−1 · t/X], and we can prove π · X ≈ t from X ≈ π−1 · t using
equivariance several times to invert π.

Proposition 7.2.10. NNU is progressive.
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Proof. The proof is by induction on the size of P and construction of name-name
constraints a #? b, a ≈? b. We prove that for θ � P , if P is not solved then for
some Q, P −→ Q and θ � Q.

Assume θ � P . If P is empty then P is already solved. Otherwise, there are
several cases.

• If P = {a #? b} ] P ′ then there are several further cases.

– If a = (a1 a2) · a3, then there are (up to symmetry) two sub-cases:

∗ If θ(a1) = θ(a3) and θ(a2) # θ(b), then θ � Q = {a1 ≈? a3, a2 #?
b} ] P ′, and P −→#2 Q.

∗ If θ(a1) # θ(a3), θ(a2) # θ(a3), and θ(a3) # θ(b), then θ � Q =
{a1 # a3, a2 #? a3, a3 #? u} ] P ′. Moreover, P −→#3 Q.

– The case for b = (b1 b2) · b3 is symmetric.

– Otherwise a and b are both names or variables. Since a #? b is satisfi-
able, a and b are different terms. If a and b are both names, then (#1)
applies, and obviously θ � P ′. Otherwise, a #? b is in solved form, and
we may proceed by induction on P ′.

• If P = {a ≈? b} ] P ′, then there are several further cases.

– If a is of the form (a1 a2) · a3, then there are (up to symmetry) two
sub-cases:

∗ If θ(a1) = θ(a3) and θ(a2) = θ(b), then θ � Q = {a1 ≈? a3, a2 ≈?
b} ] P ′, and P −→≈2 Q.

∗ If θ(a1) # θ(a3), θ(a2) # θ(a3), and θ(a3) # θ(b), then θ � Q =
{a1 #? a3, a2 #? a3, a3 ≈? b} ] P ′. Moreover, P −→≈3 Q.

– The case for u ≈? (a1 a2) · a3 is symmetric.

– Otherwise, a and b are names or variables. If a = X = b, then (≈1)
applies. If a 6= b, then one of a, b must be a variable, because equations
among distinct names are unsatisfiable. Without loss, assume a = X.
Clearly, X 6∈ FV (b) since a 6= b. If X appears in P ′ then θ � Q =
{X ≈? b} ] P ′{a/X}, and P −→≈4 Q. Otherwise, X ≈? a is in solved
form relative to P ′, so we may proceed by induction.

This analysis exhausts all cases and completes the proof.

Corollary 7.2.11. NNU is complete.

7.2.3 Freshness Constraints

We now consider solving freshness constraints a #? t, where a : ν and t : σ are
well-formed nominal terms. To simplify matters, we assume that terms t are kept
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Table 7.2: Freshness constraint solving

Σ : {a #? 〈〉} ] P −→ Σ : P
Σ : {a #? f(t)} ] P −→ Σ : {a #? t} ] P

Σ : {a #? 〈t1, t2〉} ] P −→ Σ : {a #? t1, a #? t2} ] P
Σ : {a #? 〈b〉t} ] P −→ Σ#c : {a #? (b c) · t} ] P

in a normal form with swappings pushed down as far as possible past function
symbols, abstractions, and constants, that is, where a and t are of the following
forms:

a ::= aν | (a a′) · b | Xσ

t ::= a | f(t) | 〈t1, t2〉 | 〈〉 | 〈a〉t

Note that variables X may be of name-sort or other sorts. General nominal terms
can be normalized to the above forms using the following rewriting rules:

(a b) · 〈〉 → 〈〉
(a b) · f(t) → f((a b) · t)

(a b) · 〈t1, t2〉 → 〈(a b) · t1, (a b) · t2〉
(a b) · 〈a′〉t → 〈(a b) · a′〉(a b) · t

General freshness constraint solving problems are sets of freshness constraints
over arbitrary (normalized) terms. For such problems, the appropriate solved
forms are constraints involving only names, variables, and swapping. Among such
constraints, name-name constraints can be further solved using the algorithm of the
previous section, whereas constraints involving non-name variables X can always
be put into the form a #? X. Such constraints are always satisfiable.

Definition 7.2.12. A freshness constraint is said to be in solved form if

1. It is of the form a #? b, where a : ν, b : ν ′ are of name-sort, or

2. It is of the form a #? X, where a : ν and X is not of name-sort.

We now show how to reduce general freshness constraints to solved forms.
We propose a set of reduction rules for solving freshness constraints as shown in
Table 7.2. We define FCS to be the constraint solving algorithm defined by these
rules.

Example 7.2.13. Here is a simple example of freshness constraint solving:

Σ : {A # 〈A〉〈A,X〉} −→ Σ#c : {A # 〈(A c) · A, (A c) ·X〉}
−→ Σ#c : {A # (A c) · A,A # (A c) ·X}
−→ Σ#c : {A # (A c) · A, (A c) · A # X}
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Note that the remaining constraint set is valid, intuitively because A # (A c) · A
reduces to c # A and similarly c # X is equivalent to the second constraint. Since
c is fresh, both constraints are valid.

We now show that FCS is a sound, complete algorithm for solving freshness
constraints.

Lemma 7.2.14. The following formulas are valid in the Herbrand universe of
nominal terms:

a # 〈〉 (7.2)

a # t ⇐⇒ a # f(t) (7.3)

a # t1 ∧ a # t2 ⇐⇒ a # 〈t1, t2〉 (7.4)

Nc.a # (b c) · t ⇐⇒ a # 〈a〉t (7.5)

Proof. The forward directions are theorems of NL. The reverse directions of the
first three are standard, and the reverse direction of (7.5) is a theorem of NL.

Theorem 7.2.15. FCS is sound.

Proof. We must show that for each transition P −→ P ′, we have P ′ � P . These
facts follow from (7.2)–(7.5) respectively.

Proposition 7.2.16. FCS is terminating.

Proof. To prove this fact, we define a measure on freshness constraint problems P
which decreases at each reduction step. Let

µ(a) = 0

µ(〈〉) = 1

µ(〈t1, t2〉) = µ(t1) + µ(t2) + 1

µ(f(t)) = µ(t) + 1

µ(〈a〉t) = µ(t) + 1

In words, µ(t) is the number of term symbols in t excluding swapping, names, and
variables. Note that µ places no weight on the names involved in swappings, that
is, µ((a b) · t) = µ(t).

It is easy to see that
∑

(a#?t)∈P µ(a) + µ(t) decreases after each reduction step
in FCS.

Proposition 7.2.17. FCS is progressive.

Proof. We prove that if θ � P then there exists a Q such that P −→ Q and θ � Q
by induction on P . Let θ � P be given. If P is empty then the result is vacuous.
Otherwise, there are several cases.

• If P = {a #? 〈〉} ] P ′ then P −→ P ′ and clearly θ � P ′ by (7.2).
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• If P = {a #? f(t)} ] P ′ then P −→ {a #? t} ] P ′ and θ � {a #? t} ] P ′ by
(7.3).

• If P = {a #? 〈t1, t2〉} ] P ′ then P −→ {a #? t1, a #? t2} ] P ′. Moreover,
θ � {a #? t1, a #? t2} ] P ′ by (7.4).

• Finally, if P = Σ : {a #? 〈b〉t} ] P ′ then P −→ Σ#c : {a #? (b c) · t} ] P ′.
Also, by (7.5), we have Σ : θ � Nc. #? (b c) · t, P , so Σ#c : θ � {a #?
(b c) · t} ] P ′.

This analysis exhausts all cases and completes the proof.

Corollary 7.2.18. FCS is complete.

7.2.4 Nominal Unification

Next we consider the problem of solving equations among nominal terms, that is,
nominal unification. As in the previous section, we require terms to be normalized
so that swappings only occur around variables, names, or other swappings.

In ordinary unification, solved forms are sets S of equations X ≈? t such that
X does not appear in t or S − (X ≈? t). For nominal unification, it is necessary
to generalize this definition.

In ordinary unification, when we encounter a problem of the form X ≈? t,
there are three cases. If t = X, then the problem is trivial; otherwise, if t contains
X, there is no solution; finally, if t does not contain X then we may eliminate
X by substituting for t. However, in nominal unification, some equations of the
form X = t(X) have solutions. For example X = (W Z) ·X has several possible
solutions, including Z ≈ W and Z # X,W # X. It seems difficult to search for
all possible solutions to such a problem because complex terms may be substituted
for X. However, if X is otherwise unconstrained, then a solution always exists.
Therefore, we permit equations of the form π ·X ≈? π′ ·X within solutions.

