Avoiding Equivariance in Alpha-Prolog

Christian Urbah and James Chengy

1 Ludwig-Maximilians-University Munichrban@mathematik.uni-muenchen.de)
2 Edinburgh Universityjtheney@inf.ed.ac.uk)

Abstract. aProlog is a logic programming language which is well-suited for
rapid prototyping of type systems and operational semantics of txpeadculi

and many other languages involving bound namesRrolog, the nominal uni-
fication algorithm of Urban, Pitts and Gabbay is used instead of first-order unifi-
cation. However, althoughProlog can be viewed as Horn-clause logic program-
ming in Pitts’nominal logic proof search using nominal unification is incomplete
in nominal logic. Because of nominal logicgjuivariance principlecomplete
proof search would require solving NP-hagduivariant unificationproblems.
Nevertheless, theProlog programs we studied run correctly without equivariant
unification. In this paper, we give several exampleaBfolog programs that do
not require equivariant unification, develop a test for identifying such programs,
and prove the correctness of this test via a proof-theoretic argument.

1 Introduction

Logic programming is particularly suited for implementing inference rules defining re-
lations over terms. Many interesting examples of such inference rules, however, involve
terms with binders and-equivalence, for which Prolog, for example, provides little
assistance. In [3] we presentedProlog, which is designed to simplify programming
with binders. For instance, the operation of capture-avoiding substitutiok-ferms

can be implemented inProlog as follows:

id(X,X).

subst(var(X),X,T,T).

subst(var(X),Y,T,var(X)) - not(id(X,Y)).
subst(app(M,N),X,T,app(M’,N"))- subst(M,X,T,M’), subst(N,X,T,N’).
subst(lam(a.M),X,T,lam(a.M’)) :- a#T, a# X, subst(M,X,T,M’).

where the termsar(X) , app(M,N) andlam(a.M) encode variables, applications
and A-abstractions. The predicaseibst(E, X, T,E’) defined by the clauses holds
only if E’ contains the result of the usual capture-avoiding substitl&joh=T] in
the A-calculus.

Two features ofaProlog are immediately visible to the user. First, the term lan-
guage includes the term-constructer— for forming abstractions, which are used to
encode binding. SecondProlog has a freshness-predicate, writter-&s-, built into
the language; this predicate ensures that a name does not occur freely in a term (by
a name we mean lower-case symbols, for instamde the expressiotam(a.M)).

In this subst -program, the freshness-predicate is used to make sure that no variable
capture occurs inside the term being substituted.

To illustrate how thesubst -program calculates the result of the capture-avoiding
substitution(Ab.a b)[a := b], we consider the query:

subst(lam(b.app(var(a),var(b)),a,var(b),R) (2)
To solve this queryyProlog unifies it with the head of the fourslubst -clause
Subst(lam(a 1.M 1),X 1,T l,lam(a 1.M’1)):- a 1#T1,a 1#X1,SUbSt(M 1,X 1,T 1,M,1).

where, as in Prolog, the variabligsX, T andM’ have been replaced with fresh variables
(indicated by the subscript), and also the nantes been freshened (we shall return to
the difference between variables and names later). The unifiexfiratog calculates is

app(var(a),var(a 1)) forM,afor Xy, var(b) forT; andlam(a ;.M’;) for R
Next, aProlog checks that the freshness-predicatésvar(b) anda;# a hold, and
continues unifying the new quesybsi(app(var(a) var(a)ayvarb),M’ 1)
with the thirdsubst -clause. Then it uses the first and secsnbst -clause and af-
ter they succeedyProlog returngam(a ;.app(var(b),var(a 1))) asthe answer
for R

Another example, which illustrates how easily inference rules can be implemented
in aProlog, is the following program

mem(X,[X|T]).

mem(X,[Y|T]) :- mem(X,T).

type(Gamma,var(X),T) :- mem((X,T),Gamma).
type(Gamma,app(M,N),T):- type(Gamma,M,arr(S,T)), type(Gamma,N,S).
type(Gamma,lam(x.M),arr(S,T)):-x # Gamma, type([(X,S)|Gamma],M, T).

implementing the usual inference rules for inferring the types-tdrms.