Definition 7.2.19. A solved form S is a set of equations, each of which satisfies

1. C is a name-name equation, or

2. C = π1 ·X ≈? π2 ·X, or

3. C = X ≈? t, where X does not appear in t or elsewhere in S − (X ≈? t).

Note that a constraint set like {X ≈? π ·X,X ≈? 〈〉} is not in solved form since
X can be eliminated to get the problem {〈〉 ≈? 〈〉, X ≈? 〈〉}, which simplifies to
{X ≈? 〈〉}. Table 7.3 lists the transitions of an algorithm NU for solving nominal
unification problems. The first three rules and fifth rule are standard unification
steps. The fourth rule unifies two abstractions by generating a fresh name c and
swapping the names a and b respectively with c in the bodies of the abstractions
t and u, unifying the result.
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Table 7.3: Nominal unification

Σ : {〈〉 ≈? 〈〉} ] P −→ Σ : P
Σ : {f(t) ≈? f(u)} ] P −→ Σ : {t ≈? u} ] P

Σ : {〈t1, t2〉 ≈? 〈u1, u2〉} ] P −→ Σ : {t1 ≈? u1, t2 ≈? u2} ] P
Σ : {〈a〉t ≈? 〈b〉u} ] P −→ Σ#c : {(a c) · t ≈? (b c) · u} ] P

(c 6∈ Σ)
Σ : {π ·X ≈? t} ] P −→ Σ : P{π−1 · t/X} ] {X ≈? π−1 · t}

(X 6∈ FV (π, t))

Example 7.2.20. Here is a small example of nominal unification:

Σ : {f(〈a〉X, b) ≈? f(〈A〉Y ,A)} −→ Σ : {〈a〉X ≈? 〈A〉Y , b ≈? A)}
−→ Σ#c : {(a c) ·X ≈? (A c) · Y , b ≈? A)}
−→ Σ#c : {(a c) ·X ≈? (b c) · Y ,A ≈? b)}
−→ Σ#c : {X ≈? (a c) · (b c) · Y ,A ≈? b)}

Note that this problem reduces to a satisfiable solved form without recourse to
name-name unification. This is because the value of A can be determined through
ordinary unification steps. Here is a problem for which this is not the case:

Σ : {f(〈B〉A,A) ≈? f(〈A〉B,A)} −→ Σ : {〈B〉A ≈? 〈A〉B,A ≈? A}
−→ Σ : {〈B〉A ≈? 〈A〉B}
−→ Σ#c : {(B c) · A ≈? (A c) ·B}

In this problem, additional work is needed to determine whether the name-name
constraint {(B c) · A ≈? (A c) ·B} is satisfiable (it is, provided A = B).

Lemma 7.2.21. The following formulas are valid in the Herbrand universe of
nominal terms:

〈〉 ≈ 〈〉 (7.6)

t ≈ u ⇐⇒ f(t) ≈ f(u) (7.7)

t1 ≈ u1 ∧ t2 ≈ u2 ⇐⇒ 〈t1, t2〉 ≈ 〈u1, u2〉 (7.8)

Nc.(a c) · t ≈ (b c) · u ⇐⇒ 〈a〉t ≈ 〈b〉u (7.9)

Proof. The forward directions are theorems of NL. The reverse directions of the
first three are standard, and the reverse direction of (7.9) is a theorem of NL.

Theorem 7.2.22. NU is sound.
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Proof. We must verify that each transition P −→ P ′ satisfies P ′ � P . For the first
four transitions, soundness follows from the forward directions of (7.6)–(7.9). For
the final transition,

Σ : {π ·X ≈? t} ] P −→ Σ : P{π−1 · t/X} ] {X ≈? π−1 · t}

suppose that θ � P{π−1 · t/X}, X ≈ π−1 · t. Then θ � X ≈ π−1 · t so θ � P by
substitution. Moreover, θ � π ·X ≈ t by equivariance.

Proposition 7.2.23. NU is terminating.

Proof. Let n1(P ) be the number of unsolved variables in P . For n2, let µ be the
measure on terms defined in Proposition 7.2.16 that counts the number of units,
function symbols, pairings, and abstractions in a term. Set

n2(P ) =
∑

(t≈?u)∈P

µ(t) + µ(u) .

Set ν(P ) = (n1(P ), n2(P )).
We claim that each rule of NU decreases ν with respect to the lexicographic

ordering. For the first four rules, the number of unsolved variables in P remains
the same and n2 decreases. For the last rule, n1 decreases.

Proposition 7.2.24. NU is progressive.

Proof. Proof is by induction on the size of P and case decomposition of the struc-
ture of the constraints within P . Technically we prove that if θ � P and P is not
in solved form then for some Q, P −→ Q and θ � Q. Let P be given. If P is
empty there is nothing to prove. Othereise, P = {t ≈? u} ] P ′, and there are
several cases:

• If t and u start with the same head symbol, P can take a step by using one
of the first four rules. There are several sub-cases to verify, but each case
follows from one of the formulas (7.6)–(7.9).

• If both t = π1 ·X and u = π2 ·X, then t ≈? u is in solved form, so we proceed
by induction on P ′.

• Otherwise, if t = π ·X and X occurs in π or t, and X is not of name-sort,
then t = π ·X cannot have a solution among finite terms. On the other hand,
if X is of name-sort, then both t and u are of the same name-sort and so
t ≈? u is a name-name constraint, i.e., in solved form. Therefore, we proceed
by induction on P ′.

• If t = π ·X and X 6∈ FV (π, t), then θ � X ≈ π−1 · t. If X appears elsewhere
in P ′, then we can take a variable-elimination step, otherwise X is solved
with respect to P , so we proceed by induction.
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• Otherwise, neither t nor u is of the form π ·X and t and u do not start with
the same head symbol, so P is unsatisfiable.

This analysis exhausts all cases and completes the proof.

Corollary 7.2.25. NU is complete.

7.2.5 Equivariant Unification

Now we consider equivariant unification problems of the form p(t) ≈? p(u), where
p is a relation symbol.

We consider probably the simplest possible (nondeterministic) algorithm for
equivariant unification, in which we guess the number of swappings needed for the
desired permutation π and then attempt to solve the resulting unification problem.
The corresponding constraint solving problem transforms a problem of the form
p(t) ∼? p(u) to one of the form π · t ≈? u, which can then be solved using nominal
unification.

The algorithm EV U0 has two transition rules:

p(t) ≈? p(u) −→ p((a b) · t) ≈? p(u)

p(t) ≈? p(u) −→ t ≈ u

Example 7.2.26. Here is a simple example of equivariant unification followed
by nominal unification and name-name constraint solving:

p(a, b) ∼? p(b, Y ) −→ p((a b) · a, (a b) · b) ∼? p(b, Y )

−→ 〈(a b) · a, (a b) · b〉 ∼? 〈b, Y 〉
−→ (a b) · a ≈? b, (a b) · b ≈? Y

−→ b ≈? b, a ≈? Y

−→ Y ≈? a

Note that this solution is not unique: Y ≈ c, Y ≈ d, . . . are also solutions, but
Y ≈ b is not a solution since p(a, b) 6∼? p(b, b).

Theorem 7.2.27. EV U0 is sound.

Proof. Obviously t ≈ u � p(t) ≈ p(u). By equivariance, p((a b) · t) ≈ p(u) � p(t) ≈
p(u).

Clearly EV U0 is nonterminating, so our usual approach to proving completeness
will not work. Fortunately, in the Herbrand universe we have p(~t) ≈ p(~u) satisfiable
if and only if there is some (finite) permutation π making π · t ≈ u satisfiable.

Theorem 7.2.28. EV U0 is complete.
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Proof. We must show that P �
∨
Solv(P ), where P = p(t) ≈? p(u). Let θ � P

be given. Then π · θ(t) = θ(u) for some permutation π ∈ G. Let τ1 · · · τn be a
transposition representation of π. Then

π · θ(t) = τ1 · · · τn · θ(t) = θ(τ1 · · · τn · t) .

Therefore, θ � τ1 · · · τn · t ≈? u. Note that

p(t) ≈? p(u) −→ p(τn · t) ≈? p(u)

−→∗ p(τ1 · · · τn · t) ≈? p(u)

−→ τ1 · · · τn · t ≈? u .

so τ1 · · · τn · t ≈ u is a solved form of P in EV U0, so θ �
∨
Solv(P ); since θ was

arbitrary, P �
∨
Solv(P ).

7.3 Putting It All Together

We have now described all of the ingredients for an idealized, complete implemen-
tation of Horn clause nominal logic programming. That is, using the semantics
for nominal logic programs outlined in the previous chapter, together with the al-
gorithms for name-name and freshness constraint solving and nominal and equiv-
ariant unification, we can devise a nondeterministic interpreter NLP for nominal
logic programs such that

Theorem 7.3.1 (Soundness and Completeness of NLP ). Let P be a nominal
logic program and G a goal. Let Solv(G) be the set of all solutions obtained by
reducing G to constraints C and then solving the constraints using the algorithms
of this chapter. Then P � G ⇐⇒

∨
Solv(G).

The solved forms for NLP are sets of constraints such that all name-name
constraints are solved as inNNU , and all other constraints are solved as inNU and
FCS. We omit the details of the construction of the combined logic programming
and constraint solving system NLP .

Though theoretically reassuring, there are many practical problems with such
an interpreter which would have to be resolved to obtain a usable implementa-
tion. The most serious problems are the NP-completeness and nondeterminism
of name-name constraint solving, and the nontermination of the näıve equivariant
unification algorithm. In the rest of this section, we consider ways to address these
problems in a practical implementation. We also consider applications of Urban
et al.’s nominal unification algorithm, which only works for a restricted sublan-
guage of full nominal logic programs but produces most general unifiers, yet can
be implemented efficiently.
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7.3.1 Name-Name Constraints

Because name-name constraint solving is NP-complete, determining whether a
particular set of constraints is satisfiable may require exponential time. More seri-
ously, our algorithm may produce exponentially many solutions to each constraint,
leading to “thrashing” behavior due to backtracking.

In practice, programmers usually use high-level programming features to solve
hard problems, rather than encoding them as constraints. For example, many
logic programs can be encoded as higher-order unification problems [79], but few
programmers write programs this way. Therefore, the constraints encountered
in practice are often easier to solve than the worst-case complexity of general
constraint solving would suggest.

A popular approach to working with complex constraints and nondeterminism
in other constraint logic programming languages is to identify certain constraints
as being “hard” and delaying the solution of hard constraints as long as possible,
in the hope that they will become easier when more information is available.

In NLP , name-name constraints seem an obvious candidate for “hard” con-
straints. In addition, simplification rules could be applied to simplify some “easy”
name-name constraints. For example, variable elimination can sometimes be ap-
plied eagerly, and swapping rules such as (a b) · a ≈ b can always be applied
eagerly.

More generally, it would be desirable to find a formulation of name-name con-
straint solving that produces unique most general solutions, or to establish that
no such formulation exists.

7.3.2 Equivariant Unification

As with name-name constraints, equivariant unification is NP-complete, and the
algorithm we presented may find infinitely many answers.

One way to deal with the nontermination problem is to modify the interpreter
to explore the search space in a deterministic but “fair” way, so that every answer
will eventually be found. One fair search strategy is iterative deepening : that
is, first all answers requiring one reduction step are produced then all answers
requiring two steps, etc.

However, this seems like overkill. Equivariance problems (at least in prac-
tice) do not seem to require infinitely many different solutions; we conjecture that
equivariant unification is in NP and that complete finite sets of solutions exist.

As formulated in Section 7.2.5, equivariance problems cannot be delayed as
conveniently as name-name constraints, since they may involve first-order struc-
ture. Instead, it may be worthwhile to consider alternative approaches to solving
equivariant unification problems. We consider two possibilities.

• Add a new similarity relation ∼ on ground terms such that t ∼ u iff for some
permutation π, π · t ≈ u. Then p(t) ≈ p(u) iff t ∼ u.
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Now consider similarity problems of the form ~t ∼? ~u, with rewriting rules
such as

Σ : 〈X,~t〉 ∼? 〈f(u), ~u′〉 −→ Σ, X ′ : {〈X ′,~t〉 ∼? 〈u, ~u′〉,
X ≈? f(X ′)}

Σ : 〈X,~t〉 ∼? 〈〈a〉u, ~u′〉 −→ Σ#c, X ′ : {X ≈? 〈c〉X ′,

〈c, X ′,~t〉 ∼? 〈c, (a c) · u, ~u′〉}
Σ : 〈a, a,~t〉 ∼? 〈u1, u2, ~u〉 −→ Σ : 〈a,~t〉 ∼? 〈u1, ~u〉, u1 ≈? u2

This approach seems promising and we have performed some preliminary
experiments with it, but getting the reduction rules and solved forms right
has proven tricky.

• Extend the term language to include the full language of (permutation) group
theory (including permutation variables) for permutations π in actions π · t.
Then equivariant unification p(t) ≈? p(u) reduces to solving the satisfiability
problem P · t ≈ u, where P is a permutation variable. Like swappings,
general permutations can be pushed down to the lowest level of a term, so
equivariant unification problems can be reduced to name-name constraints
involving arbitrary permutations.

This approach is appealing since it reduces equivariant unification to equa-
tional unification in a richer (but well understood) theory, that is, group
theory. Though unification in group theory has been studied [4], there ap-
pears to be no work on unifying equations involving permutation groups or
actions. A significant potential problem with this approach is that it seems
likely to produce very “fuzzy” answers X = P1 · P2 · P3 · a involving many
permutation variables, one for each backchaining step. Concrete answers
involving specific names seem preferable.

We believe a careful analysis of one of the above approaches could be used to show
that equivariant unification is in NP.

7.3.3 Early Failure Detection

Another problem is detecting failure. In the algorithms so far no attempt is made
to stop early when a failure occurs, that is, when the constraint becomes unsat-
isfiable, and unsatisfiable answers may be produced (e.g. X#a : X ≈ a). These
are disadvantages for a practical implementation, leading to wasted effort and in-
efficiency. It is desirable to avoid these problems by performing basic satisfiability
checking so that failure and backtracking can occur as soon as possible.

7.3.4 Efficient Special Cases

Urban, Pitts, and Gabbay [126, 127] developed a unification algorithm for a special
case of nominal terms, which we call nominal patterns. Nominal patterns are
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constraints in which for every term or constraint of the form (a b) · t, 〈a〉t, or
a # t, we have a, b ground name-constants. Thus, 〈A〉t and (X (Y Z) · t) · u
are not nominal patterns. To distinguish their algorithm from our algorithms for
general nominal constraint solving, we refer to their algorithm as nominal pattern
unification. This terminology is inspired by that used for the higher-order pattern
sublanguage of higher-order terms for which higher-order unification is efficiently
decidable.

Nominal pattern unification produces unique most general unifiers and can be
implemented in O(n2) time [127]. Therefore, it is possible to implement an efficient
logic programming language based on nominal patterns. The nominal terms used
in αProlog, as defined in Chapter 2, are actually nominal patterns, and nominal
pattern unification is used instead of full nominal and equivariant unification.

This results in an efficient, but not necessarily logically sensible programming
language. Nominal pattern unification solves only equational and freshness con-
straints, not equivariance constraints. Therefore, for many αProlog programs and
goals, there are answers that are correct with respect to nominal logic but cannot
be derived by nominal pattern unification-based backchaining. Probably the sim-
plest possible example is the program p(a) and goal p(b) which we discussed in
Chapter 2.

Perhaps surprisingly, however, many typical programs do not suffer from this
problem. In particular, programs that deal with bound names in a structured way
can be run using nominal pattern unification without missing any answers. For
example, the typechecking, substitution, and evaluation programs in Section 2.2.1
can be implemented correctly using nominal patterns alone. Other programs, such
as α-inequivalence and closure-conversion, seem to require equivariance to function
correctly.

The reason that many programs run correctly without equivariant unification is
that equivariance can often be simulated via substitution. Therefore, equivariance
can be avoided by avoiding “free” names in a term. As a simple example, the
program p(A) defines the same relation as p(a), since Na.p(a) ⇐⇒ ∀A.p(A)
holds in NL. A more complex example is a program like typ for typechecking the
λ-calculus: there is no essential dependence on the name x in the clause

typ(G, lam(〈x〉M), arr(T, U)) :− x # G, typ([(x, T )|G],M, U).

It is possible to show that (for a slight modification of this clause) any backchaining
step taken using equivariant unification can be simulated using nominal unification.
This proof can be generalized to identify a class of programs for which nominal
pattern unification-based resolution is complete. These programs form a restricted
nominal logic programming language that is both logically sensible and efficiently
implementable.

The above discussion is a highly condensed version of work in progress by Urban
and Cheney [125].
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7.4 Notes

The complexity results for equivariant unification and matching reported in Sec-
tion 7.1 first appeared in [19]. Goldmann and Russell [47] showed that for finite
groups, solving systems of equations (possibly involving constants) is in P if the
group is Abelian, otherwise NP-complete. This result inspired our first workable
proof of NP-hardness for equivariant unification.

Equational unification, that is, unification modulo an equational theory E (also
known as E-unification) has been studied by many authors. Some references that
we have relied upon include Baader and Nipkow’s book [9] and Snyder’s mono-
graph [119]. General E-unification techniques, such as narrowing [118, 34], impose
restrictions (for example, confluence) on E in order to guarantee completeness;
however, equivariance in Nominal Logic obviously breaks confluence. Snyder’s al-
gorithm, and later variants such as Lynch’s goal-directed E-unification [71], are
exceptions in that they work for any equational theory, as opposed to just con-
fluent theories. It would be interesting future work to determine whether any
extant E-unification algorithms can be used to obtain a terminating algorithm for
equivariant unification. However, the structure of nominal and equivariant unifi-
cation problems (for example, the fact that swappings can always be pushed down
past abstractions and function symbols) seems to make our more direct approach
preferable.





Chapter 8

Related Work

Imitation is the sincerest form of flattery.

—Charles Caleb Colton

The purpose of this chapter is to compare the techniques proposed in this thesis
with other proposed techniques for programming with names and binding. Because
of the great importance of this problem in programming and in formal reasoning,
there is a vast body of related work in the areas of logic, functional and logic
programming language design, automated reasoning, logical frameworks, and the
theory of abstract syntax. It is impossible to give a complete, yet concise survey
of all the relevant work.

Instead, we will only compare nominal logic programming with the most closely
related approaches. In particular, we will focus on programming languages pro-
viding advanced support for programming with names and binding and not on
abstract syntax encoding techniques for reasoning about names and binding in
a logical framework or theorem prover. The two tasks, and the underlying tech-
niques, are related, but the emphasis of this dissertation has been on programming
techniques, not on automated reasoning and logical frameworks based on nominal
abstract syntax.