e:Tel .~ I>M:S—T I'>N:S ,, 2:STeM:T (@ FVD)
Tox:T T'>MN:T To e M:S =T am

Note that, in contrast to for exampldrolog, abstractions inProlog bind a concrete
name which isnot restricted to the scope of the abstractions. Therefore it is possible
in aProlog to use a name of a binder in the body of the clause, for instance to append
(x,S) to the contextGamman the thirdtype -clause. The implicit side-condition in
the rulelam requiring thatl” has no type-assignment foris implemented inxProlog
by the freshness-predicat¢éGamma

We have implemented a large number of sietalculus examples, including type
systems and operational semantics for Systenyand lineari-calculi. Our experi-
ence from these examples suggests that the combination of concrete names in abstrac-
tions and the freshness-predicate is very useful for programming with binders. One
question, however, might arise: what are the advantage®aflog relative to, for ex-
ample, AProlog [7], which has botl-equivalence and capture-avoiding substitution
built-in and the typing rules can be correctly implemented by the two clauses:

(type (app M N) T) :- type M (arr S T), type N S.
(type (lam M) (arr S T)) :- (pi X \(type x S => type (M x) T)).

(Notice that in this program the typing-context is implicitly given by the “surrounding”
program-context. This program-context can be modified using the universal quantifica-
tion (i.e.pi x \...) and implications in goal-formulae. Therefore there is no clause
for the variable case.) We find the most important reason in favouwPoblog is that

by having concrete names (hamelyin thetype -example) and freshness-predicates
one can almost directly translate the three typing rules into three clauses and obtain a
correct implementation. This should be seen in the context that, despite the elegance of
AProlog, some recent textbooks use (standard) Prolog for implementing inference rules
over A-terms. For example one of them presents the following implementation of the
typing rules:

mem(X,[X|T]).

mem(X,[Y|T]) :- mem(X,T).

type(Gamma,var(X),T) :- mem((X,T),Gamma).
type(Gamma,app(M,N),T):- type(Gamma,M,arr(S,T)), type(Gamma,N,S).
type(Gamma,lam(X,M),arr(S,T)):-type([(X,S)|Gamma],M, T).

which calculates therrongtype for A-terms such asz. \x.(z). Although this prob-

lem can be fixed by judicious use of cut or side-effects, first-order terms of Prolog are
unwieldy for implementing relations over syntax with binders correctly. On the other
hand,\Prolog does not allow concrete names as binders and therefore operations such
as adding the type for to the typing-context need to be encoded using universal quan-
tification, implications in goals and beta-reduction.

The aProlog language is based on nominal terms and uses the nominal unifica-
tion algorithm of Urban, Pitts, and Gabbay [9], which calculates (most general) uni-
fiers moduloa-equivalence. For example, the quétyid(a.a,b.X) is solved in
aProlog by the capturing substitutidX := b] sincea.a andb.b are«-equivalent.
However, nominal unification is not enough to make the programs given earlier func-
tion as intended. For thisProlog generates fresh names during proof-search. As seen
above, before a query is unified with the foughbst -clause,aProlog generates a
fresh name foa. This ensures that substitutions can always be “pushed” under a binder
without risk of capture.

While in [3] we have described our implementationad®rolog, its behaviour can
be justified in terms of nominal logic [8, 2]. For instance, the generation of a fresh name
can be expressed in terms of tequantifier of nominal logic, and anProlog clause
A - B1,...Bn can viewed as the formulda, ..a,, .VX;..X,,.Bi\--AB,, DA, where
the X; anda; are the variables, respectively names, in the clause. The problem is that
the generation of fresh names is more subtlesi®rolog than the usual “freshening”
of variables when backchaining a Prolog-clause. The reason is that distinct names are
always considered to denote different values. Consider the cl&ig$X) and the
queryp(b) written as a sequent as follows

vX.p(X) = p(b) @)

When constructing a proof for (2), Prolog generates a fresh nhame for the vaxiable
say X', and then unifiep(X) andp(b) giving the solution[X:=b] . A similar
aProlog-clause that has a name in place of the variable behaves differently: if we have
the sequent