We classify existing approaches to programming with names and binding by
the technique used to deal with binding.

• Name-free approaches: combinatory logic [112, 25, 26], de Bruijn indices [30]

• Higher-order abstract syntax: λProlog [90], Twelf [105], Delphin [115]

• Lambda-term abstract syntax: Lλ [78], MLλ [77].

• A first-order theory of α-equivalence: Qu-Prolog [121, 95]

• Binding algebras: Hamana [48]

• Nominal abstract syntax (FreshML) [116, 117, 109]

Each of these approaches is discussed and compared with αProlog in Section 8.1.
In Section 8.2, we discuss some additional relevant research.

137
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8.1 Programming Languages and Techniques

8.1.1 Name-Free Approaches

In addition to the first-order and higher-order approaches, there are several ap-
proaches to dealing with names and binding by getting rid of names entirely while
retaining the expressiveness of the λ-calculus. These approaches have a long
history, beginning with Schönfinkel’s development of combinatory logic in 1920-
24 [113], and have had considerable influence on both theory and practice of logic
and programming.

Combinatory Logic

Schönfinkel [113] and later Curry and Feys [25, 26] developed combinatory logic, a
logic of applicative expressions defined using rewriting rules. A combinatory logic
expression e is either a constant A,B,C or an application (e e′), where we write
e e1 · · · en for (· · · (e e1) · · · en) to omit parentheses when no ambiguity ensues.
For example, the S, K and I-combinators are defined by equations

Ix = x Kxy = x Sxyz = (xz)(yz)

A term to which none of these equations can be applied (in left-to-right order) is in
normal form. A term e can therefore be interpreted as a partial function x 7→ e x
on normal forms, computed by attempting to normalize e x.

There is an obvious translation from combinator terms to simply typed λ-terms
to over S,K, I: take I = λx.x, K = λx, y.x, and S = λx, y, z.(xz)(yz). Conversely,
there is a more involved translation from the simply-typed λ-calculus to combi-
nator terms. So in theory, one could work exclusively in terms of combinators
and avoid the issue of naming entirely. However, in practice this is not feasible,
since the translation from λ-terms to combinators may increase the size of terms
exponentially. In addition, combinator expressions are much less readable than
their equivalent λ-calculus versions. For example, the composition combinator Z
is S(KS)K in combinatory form, but λf.λg.λx.f(g(x)) in the λ-calculus. On the
other hand, an extension of the combinator approach called categorical combina-
tors (drawing on ideas from category theory) leads to a practical implementation
technique for functional programming languages [24].

De Bruijn Indices and Levels

N. G. de Bruijn [30] proposed two encodings for the λ-calculus which neatly circum-
vent the difficulties arising from α-equivalence. In both encodings, the following
grammar is used for λ-terms:

e ::= λe | e e′ | n

where n ∈ {1, . . .}. Both encodings replace textual occurrences of variables with
numerical references; the encodings differ only in how the numbers are interpreted.
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In the de Bruijn indices encoding, n refers to the nth enclosing λ, counting out
from n. For example, we have the following encodings of ordinary λ-terms:

pλx.λy.(x y)q = λλ(2 1) pλx.x (λy.(y x))q = λ(1 (λ(1 2)))

In the de Bruijn levels encoding, n refers to the nth λ on the path from the root
of the term to the occurrence of n, counting from the top level of the term. The
same two terms are represented as follows:

pλx.λy.(x y)q = λλ(1 2) pλx.x (λy.(y x))q = λ(1 (λ(2 1)))

The two encodings share the advantage that α-equivalent closed λ-terms have
syntactically equal de Bruijn encodings. On the other hand, both share the disad-
vantage of being practically unreadable by humans, and neither provides support
for programming with open terms. In addition, while α-equivalence becomes triv-
ial, the substitution and β-reduction operations may be relatively complex since
variable references may need to be renumbered when the binding structure of the
terms changes or when a term is substituted under a λ. In particular,

(λt){t′/n} = λ(t{↑ t′/n+ 1})

where ↑ t′ is the result of incrementing every free variable number in t by one. In
contrast, the λ-case for substitution in αProlog is essentially the same as the one
used in informal presentations.

Nevertheless, de Bruijn indices are the basis of many efficient implementations
of higher-order functional and logic programming languages, logical frameworks,
and theorem proving systems, as an efficient internal representation for λ-terms.
The behavior of substitution in the de Bruijn indices encoding is well-understood:
explicit substitution calculi such as λσ have been developed in which substitutions
are treated as first-class terms subject to rewriting rules [1], and efficient imple-
mentations of higher-order (pattern) unification have been developed for λσ [33].
de Bruijn representations have also been investigated using functor-category se-
mantics [37, 54].

8.1.2 Higher-Order Abstract Syntax

Higher-order abstract syntax [104], as mentioned in the Introduction, is the tech-
nique of defining all binders in terms of λ: that is, the λ-abstraction provided by the
meta-language is used to implement all variable binding constructs in the object
languages of interest. It was first employed by Church, who defined the quantifiers
of higher-order logic as constants of types like ∀τ : (τ → prop) → prop.

The logic programming language λProlog [90] is based directly on higher-order
logic and employs Church’s technique for dealing with the quantifiers directly.
Twelf [105] is a logic programming language based on the Edinburgh Logical
Framework, a dependently-typed lambda calculus (called λΠ or LF ). Delphin [115]
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is a functional programming language, currently under development, incorporat-
ing dependent typing and other ideas from logical frameworks, Twelf in particular.
Twelf and Delphin follow the propositions as types principle, and so can produce
proof terms explicating the derivation of any answer upon request. This makes
both languages suitable for both programming (searching for proofs) and proof-
checking.

All of these languages are extremely powerful and expressive. Twelf, in particu-
lar, can be used to describe programming languages, reductions, and type systems
and also to prove important properties thereof, and this is also an aim of Delphin.
But they are also limited in some ways because of their dependence on higher-order
abstract syntax. As a result, there are very simple programs that can be written
for first-order abstract syntax or nominal abstract syntax but not written as easily
for higher-order abstract syntax. Here are several examples:

• Consider the relation neq that takes two object-level λ-terms and checks
that they are not equal up to α-equivalence, defined in Example 2.2.3. This
program cannot be written cleanly in a higher-order encoding, because it
is meaningless to compare the syntactic names of the bound variables of a
term since they only represent other values, and are not values themselves.
Instead it is necessary to do some additional processing, such as tagging
variables with numbers that can be compared.

In αProlog, names are themselves concrete values and can be tested for
both equality and inequality (freshness). For the same reason, the closure-
conversion program of Example 2.2.5 cannot be written using higher-order
abstract syntax without additional effort.

• It is difficult to simulate imperative features such as references in such lan-
guages, because the changing state of a reference cell cannot be modeled in
the hypothesis context. This motivated the development of Linear LF [15],
an extension of LF with linear logic primitives permitting hypotheses to be
added, deleted, and changed over time.

In αProlog, we take a quite different approach: the reference store is not
implicitly encoded as an augmentation of the program, but an explicit list of
name-value pairs. This approach, while possible in any language, would be
significantly more complicated in an ordinary programming language because
of the lack of support for name-generation to generate fresh reference cell
identifiers.

• It is difficult to model a concurrent language such as the π-calculus in Twelf
or LLF, because the nondeterminism of truly concurrent programs cannot be
expressed properly in LLF. This motivated the development of Concurrent
LF, or CLF, an extension of LLF with a monadic type and asynchronous
primitives from linear logic [130, 131].
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In αProlog, our sights are set much lower than in CLF. We can implement the
π-calculus transition system and simulation/bisimulation relations directly
and more-or-less as originally designed, so there can be little doubt that
they are correct (in the sense of behaving as specified on paper). We are not
concerned with automated reasoning about these relations, but there seems
to be no obstacle to doing so within ordinary first-order nominal logic.

In addition, the high semantic and algorithmic complexity of higher-order ab-
stract syntax means that implementing interpreters, compilers, and program anal-
yses for these languages can be difficult. Whereas unification of higher-order terms
is undecidable, equivariant unification is only NP-hard and, we believe, in NP. Al
αProlog is a relatively minor extension of ordinary (typed) first-order constraint
logic programming, there is some hope that existing mode and termination anal-
yses can be generalized to αProlog without much difficulty.

In favor of λProlog, Twelf, Delphin, and other higher-order abstract syntax-
based languages is the fact that substitution and α-equivalence only needs to be
implemented once, by the language implementor, rather than over and over by
the programmer. In αProlog, substitution needs to be implemented explicitly,
but there is some hope of automating this process. In fact, we have already ex-
perimented with a built-in capture-avoiding substitution operator in the language
implementation, along the lines of the substitution operation of Section 3.5.5.

Another positive aspect of Twelf and its descendants is the high degree of el-
egance of its treatment of logics, programming languages with state (LLF), and
now, concurrency (CLF). This elegance is a strong and often-cited argument in
favor of the overall LF approach, yet higher-order encodings are often very differ-
ent from the intuitive formulations most often found in books and research papers.
In nominal abstract syntax, on the other hand, “paper” mathematical specifica-
tions can usually be converted directly into nominal logic programs, leaving little
doubt as to the correctness of the translation. This fact suggests that nominal
abstract syntax, while not elegant in the same way as higher-order abstract syn-
tax, nevertheless possesses its own elegance. Of course, beauty is in the eye of the
beholder.

8.1.3 Lambda-Term Abstract Syntax

A significant complication for higher-order techniques is that higher-order unifica-
tion (which is needed for backchaining in higher-order logic) is undecidable [58, 59].
In addition, most general unifiers may not exist or may not be unique when they do
exist. However, in practice many programs do not seem to encounter these prob-
lems, and Huet’s technique of pre-unification (unification with “hard” subproblems
delayed) is effective in most practical situations. To explain and take advantage
of this insight, Miller [78] identified a decidable and well-behaved special case
of higher-order unification called higher-order pattern unification. A higher-order
pattern is a λ-term in which each meta-variable (that is, logical variable for which
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a term may be substituted) is applied to a list of distinct bound variables. For
example, if F,G are meta-variables, then λx, y.F x y is a higher-order pattern,
but λx.F x x and λx.F G x are not patterns. Miller discovered that all of the
nondeterminism in Huet’s higher-order pre-unification algorithm can be avoided
if the unificands are patterns, and most general unifiers are unique and can be
computed efficiently (in fact, in linear time, as shown by Qian [111]). Moreover,
the equational theory of higher-order patterns can be viewed as a special case of
full αβη-equivalence, in which full β-reduction

(λx.t) u −→β t[u/x]

is replaced with “β0-reduction”

(λx.t) y −→β0 t[y/x]

that is, the left-hand side of an application is required to be a variable.
Lambda-term abstract syntax is a refinement of higher-order abstract syntax

introduced by Miller [80], in which the λ-terms are restricted to be higher-order
patterns. Miller observed that many interesting λProlog programs can be written
using only patterns, and proposed a logic programming language Lλ, essentially
the subset of λProlog formed by restricting to higher-order patterns. That is, in
full λProlog, the beta-reduction predicate can be encoded as

beta (app (lam (x\E x)) E’) (E E’).

but this is not a higher-order pattern because of the subterm E E’. Instead, sub-
stitution must be programmed explicitly in Lλ, though this is not difficult:

beta (app (lam (x\E x)) E’) E’’ :- subst (x\E x) E’ E’’.

subst (x\x) E E.

subst (x\app (E1 x) (E2 x)) E (app E1’ E2’)

:- subst E1 E E1’, subst E2 E E2’.

subst (x\lam y\E1 x y) E (lam y\E1’ y)

:- pi y\(subst (x\y) E y -> subst (x\E1 x y) E (E1’ y)).

This definition involves only higher-order patterns.
In addition, Miller proposed a functional language extending Standard ML to

include an intensional function type τ ⇒ τ ′ populated by “functions that can be
analyzed at run-time”, that is, higher-order patterns [77]. This language is called
MLλ and supports functional programming with λ-term abstract syntax using the
intensional function type. Since higher-order pattern unification and matching
are decidable, programs in MLλ can examine the structure of intensional function
values, in contrast to ordinary function values which cannot be examined, only
applied to data.

There may be important connections between higher-order patterns and nom-
inal patterns, and between λ-term abstract syntax and nominal abstract syntax.
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In both, general substitution is eschewed in favor of replacing variables with vari-
ables or swapping names with names. In LTAS, the dependence of meta-variables
on names is given positively (that is, writing F x means F can depend only on
x); in NAS, it is negative (that is, writing x # F means F can depend on any
name except for x). In both higher-order pattern unification and nominal pattern
unification, permutations are used in the case of unifying two occurrences of the
same logical variable. It is possible that nominal pattern unification can be imple-
mented using higher-order pattern unification or vice versa. One direction of this
problem is considered by Urban et al. [127]. It appears that nominal unification
can be decided by reducing the problem to higher-order pattern unification, but
it is difficult to convert the resulting higher-order unifier to a nominal unifier; in
particular freshness constraints are difficult to recover. The reverse direction has
not yet been studied.

Lambda-term abstract syntax shares some of the difficulties of HOAS. NAS
retains the advantage that names are concrete data and there is no problem dealing
with open terms or name inequality. Lambda-term abstract syntax, in contrast,
cannot handle these issues any better than higher-order abstract syntax techniques
can. It is also not clear how much simpler LTAS is than full HOAS in semantic
terms, since the denotational semantics of LTAS does not appear to have been
investigated (but see the next section for further discussion). In contrast, nominal
abstract syntax has a solid semantic foundation using nominal sets. It is possible
that a semantics of LTAS could be found in terms of nominal sets as well.

On the other hand, efficient (linear time) algorithms for higher-order pattern
unification are well-known, whereas equivariant unification is NP-hard and tight
bounds on the complexity of nominal pattern unification has not been established.

8.1.4 Binding Algebras

Fiore, Plotkin, and Turi [37] developed a new semantic approach to abstract syn-
tax with binding based on category theory. They consider the functor category
SetF, or intuitively, sets acted upon by functions among finite sets of names (i.e.,
renamings). They showed how to construct an object δA from an object A of this
category: essentially, δA is an A with a single bound variable. They showed that
δA can be used, in conjunction with pairing and induction, to construct models of
abstract syntax with variable binding equivalent to de Bruijn encodings. (In fact,
they showed explicitly how de Bruijn indices and de Bruijn levels could be obtained
by varying the details of the construction.) They also considered refinements of
such categories with a built-in notion of substitution. See also Hofmann [54] for a
similar development.

Hamana [48] has developed a unification algorithm and logic programming
language for programming with terms involving name-abstraction [a]t, name-ap-
plication t@a, name occurrences var(a), injective renamings ξ = [x := y, x2 :=
y2, . . .], and first-order function symbols and constants. These terms are similar to
nominal patterns and also to higher-order patterns. For example, 〈a〉〈b〉(a b) ·X,
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λa, b.X b a, and [a][b][a := b, b := a]X, all play roughly the same role in NAS,
LTAS, and Hamana’s language, respectively.

Hamana’s unification algorithm unifies up to β0-equivalence of bound names
with respect to name-application. That is, Hamana’s terms are unified subject to
the β0 equation ([a]t)@b = [a := b]t, as well as α-equivalence [a]t = [b]u ⇐⇒
[a := c]t = [b := c]u for some “new” c. In order to ensure that a “new” name can
be chosen, Hamana employs a type system that assigns each term a type plus the
set of names that may appear free in the term. Thus, the new c in α-equivalence
must be chosen not already in the sets supporting t and u, so the α-equivalence
rule really looks like:

S / [a]t = [b]u ⇐⇒ S, c / [a := c]t = [b := c]u (c /∈ S)

(This is not the actual α-rule used by Hamana, but gives the basic idea.) Be-
cause Hamana’s unification algorithm unifies up to β0-equivalence without requir-
ing terms to be higher-order patterns, it is a generalization of higher-order pattern
unification. In addition, logical variables may contain free names. However, this is
not as big a difference as it might seem, since the free names that may appear in
a term are specified as part of its type. Therefore, the lifting of the higher-order
pattern restriction appears to be the only substantial difference between Hamana’s
algorithm and higher-order pattern unification. Because it unifies terms that may
not obey the pattern restriction, Hamana’s algorithm can produce multiple in-
comparable most general unifiers. Its complexity has not been investigated, but
it seems likely to be at least NP-hard, since it solves a unification up to injective
renaming problem that is similar to equivariant unification. It is therefore of inter-
est to determine whether Hamana’s algorithm reduces to equivariant unification
problems or vice versa.

Many of the example programs of Chapter 2 can also be programmed using
Hamana’s programming language. For example, capture-avoiding substitution is
given as an example in Hamana [48]. However, this version is more limited than
the αProlog version because Hamana’s language requires the free names that may
appear in a term to be declared explicitly as part of its type. For this reason, it is
apparently not possible to substitute an open term for a variable using Hamana’s
version, since the substitutend must be closed. (This is necessary to ensure that
substitution is capture-avoiding.) More generally, Hamana’s language appears
to have the same problems with open terms as higher-order abstract syntax, so
examples like α-inequivalence and closure conversion would not be easy to write.
This is not surprising since Fiore et al.’s work on binding algebras takes no account
of open terms, only terms in some finite variable context.

Hamana’s language has not been implemented, and the issues of typechecking
and especially type inference that accompany its type system have not been stud-
ied, as far as we know. Therefore, it is not possible to compare Hamana’s language
with αProlog directly. However, it is hard to see how Hamana’s type system could
be any simpler than that of αProlog, and the fact that name-supports appear in
types seems likely to be a significant complication.
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On the other hand, Hamana’s language rests on the solid semantic foundations
of Fiore et al’s semantics for binding algebras and there is no theoretical obstacle to
defining functions by iteration over binding algebra terms or to performing induc-
tive reasoning. Therefore Hamana’s language is similar to αProlog in theoretical
transparency. The apparently close relationship between Hamana’s language and
λ-term abstract syntax also bears examination: Hamana’s techniques may indi-
cate that LTAS can be given a semantics in terms of binding algebras. Hofmann’s
semantic analysis of higher-order abstract syntax [54] also seems to bear this out.