Na.p(d) + p(b) (©)

with the clausd/a.p(a) , then “freshening’a toa’ leads to the unification problem
p@) =7p(b) .Since nominal unification treats names as distinct constants, this prob-
lem is unsolvable. (Treating names as distinct constants is important, because treating
them as substitutable entities would break the most-general unifier property of nominal
unification, see [9].) On the other hand, {8provable in nominal logic. This is because
after freshening to @’ one can in nominal logic apply the equivariance principle—
expressed as an inference fule

B, I'=C

B, I'=C

wherer is a permutation of name®, C stand for formulae and’ for a multiset of
formulae. This means if thielll Horn-fragment of nominal logic were used as the basis
of aProlog, then we need equivariant unification for complete proof search. Equivariant
unification solves a problem not just by finding a substitution but also by finding a
permutation; for example in (3) the identity substitution and the permutédioi)

The second author has shown in [1] that equivariant unification and equivariant
matching problems are NP-hard. For proof-searchfnolog this means that one needs
to guess which permutationleads to a proof. However, in experimenting witRrolog
we found that such guessing is never needed in the programs we considered. In this
paper we identify a class of nominal Horn-clause programs for whichrthde can
be eliminated from deductions (this is the place where equivariant unification prob-
lems arise), and thus nominal unification is complete for proof-search. In order to show
this result, we introduce well-formednesgondition which guarantees that nominal
unification-based proof search is complete. This condition roughly says that a clause is
“insensitive” to the particular choice of names occurring in it.

Some programs do not satisfy this condition. For example, in the following program
calculating a list of bound variables ofaterm, the last clause st well-formed.

bv(var(X),[]).
bv(app(E1,E2),L) :- bv(E1,L1), bv(E2,L2), append(L1,L2,L).
bv(lam(x.E),[x|L]) :- bv(E,L).

In the last clause, the result accumulated in the second argument depends on which
name is chosen for the bind&r In contrast, the names chosen in tebst and

type example do not matter (up te-equivalence) and therefore will satisfy our well-
formedness condition.

The existence of a trivial syntactic criterion for deciding when a clause is “insen-
sitive” to the choice of a name seems unlikely. Consider, for example, allowing names
to only occur bound or in binding position—then ttyge -program would be ruled
out sincex occurs free in the body of the clause. Restricting free names to occur only
in the body of a clause would permit the claug¥):-id(X,a) which s sensitive
to the choice ofa sinceid “propagates” the choice for the naraeback to the head
of the clausei@l is defined in thesubst -example). Our well-formedness condition is
therefore more subtle; it is a test whether a certain matching problem derived from the
clause is solvable. Despite being technically relatively complex, well-formedness can
be automatically verified.

3 The corresponding right-rule has been shown to be admissible in nominal logic in [5].

The paper is organised as follows: Section 2 describes nominal terms, formulae
and the inference rules efProlog’s proof-search procedure. Section 3 introduces a
well-formedness condition for clauses and shows thatatitale can be eliminated
from proofs involving only well-formed clauses. Section 4 describes how the well-
formedness condition can be automatically verified. Section 5 concludes and describes
future work.

2 Terms, Formulae and Proof-Search Rules

The terms used iaProlog arenominal termgsee [9] for more details) as defined by
the grammar:
tu=al|mX || {&t)]|at]|£(t)

wherea is a name X a variablef a function symbol and a permutation expressed
as a list of swappingéaz; b1) - - - (a,, b,). We have the operations@— and(—)~! for
composing (list concatenation) two permutations and inverting (list reversal) a permu-
tation, respectively. Constants are encoded as function symbols with unit arguments
£({)), andn-tuples are encoded by iterated pdirs, - - - {¢,—1, t,)). Following [9], we
refer to terms of the formr- X assuspensiongecause the permutatians suspended
in front of a variable waiting to be applied to a term substitutedX¥or

Formulae are divided into goal formulag and definite (or program) clausés
defined as

G:u=pt)| GAG | GVG | T B =G D p(t) D ::=WNasVXs.V/B

wherep(t) stands for an atomic predicate with the argume(ive shall also write

A for such formulae whenever the argument is unimportant),, vV, O are standard
connectives; an¥ is a set of freshness constraints of the farm# X1,...,a, # X,

(X; anda; being variables and names, respectively). The intended meaniRgiof
D-formulae is that a clause is applicable only if its freshness constraints are satisfied.
For freshness constraints and quantifier-free formulae we shall use the nGQatian

(Q ::= V|G| B) to indicate that the terms @} are built up from namess and variables

Xs (we have the usual convention that stands for lists of names ands for lists of
variables; similarias stands folla; ... Na, andvVXs for VX, ...VX,). We call a
D-formulaclosedwhen it has no free variables and free names, that is the formula must
be of the formas.VXs.V s xs/Bas, xs- Fig. 1 shows two examples illustrating how
D-formulae relate to theProlog-clauses given at the beginning.