8.1.5 Qu-Prolog

Qu-Prolog [121, 95] is a logic programming language with built-in support for
object languages with variables, binding, and capture-avoiding substitution. It ex-
tends Prolog’s (untyped) term language with constant symbols denoting variables
and a built-in capture-avoiding substitution operation t{t′/x}. Also, a binary pred-
icate x not free in t is used to assert that an object-variable x does not appear in
a term t. Certain identifiers can be declared as binders or quantifiers ; for example,
lambda could be so declared, in which case the term lambda x t is interpreted as
binding x in t. As in binding algebras, and unlike in HOAS, quantifier symbols
are not necessarily λ-abstractions, so Qu-Prolog is not simply a limited form of
higher-order logic programming. Qu-Prolog does not provide direct support for
name-generation; instead name-generation is dealt with by the implementation
during execution as in higher-order abstract syntax.

Qu-Prolog is based on a classical theory of names and binding described in
terms of substitution. Unification of quantifiers proceeds by first substituting the
bound names with a fresh name. It is therefore necessary for Qu-Prolog unification
to track “not-free-in” constraints as well as to deal with capture-avoiding substi-
tution as a built-in function symbol. In addition, capture-avoiding substitution is
useful in its own right. However, Qu-Prolog unification is undecidable in general,
so in practice full unification is not performed; instead, unification problems are
reduced to constraints which may involve not free in or irreducible substitution
problems [95]. This approach is reminiscent of Huet’s pre-unification algorithm for
nominal terms.

In several respects Qu-Prolog is very similar to αProlog. Binding is treated in
a first-order manner using substitution instead of swapping, and unbound object-
variables may appear in terms, but may also be unified with other object-variables.
And in some important respects αProlog (at least as developed in this dissertation)
is weaker: there is no support for capture-avoiding substitution in αProlog. On
the other hand, unification in αProlog is decidable. Many of the same kinds of
programs can be written in Qu-Prolog and αProlog. In particular, programs like
the λ-calculus reduction and typechecking examples, as well as interpreters and
theorem provers, can be and have been implemented in Qu-Prolog relying on its
support for names and binding.

However, the semantics or logical foundations of Qu-Prolog do not appear to
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have been studied. Therefore, it is not clear just what is computed by a Qu-Prolog
program involving names and binding. And it is not clear how to read Qu-Prolog
programs as logical specifications because the logic is left implicit. This seems like
an especially important issue when dealing with names and binding, whose nature
is somewhat mysterious. And object-variables have somewhat strange behavior:
syntactically distinct names are sometimes assumed to be different values but
sometimes may be unified. There is no notion of equivariance nor is there a logical
explanation of fresh name generation as is provided by the N-quantifier.

As a consequence of the fact that object-variables can be unified, Qu-Prolog
must conservatively produce answers that are more complex than would be nec-
essary in αProlog. For example even if a seemingly correct answer is supplied,
Qu-Prolog lacks enough information to be able to solve all the remaining con-
straints.

| ?- [x1/x](lambda x1 x) = lambda x2 x1.

x1 = x1, x = x, x2 = x2

provided:

x1 = [x1/x, x2/x1]x, x2 not_free_in [x1/x, $/x1]x

In αProlog, a similar query such as

?− subst(lam(〈x1〉var(x)), var(x1), x, lam(〈x2〉(x1)))

succeeds unconditionally. Of course, the NLP query

?− subst(lam(〈A1〉var(A)), var(A1), A, lam(〈A〉var(A1)))

would reduce to some constraints similar to the above, but this query is not al-
lowed in αProlog because it violates the pattern restriction. Thus, the presence of
name-constants rather than just name-variables (or object-vars) is a real difference
between αProlog and Qu-Prolog.

Nevertheless, many interesting programs can be written in Qu-Prolog, including
interactive theorem provers, client/server and database applications, and the Qu-
Prolog interpreter and compiler themselves. For comparison with other techniques
for programming with names examined so far, here is a λ-term typability relation
expressed in Qu-Prolog notation.

type(A(B), Y, TypeAssign) :-

!, type(A, X ~> Y, TypeAssign), type(B, X, TypeAssign).

type(lambda x A, T ~> TA, TypeAssign) :-

!, type(A, TA, [x^T|TypeAssign]).

type(X, TX, TypeAssign) :-

in_type(X^TX, TypeAssign).

(This code is copied from the Qu-Prolog distribution). Here, X^TX and T~>U are
user-defined binary operators corresponding to x : τ and τ → τ ′ in Qu-Prolog, and
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in_type is a predicate which looks up the most recent binding of X^TX in the type
assignment TypeAssign. This use of cut is necessary for correctness. In αProlog,
cut is not necessary in this situation.

Qu-Prolog enjoys a very mature implementation including a compiler for Qu-
Prolog written in Qu-Prolog. It is possible that Qu-Prolog could be given a seman-
tics in terms of nominal abstract syntax (with a built-in notion of substitution in
addition to swapping). Conversely, Qu-Prolog’s built-in capture-avoiding substi-
tution operator has inspired experimentation with a similar operator in αProlog.

8.1.6 FreshML

FreshML [109, 116, 117] was an important source of inspiration for αProlog. At
present FreshML and αProlog provide almost identical facilities for dealing with
nominal abstract syntax itself (that is, name-types, name-abstraction types, and so
on). However, in early versions of FreshML, a complicated type analysis was em-
ployed to ensure that name-generating functions were “pure” (side-effect-free); this
analysis was found to be overly restrictive and has been dropped in recent versions
resulting in a language that is more permissive but has side-effects. In contrast,
fresh name generation in αProlog leads not to side-effects but to nondeterminism—
which is almost as bad as side-effects in a functional language, but which is perfectly
acceptable in a logic programming language.

Another difference is that there are no concrete names in FreshML; instead,
names are always manipulated via variables. On the other hand, in recent versions
of FreshML, names may be constructed from data such as strings and integers;
also, data structures containing names may be bound, not just individual names.
These seems like useful features that could also be incorporated into αProlog.

The rest of the differences are ordinary differences between functional and logic
programming. FreshML is a higher-order programming language with first-class
functions, whereas αProlog is limited to first-order programming, and functions are
not first-class. From a theoretical point of view, there is no apparent obstacle to
adding first-class functions to αProlog. It would also be interesting to generalize
αProlog to allow genuine higher-order logic programming as in λProlog. This
would be a nontrivial project; a first step in this direction would be investigating
the combined nominal-higher-order unification problem.

Conversely, there are many programs that can be written cleanly in αProlog
but not so cleanly in FreshML. Typechecking programs are a typical example,
because they often require simultaneous checking and inferring of types, which is
easily handled in a logic programming language using unification. In a functional
language, it is usually necessary to write two mutually recursive functions, one
for type-checking and one for type-inference, whereas in a logic programming lan-
guage both functions can be performed by the same set of clauses. (In fact, some
implementations of typechecking and inference in functional languages essentially
simulate logic variables and unification so that typechecking and inference can be
performed by a single function [64]).
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8.2 Additional Related Work

8.2.1 Name-Generation in Programming

Pitts and Stark [110] and Odersky [97] studied name-generation in functional pro-
gramming languages.

Pitts and Stark’s nu-calculus analyzed name generation as an effectful compu-
tation, analogous to reference generation in ML. Names could be introduced with
a “fresh name” binder νn.t, and tested for equality. The fresh name construction
was interpreted operationally by maintaining a name-store: on encountering a νn.t
term, a fresh name is bound to n and added to the store. Pitts and Stark found
that, contrary to expectation, the interaction between higher-order functions and
name-generation is very complex. In addition, because name-generation involves
side-effects, the nu-calculus is not confluent, and has weaker equational properties
than a purely functional language. In some ways, this work can be seen as an early
precursor to that of Pitts and Gabbay on FreshML [109].

Odersky developed a quite different functional theory of local names [97]. His
λν-calculus is syntactically essentially the same as Pitts and Stark’s nu-calculus.
But instead of treating name-generation as an effect, the λν-calculus deals with
names in a local way. As a result, the strong equational properties of the λ-calculus
are preserved in the λν-calculus, which remains a purely functional language. On
the other hand, the local names behave strangely in some ways: if local names
cannot be removed from a term, then that term is not a value. For example, the
term (λx.x = x)νn.n reduces to νn.n = νn.n, which is stuck νn.n is not a value.
In other ways, ν behaves much like the π-calculus restriction operator: for exam-
ple, νn.M ∼= M if n is fresh for M , and νn.νm.M ∼= νm.νn.M (where ∼= means
observational equivalence). Most interestingly, Odersky developed a denotational
semantics for λν in terms of name-swapping and support. This development clearly
foreshadows the later developments underlying nominal logic, FreshML, and αPro-
log, although, of course, without the application to variable-binding. The relation-
ship between λν and FreshML is therefore of great interest, as is the possibility of
using λν as a proof-term calculus for nominal logic.

8.2.2 Meta-Programming with Names and Necessity

Nanevski and Pfenning [92] have developed intriguing applications of nominal ab-
stract syntax to meta-programming. They have combined explicit concrete names
with a modal type system (based on a proof-term calculus λ� for intuitionistic S4
modal logic developed by Davies and Pfenning [29]). This combination yields a
powerful language for meta-programming via staged computation, that is, writing
programs that write programs that can be compiled and run at run-time.