There is a delicate point with respect to binding: while in nominal terms the con-
structora.(—) is not a binder in the traditional sense (it ordgtsas a binder), in for-
mulae the quantifierigla.(—) andv.X.(—) do binda and X, respectively. Therefore we
have the usual convention that formulae are identified if they only differ in the names
of binders (i.eVX.(—) andWa.(—)), and operations on formulae need to respect this
convention. As a result the definition of the permutation operation introduced for nom-
inal terms in [9] needs to be extended. We define a generalised permutation operation
m-5(—) that depends on a set of variabl8sThe permutationr only acts upon vari-
ablesnot in B. Whenever a permutation is “pushed” undev d.(—)-quantifier, then
X is added to the set of variables the permutation does not affect. The definition of the

subst(var(X),X,T,T).

VX, T.2 /T D s(var(X),X,T,T)

subst(lam(a.M),X,T,lam(a.M’)) :- a#T,a#X, subst(M,X,T,M").

Na VM, X, T,M'. {a #T,a # X} /s(M, X, T,M"') D s(lam(a.M), X, T, 1am(a.M"))

Fig. 1. Two examples showing howProlog-clauses relate f0-formulae ¢ is a predicate symbol
standing forsubst). We have the usual convention that clauses stand for clbsEmulae.

Terms: sa % - B(Tr X) ' ran’.x
a if = def
gef | D Ba = Az () = <>
((a1a2) = m)Ba = < az if me5a = a1 ((tl,t2>) def (mesty, mosts)
m-ga Otherwise def
-(£(t)) = £(m5t)
gef | X if XeB W(t)ﬁ(a).(mept
X =) -8(a.t) = (mpa).(rst)
m-X otherwise
Formulae: _e def
Tre B =T Tre B(G:)A) = (W-BG) D(W-BA)
ms(p(t)) © p(r-st) 75(V/B) £V /(r-5B)
75(Gy % Ga) BN (m5G1) (1-5Ga) r5Va.D) € VgD
for % ::= /\|\/ W‘B(VX.D) d—erX s {X}UBD

Fig. 2. Definition of the permutation operation z(—) for terms and formulae. In the clause for
the new-quantifier, it is assumed that renamed, so that the permutatioran safely be pushed
under the binder without capture.

permutation operation is given in Fig. 2. We use the shorthand notatien) in case3

is the empty set. This is a generalisation of the permutation action given in [9]; however,
when a permutation acts on a formula with quantifiers, it acts only on the free names
and free variables.

Similar problems arise in the definition of the substitution operation—with respect
to the abstractions.(—) substitution is possibly-capturing, whereas with respect to the
W- andV-quantifier it must be capture-avoiding. For terms we can use the definition
given in [9]: a substitutiory is a function from variables to terms with the property
thato(X) = X for all but finitely many variables\. If the domain ofs consists of
distinct variablesX;, ..., X,, ando(X;) = t; fori = 1...n, we sometimes write
as[Xj :=t1,..., X, = t,]. Moreover, we shall write (¢) for the result of applying a
substitutiono to a termt; this is the term obtained fromby replacing each variabl&
by the termo (X)) and each suspensionX in ¢ by the termr-o(X) got by lettingm
act on the terna(X). This definition is extended to formulae as follows:

=

o(T) L' o(GoA) B'o(G) Do (A)

o(p(t)) € p(o(t) o(V/B) ¥ o(V)/0(B)
(G % Ga) £'o(Gh) % 0(Ga) o(Va.D) € a0 (D)
for x := AV o(VX.D) EVXJ(D)

with the proviso that the quantified hames and variables are suitably renamed so that
no capturing is possible. For examplecif= [X := (a,Y)] andt = a.X, then

VEtixth VEtxth , VkEtxt
_ Y (z-palr) = .. .
VEO~() V F (t1,ta) & (), th) Vhftaft
~t " Vktx(ad)t VF t
VEtat (n-abs-1 a#a (aa), , a #
VEat=a.t Viat=a't
(a # X) e Vorallae ds(m, ")
VkrnX~7n'X
VE tn VE t
a#t1 a# 2(#-pair) Via#t
VEa# (t,t2) VEa#tt
a#a Vika#t
VEka#at Vika#ad.t
/ -1
a#a (#-namg (mT"a# X)evV
Vka#a Vika#mX

(=-unit) (~-fun. symbo)

(~-abs-2

(=-namg (~=-suspensioh

ViEara

(#-unit)

ST 5 (#-fun. symbo)

(#-abs-) (#-abs-2

(#-suspension

Fig. 3. Inductive definitions forz and#. The reader is referred to [9] for more details.

o(t) = a.{a,Y), butif D = Na.¥Y.&/T D A(a,Y, X) then formingo (D) gives the
formulaa’ VY'.@/T D A(d', Y, (a,Y)). We use the notation(V) to mean that ev-
ery freshness constraiat# X in V is replaced by: # o(X).

It is crucial for programming imProlog that abstractions.(—) have concrete
names. This allows us to formulate thge -clause for lambda-abstractions in the
usual fashion whereby the abstracted nammand its type is just added to the context
GammakFurthermore, the work reported in [9] provides us with a simple algorithm for
unifying nominal terms. This unification algorithm does not calculate unifiers to make
nominal terms syntactically equal, but equal modulo an equivalence rekatidior
example when unifying the two termasa ~7 b.X, the nominal unification algorithm
produces the unifiefX := b]. While the relation~ is intended to capture the (tradi-
tional) notion ofa-equivalence, it is in fact a more general relation. For example,
is not just a relation between two nominal terms, but a relation that depends on some
freshness constraint8. Figure 3 gives a syntax-directed inductive definition for judge-
ments of the fornV I (—) ~ (—), which asserts that two terms ateequal under the
hypothesed/; the definition depends on the auxiliary relat®on- (—) # (—), which
defines when a namefigshfor a term under some hypotheses. This definition depends
on the auxiliary notion of a disagreement s&t, between two permutations (the set of
names on which the permutations disagree) giver{by:7;-a # m2-a}.

We can extend: to quantifier-freeGG-formulae as follows:

Vit t VEFGI~Gs VEGa=Gy
VT T V}—p(t)%p(t/) VEG xGy ~G3%xGy

for x ::= AV

The advantage of setting up the formalism in this way is thatrthequivalence has

a number of good properties, which will play an important rle in our proof for show-
ing that ther-rule can be eliminated. For exampke,is preserved under (possibly-
capturing) substitutions and behaves well with respect to the permutation operation.
This is made precise in the following lemma.

L ViI=G V;F/:>G’ N ViL=G V:D, I 2 p(t) <ol
Vir=T Vil = GAG Vil = GiVGa VDI = p(t)
ULt~ VFVY Vil=G v;Fﬂm(t)D
v, 2) R @ L
v r 2220 b# Xs, Vi I' 22 (1) T =2, p(t)
Vi I 525 p(t) VL Vi %2, p(t) ’ Vi I 2 p(t) i

Fig. 4. Proof-search rules afProlog. In the new-left rule it is assumed tlds a fresh name not
occurring in the conclusion andls are all free variables ifi" andp(¢).

Lemma 1. The permutation and substitution operations presesva the sense that

() if VFt =t thenV 7+t ~ «-t' for all permutationsr and

(i) if VEt=~t, thenV' F o(t) = o(t’) for all substitutionss with V' I (V)
(wherebyV' I ¢(V) means thaV’ F a # o(X) holds for eacha # X) € V).

The proof of these two facts are a minor extension of the proofs given for [9]; they hold
because permutations are bijections on names, and substitutions act on variables only
(not names). The properties stated in Lemma 1 should be compared with the notion
of a-equivalence we imposed (on the meta-level) on quantiflefbrmulae. There,
whenever a permutation or substitution is pushed under a binder, we might have to
rename its binder in order to avoid possible capture.