αProlog itself is a powerful meta-programming language, since the abstract
syntax of a language can be represented cleanly using αProlog terms and then
programs can be constructed by αProlog programs. But such programs must be
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converted to some other format before they can be run; being a typed language,
αProlog does not even allow meta-circular interpretation of αProlog programs. So
αProlog can be viewed as a meta-programming language in only a fairly weak
sense.

In contrast, λ� and ν� are among the most recent in a line of languages for
writing ML-like programs that construct ML-like programs that can be compiled
at run time. The role of the “box” modality � in λ� is to separate the early
stage of computation that is manipulating some code from the late stage that is
being manipulated. However, in order to achieve type safety, λ� is very conser-
vative about communication between the levels: in fact, boxed terms containing
code generated at run time always have to be closed, to avoid prevent variables
from being evaluated before values has been assigned to them. This problem is
called “free variable evaluation”, and is solved in some other systems by dynamic
typechecking [122] or a complicated type system [16]. This problem was solved
in λ� by prohibiting free variables in boxed expressions. This is safe but overly
restrictive and forces programs to be written in a contorted style.

The ν� language solves the free variable evaluation problem by tracking free
variables (or “support”) of a boxed term. A boxed term can only be “run” (or
compiled to executable code) if it has empty support, that is, mentions no free ν-
variables. (Ordinary variables already are always guaranteed to be assigned values
during the execution of the current stage). ν-variables can be removed from the
support of a term by applying an explicit substitution, that associates a name with
a term. Of course, substitutions can introduce names as well as eliminate them,
so in general the source and target name-sets of substitutions appear in the type
system as well.

While ν� is very interesting, the most recent version of ν� seems only tan-
gentially related to nominal logic. Nanevski’s original ν� system [91] was based
very closely on ideas from nominal logic, including swapping and freshness. In the
current version, the only connections are the use of explicit names as data which
are syntactically distinguished from λ-bound variables and the idea of “support”
tracked in the type of a term, but freshness, swapping, and name-abstraction play
no role. Instead, Nanevski and Pfenning’s system seems closer to the work of
Hamana (in which the free names of a term are tracked in the type system) or of
Odersky, described above, with explicit substitutions thrown in.

8.2.3 Reflection and Abstract Identifiers in Nuprl

Allen, Constable, Howe, and Aitken [6] introduced the idea of reflected proof in
the Nuprl system, an interactive theorem proving system based on Martin-Löf’s
intuitionistic type theory [73]. They demonstrated its expressive power in proving
properties of important algorithms such as matching. More recently, Barzilay,
Allen, and Constable [12, 11, 13] have developed a new approach to reflection in
Nuprl [23].

Their approach is to encode Nuprl terms as an explicit term data structure
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and use Nuprl’s quotient types to equate terms up to an appropriate theory of
equality, including α-equivalence and extensionality. In this approach, Nuprl type-
checking judgments as well-formedness judgments, so this approach is similar to a
specialized form of HOAS used in Coq [32], in which well-formedness judgments
are required to exclude exotic terms. Nuprl’s subset type constructor can be used
to simplify reasoning about such validity constraints. It is possible that nominal
abstract syntax could be used to simplify some aspects of this development of
reflection in Nuprl.

Allen [5] has also studied the idea of abstract identifiers from the point of view
of recordkeeping and maintaining formal content. The main problem considered is
not name-binding, but maintaining the integrity of a possibly-changing linked set
of formal documents with some well-formedness requirements (as is the case in a
formal digital library, of which the theorem/proof library of Nuprl is one example.

8.2.4 Linc

Linc is the most recent in a line of a meta-logics developed by Miller, McDowell,
Tiu, and Momigliano [74, 75, 81, 83, 88, 123] based on λ-term abstract syntax.
There are important similarities between Linc and nominal logic.

The direct predecessors of Linc are FOλ∆N and FOλ∆∇. FOλ∆N, developed
by McDowell and Miller [75], is a first-order meta-logic incorporating λ-terms,
definitional clauses and induction over natural numbers. (FOλ∆N is first-order in
the sense that quantification over predicates is not allowed, only over types built
up using data types and functions). McDowell and Miller it to encode a number
of logics such as linear logic and to perform reasoning over weak higher-order
abstract syntax encodings, including as an encoding of the operational semantics
of an imperative language.

Miller [81] found that the ∀-quantifier was being used in two separate, incom-
patible ways in some potential applications of FOλ∆N: in particular, in order to
reason about name-abstraction and scope-extrusion in the π-calculus, about fresh
reference generation in imperative languages, or about fresh nonce generation in a
security protocol, it seems desirable to use the quantifiers ∀ and ∃ to generate fresh
parameters denoting (intuitively at least) distinct names. However, this is incom-
patible with a logical reading of these quantifiers, since ∀x.∀y.p(x, y) ⊃ ∀x.p(x, x)
and ∃x.p(x, x) ⊃ ∃x.∃y.p(x, y). Thus, neither ∀ nor ∃ can be used to introduce
semantically distinct fresh parameters in all situations, since there is no guarantee
that two distinct parameters x, y will be instantiated with distinct values.

To remedy this, Miller and Tiu developed FOλ∆∇ [83], a first-order meta-logic
with lambda terms, definitions, and a new-quantifier ∇. They gave a sequent
calculus for FOλ∆∇ in which sequents Σ : Γ −→ A consist of a global parameter
context Σ, a hypothesis context Γ, and a conclusion A; the hypotheses and con-
clusion are pairs σ . A of local contexts and formulas. The global context includes
parameters introduced by ∀ on the right and ∃ on the left; the local contexts con-
sist of parameters introduced by ∇ on either the left or right. That is, the rules
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for ∇ are
Σ : Γ, (σ, x) . B(x) −→ A (x 6∈ σ,Σ)

Σ : Γ, σ .∇x.B(x) −→ A ∇L

Σ : Γ −→ (σ, x) . B(x) (x 6∈ σ,Σ)

Σ : Γ −→ σ .∇x.B(x)
∇R

As a result, the ∇-quantifier is self-dual, just like the N-quantifier; moreover, it
commutes with all the connectives ∀,∃,∧,∨,⊃,¬, whereas Nonly commutes with
propositional connectives. The∇ quantifier can be used to describe the behavior of
π-calculus transitions involving scope extrusion accurately, and to define the simu-
lation and bisimulation relations on π-calculus terms, as well as to describe the be-
havior of an interpreter for a small programming language with ∀-quantified goals.

Momigliano and Tiu [88] extended FOλ∆N to include reasoning by induction
and co-induction. The resulting logic is called Linc and seems extremely powerful.
Tiu [123] reports a version of Linc that includes the ∇ quantifier. Linc has been
implemented in the Basic Linc (BLinc) system, and several examples including
the π-calculus have been verified using its facilities for induction. However, BLinc
is a proof tool, not a programming language, so a direct comparison with αPro-
log is not particularly illuminating. In particular, as a proof tool, the burden of
choosing proof steps and substitution instances for quantifiers is on the user, not
on the implementation.

The∇-quantifier of Linc and the N-quantifier of nominal logic seem very closely
related. Until recently, the absence of a sequent-style proof-theory for nominal logic
or a model theory for Linc made it difficult to refine this intuition. Moreover, the
absence of a denotational explanation for the ∇-quantifier makes it difficult to
know just what the objects are that Linc reasons about, to an even greater extent
than in ordinary higher-order or λ-term abstract syntax. As a concrete example
of this difficulty, it is not clear whether Linc’s ∇-bound names should be subject
to weakening and exchange or not. Formulas such as ∇x, y.B x y ⊃ B y x or
B ⊃ ∇x.B, where x is not free in B, require explicit local context weakening and
exchange principles for their proof. In the absence of a semantics explaining what
∇-bound names are, it is not obvious whether such rules are justifiable.

Recent developments have made a partial comparison possible. Gabbay and
Cheney [41] introduced a sequent proof system for nominal logic, and subsequently
I have developed an improved sequent proof system in Chapter 4 of this disserta-
tion. These systems explicate the difference between nominal logic and Linc’s ∇
in syntactic terms: in nominal logic, N-bound names have global scope within a
judgment but may be excluded from terms using an explicit freshness predicate,
whereas ∇-bound names in Linc are limited to the scope of the ∇. Gabbay and
Cheney also addressed the relationship between ∇ and Nby showing how to in-
terpret FOλ∇ (that is, the fragment of Linc without definitions or (co)induction)
within nominal logic soundly and nontrivially. They gave a translation mapping
FOλ∇ sequents and formulas to nominal logic sequents and formulas preserving
derivability. However, some formulas not provable in FOλ∇, such as B ⊃ ∇x.B,
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are translated to provable formulas, in this case B′ ⊃ Nx.B′, where B′ is the trans-
lation of B. Similarly, the exchange property holds for N, but not necessarily for
∇. However, even though it is incomplete, the translation does suggest that it may
be possible to find a semantics for the ∇-quantifier in terms of nominal sets.

Conversely, Linc’s treatment of definitions, induction, and co-induction seems
extremely powerful and general. It may be possible to incorporate these features
into nominal logic. The resulting logic could be a powerful tool for reasoning about
logics and programming languages via nominal abstract syntax: a nominal logical
framework.