Next we introduce the inference rules on which proof-search is base&rolog

(see Figure 4). Sequents are of the foomI" = G or V; I L, p(t) where the for-

mer modelgjoal-directed proof-searchnd the latter modef®cused backchainin@he
formula above the sequent arrow is usually calledsioeipformula). These inference
rules are adapted from a standard focusing approach to first-order logic programming
(for example [4])* The main novelty of these rules is the presence of the freshness-
constraintsv. Traditionally axiom rules are formulated as

- AX
o) T =0 ™, o)

where the terms andt’ need to be syntactically equal. &Prolog this requirement is
relaxed: terms only need to be being equal modulddowever,~ only makes sense
in the context of some freshness constraints. ConsequentifBriolog, the axiom-rule
takes the form

p(t')
_—

or in focusing proofs as I

VEt ~t

p(t')

V;I' —=5 p(t)

where the context/ explicitly records all freshness constraints in a sequent. The only
inference rule which adds new freshness-constraints to this context li¢-ithie; that

AX

4 The question of establishing the precise relation between the inference rules given here and
nominal logic introduced in [8] is beyond the scope of this paper, but will appear in a full
version (some results concerning this question have already been presented in [5]).

is whenever a/l-quantifier is analysed, a new name is chosen and some freshness-
constraints are added ¥ in order to enforce the “freshness” of this name.

The D -rule includes the judgemeRt + V' whereV’ is the set of freshness con-
straints associated with thB-formula in the stoup. This judgement requires that all
constraints iV’ (being of the formu # t) are satisfied by th¥, that is for alla # ¢
the judgemen¥ + a # t defined in Fig. 3 holds.

Of most interest in this paper is therule. In a “root-first” proof-search, this rule is a

source of non-determinism. For example, if we want to prove the seque’ﬁ& p(b),

we need ther-rule in order to make the terms and b ~-equivalent—in this case,

only after applying a permutation such @) to a may the axiom-rule be used. Prima
facie ther-rule is innocuous, however, the problem of simultaneously unifying nominal
terms and finding & is, as mentioned earlier, an NP-hard decision problem. In the next
section we shall show that such problems never need to be solved provided the program
clauses are well-formed.

3 Elimination of the w-Rule

We implementedvProlog using the nominal unification algorithm. With this implemen-
tation we were able to calculate the expected results for programs ssohsts and

type . The reason for this is, roughly speaking, that the name we used for specifying the
clauses dealing with-abstractions does not matter. When using nominal unification,
the following renamed clauses (whexre@ndx are renamed tb andy, respectively)

subst(lam(b.M),X,T,lam(b.M"))- b# T, b # X, subst(M,X,T,M’).
type(Gamma,lam(y.M),arr(S,T))- y # Gamma, type([(y,S)|Gamma],M, T).

behave just the same as the original clauses, in the sense that all queries successfully
solved by the original versions are solved by the renamed versions. In contrast, the
namea in the clausep(a) , g(@.X,X) andr(X):-id(X,a) determines which
gueries can be solved successfully using nominal unification and which cannot: given
our inference rules, which choose a fresh nameafothere are some queries whose
answers can only be found using theule, and this means they cannot be solved using
nominal unification. Consider for example the following deduction.

TrFer
7<(; = AX
@; == p(c) 5
@/T Dple) r
@5 ————= p(c)
7w (cb)
@ /T D p(b)
@; ———— p(c)
¥

@: WNa.2 /T D p(a) p(C)

In this deduction ther-rule, applying the permutatiofa b) (annotated to the-rule), is
crucial for the sequent being provable and it will turn out that it is impossible to elim-
inate it from this deduction. Consequently, a proof-search procedure based on nominal
unification will not find this proof.

If we impose the following well-formedness condition érformulae, we can en-
sure that ther-rule can always be eliminated from corresponding deductions and hence
the nominal unification algorithm alone is sufficient for solving queries.

Definition 1. A closedD-formulaWas.VXs.V o5 xs/Gas, xs D Aas, xs 1S Well-formed
if there exists a substitution and a permutationr such that

(I) bs # XS7 vas,Xs = U(Abs,Xs) ~ Aas,X.s and
(Il) bs #)(S7 Vas,xs F U(W'Gbs,){s) ~ Gas,Xs

where thebs are some fresh names (different fram).