Chapter 9

Concluding Remarks

One of the symptoms of an approaching nervous breakdown is the belief that
one’s work is terribly important.

—Bertrand Russell

My thesis is that nominal logic programming is a powerful technique for pro-
gramming with names and binding. This dissertation offers evidence in favor of this
thesis in many ways. In this concluding chapter, I will review the contributions
presented herein and show how they justify my thesis in Section 9.1. I will outline
what I see as the most important next steps in Section 9.2. And I will conclude in
Section 9.3.

9.1 Contributions

This dissertation presents the results of my investigations of nominal logic Pro-
gramming, including the design and implementation of a particular nominal logic
programming language, αProlog, and the logical foundations, semantics and con-
straint solving problems for general nominal logic programming.

In Chapter 2, I described the αProlog programming language, a polymorphi-
cally typed logic programming language with built-in support for names, binding,
and programming with nominal abstract syntax. I also presented a variety of
interesting programs written in αProlog, including programs implementing sub-
stitution, typing, normalization, α-inequivalence, and closure conversion for the
λ-calculus, as well as an operational semantics for the π-calculus. These programs
are direct translations of informal paper specifications used by researchers and
programmers, so their relative correctness is self-evident.

In Chapter 3, I developed a new theory of nominal sets, more general than
the finite-supported nominal sets considered by Pitts and Gabbay, based on a
generalized approach to classifying support sets as small and name-sets as large,
using mathematical structures called support ideals. In addition, I developed a
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theory of syntax with bound names using nominal sets that is used throughout the
rest of the dissertation.

In Chapter 4, I presented a new form of nominal logic, which includes a novel
quantifier N, special symbols for names, and an axiomatization of the concepts
of freshness, swapping, and name-abstraction or binding. I presented a semantics
for nominal logic in terms of nominal sets as well as a novel sequent calculus for
nominal logic, which uses a mixed context to represent some information about
freshness. I also showed that the sequent calculus has the important property of
cut-elimination.

In Chapter 5, I showed that the semantics and sequent calculus for nominal logic
agree: that is, the soundness and completeness properties hold for nominal logic
relative to its nominal set semantics. This result is the first of its kind. Pitts gave
an an explicit counterexample to completeness for nominal logic relative to finitely-
supported nominal sets, and I gave another counterexample to compactness. The
use of support ideals in the development of nominal sets was the key to proving
completeness. In addition, I proved a generalized form of Herbrand’s Theorem
for nominal logic in terms of Herbrand universes consisting of nominal terms built
using the syntactic methods of Chapter 3.

In Chapter 6, I presented formal operational semantics (a state-transition sys-
tem) and denotational semantics (a least Herbrand model construction) for Horn
clause nominal logic programming. I showed that the operational semantics is
sound and complete relative to the denotational semantics. The techniques em-
ployed are drawn from the semantics of constraint logic programming, but there
are significant differences between nominal logic programming and CLP, so that
existing theorems on the semantics of CLP cannot simply be reused. Therefore
the results, if not all of the methods, of this chapter are new.

In Chapter 7, I studied nominal constraint solving. I showed that solving even
a single freshness constraint, equation, or equivariance constraint is NP-hard,
and the first two problems are in NP. I also developed algorithms for solving
these constraint problems. These algorithms were shown to be correct: they find
all possible correct answers and only correct answers. Finally, I discussed the
shortcomings of these algorithms, efficient special cases, and possible directions for
future work in this area.

9.2 Future Work

There are a number of interesting directions for future work.

• Support for other forms of name-binding: Some example programs we have
written in Chapter 2 require checking that certain occurrences of names are
globally unique. This phenomenon also arises in programming languages like
C or assembly language, where some names have global scope and must
be declared or defined at most once. It may be worthwhile to formalize
globally scoped names within nominal logic. Another common use of names
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is prefix-qualification, as is often used in module or namespace systems. It
may be of interest to find ways to better support prefix-qualified names and
name-resolution within nominal logic. Also, recent versions of FreshML have
provided the ability to abstract over general data structures such as lists,
rather than single names. This behavior is not supported yet in nominal
logic or αProlog.

• Support for generic capture-avoiding substitution: One really desirable fea-
ture provided by higher-order abstract syntax and Qu-Prolog is built-in
capture-avoiding substitution. There is no problem in principle with intro-
ducing an explicit capture-avoiding substitution function symbol to αProlog,
similar to that provided by Qu-Prolog, and I have experimented with this
feature in the implementation of αProlog and found it to be very useful.
This inspired the definition of generic capture-avoiding substitution in Sec-
tion 3.5.5. However, the experimental implementation only performs sub-
stitution for closed terms, and unification does not take substitution into
account (unlike in Qu-Prolog).

• Complexity and efficiency issues: According to [127], nominal pattern uni-
fication can be implemented in polynomial (quadratic) time. Efficient algo-
rithms for nominal pattern unification need to be developed. In addition,
efficient techniques for nominal constraint solving and practical techniques
for dealing with name-name and equivariance constraints are desirable so
that more general nominal logic programs can be executed efficiently.

• Nominal equational unification: In the π-calculus, often terms are considered
up to a structural equivalence defined by ordinary associativity and commu-
tativity laws as well as laws such as

νa.P = P (a 6∈ FV (P ))

νa.νb.P = νb.νa.P

(νa.P )|Q ≡ νa.(P |Q) (a 6∈ FV (Q))

Structurally equivalent process terms always have the same behavior, so much
effort can be saved if computations can be specified in terms of structural
equivalence classes rather than process terms. This is an interesting example
of a nominal equational unification problem, that is, a problem of unifying
terms modulo an equality theory specified in nominal logic. Nominal equa-
tional unification deserves further study.

• A linear ordering on names: One of the big disadvantages to equivariance
is that there is no equivariant linear ordering on names (cf. Remark 4.2.12).
Linear orderings are useful for efficient data structures and algorithms such as
binary trees and binary searching. Can efficient name-based data structures
be implemented in the presence of this limitation, or if not, is there a logically
justifiable way to fix this?
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• Compilation and program analysis: Currently αProlog is implemented as an
interpreted language. What new compilation techniques, if any, are needed
to compile αProlog programs? Can αProlog be implemented as an extension
to an existing constraint programming framework such as CIAO Prolog [52]?
Can known logic program analysis techniques, such as mode, determinism
and termination checking, be extended to αProlog?

• Semantic issues: We presented a classical semantics for only the Horn clause
fragment of αProlog. However, αProlog includes other features such as
negation-as-failure which are not treated in this semantics. It would be
desirable to extend the semantics to handle negation-as-failure. Also, the
implementation of αProlog contains support for hereditary Harrop formulas.
The semantics of hereditary Harrop formula logic programming is usually
formulated in terms of uniform proofs, that is, using proof-theoretic seman-
tics [82]. Therefore it would be interesting to develop such a semantics for
αProlog, both to verify the correctness of the implementation and to make it
easier to incorporate higher-order features into αProlog. The work of Leach,
Nieva, and Rodŕıguez-Artalejo may be an appropriate starting point [68].

• Nominal logical frameworks: An important long-term goal for this work is
to develop a logical framework for carrying out syntactic proofs of meta-
theoretic properties of programming languages and logics. In Chapter 8, we
compared nominal logic programming with other advanced approaches to
programming with names and binding. Many of these techniques, in par-
ticular higher-order abstract syntax, are also used in automated reasoning,
where the disadvantages of semantic and algorithmic complexity are magni-
fied. Therefore, we believe that nominal abstract syntax could also be of use
in automated reasoning. However, testing this claim will require develop-
ing the theoretical and practical foundations of a nominal logical framework,
and attempting to solve problems which are difficult for existing techniques
to solve. This is an important area for future work.

9.3 Conclusions

The concepts of names and name-binding are endemic in the study of logics and
programming languages, and have challenged the brightest logicians and computer
scientists. The idea of equality up to “safe” renaming of bound names is simple
enough to be grasped intuitively by students and left implicit by researchers. How-
ever, computers cannot be taught in this intuitive way, but must be programmed
to deal with names correctly using unambiguous rules. Gabbay and Pitts discov-
ered a new theory of syntax with names and binding based on permutations, which
I call nominal abstract syntax. Nominal abstract syntax is substantially simpler
than prior approaches and therefore should be easier to automate.
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In this dissertation, I have introduced a new logic programming paradigm, nom-
inal logic programming, based on nominal abstract syntax. I presented a particular
nominal logic programming language, αProlog, and provided several examples of
programs that are easier to write in αProlog than in any other language. I pro-
vided a rigorous foundation for nominal logic programming based on a revised form
of nominal logic, using existing semantic techniques from research on constraint
logic programming and the study of Fraenkel-Mostowski independence results. I
have also investigated the constraint-solving problems involved in nominal logic
programming: in particular I presented algorithms for solving the problems and
proved upper and lower complexity bounds (leaving one important upper bound
open).

These are small first steps in the area of nominal logic programming, and much
remains to be done. Nevertheless, this work justifies my claim that nominal logic
programming is a powerful technique for programming with names and binding.
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stitution
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logic programming
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operational, 99
proof-theoretic, 111

separation problem, 114, 115
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function, 41
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