Let us illustrate this condition with some examples. Clauses without names clearly sat-
isfy the condition. For example the firstibst -clause in Fig. 1

@ Fo(S(var(X), X, T,T)) ~ S(var(X),X,T,T) and oro(rT) ~ T

trivially satisfies the condition by taking for the identity substitution and far the
empty permutation. More complicated is the case of the sesobst -clause in Fig. 1

VEo(S(1lam(b.M), X, T,1am(b.M")) ~ S(lam(a.M), X,T,lam(a.M’))
VF o(mS(M, X, T,M')) ~ S(M,X,T, M")

whereVis {b # M, b # X, b# T,b# M',a # X,a # T}. In this case
o=[M:=(ab)-M,X := (ab)-X,T := (ab)-T,M" := (ab)-M'] and = = (ab)

verify that the clause is well-formed.

Before we formally show that alt-rules can be eliminated from deductions con-
sisting of well-formed clauses only, we outline our proof-plan with some examples.
Consider the following deduction, which hasraule on the top right-hand side. The
corresponding permutatidie d) transformsp(b.d) into p(b.e) so that the axiom-rule is

applicable.
Fbexd.e

b) AX
5 e, p(d.e)

o) m (ed)
g ——— p(dAe)
oL

o @ /Top(b.d) p(d.c)

o vX.2/TOp(b.X) p(d.c)

Vo [X :=d]

NaVX.&/T X e (ab)
o aVX.o/TDOp(a.X) p(de)

Observe that the “choice” of the fresh name (naniglintroduced by the/; -rule has

no effect on whether this sequent is derivable, since this binder will not bind anything
inside the abstraction. The annotated substitution= d] however is important with
respect to ther-rule we are trying to eliminate. If we had instead substitutéar X,

then the axiom is applicablgithoutthe 7-rule.

Note, however, that changing the instantiationveduantifiers might have some
“non-local” consequences in deductions. Consider for example the deduction in Fig. 5.
In this deduction, ther-rule (marked bye) swaps the namesandy. If we eliminate
this 7-rule by applying the swapping to the terms instantiated for the varidileX’,

T andM’, then ther-rule is not needed, but at the same time the subgoal (markey by
is changed. The well-formedness condition ensures that the modification of the terms
introduced by th&/; -rules does not affect the provability of the sequent.

To show thatr-rules can be eliminated from derivations involving well-formed pro-
grams, we first prove some auxiliary facts.

<0 (Y),y,v(2),1(b.v(2) R (L (z-v(y)),y,v(2),1(z.v(2))) Ax
. SRR, (1 (rv(y)), 9, v(2), M v(2)
S) g SRR, (1 v(y)), y, v(), M ()
e V/s(v(2),2,v(y),v(y)) Ds(1(b-v(2)),2,v(y),1(b-v(y))) s(L(z.v(y)), y, v(2), L(z.v(2)))]
M :=v(2),X :=2,T :=v(y), M := v(y)@/L
“;VJM,X,T,A{’.V/S(ALX,T,]M’)Ds(l(b.lw),X,T,l(b.]ﬂ’)) s(l(x.v(y)),y,v(z),l(x.v(z)))
nr
..;I/Ia.VILI,X,T,JVI’.V/S(ILI,X,T,JVI’)Ds(l(a.IM),X,T,l(a.]%’)) s(l(x,v(y)),y,v(z),l(mv(z)))

Fig. 5. Deduction proving the fact(I(x.v(y)),y,v(z),I(x.v(z))) wherel andv
stand for lambda-abstractions and variables, respectively.

Lemma 2. For all permutationsr, the sequenV; I’ = =-G is derivable only if the
sequenV; 7~ !.I" = G is derivable (where we use the notation” to indicate thatr
is applied to every formula if").

Proof. By induction on the structure of deductions. It makes use of the property of
thatV It ~ «-t' holds only if V - 7—1.¢ ~ t’ holds. By inspection we can further see
that no additionatk-rule is necessary to show the provability in both directions. O

The following corollary is a simple consequence of this lemma by the fact that for
closedD-formulaern-D = D holds.

Corollary 1. For all permutationsr and contextd” consisting of closed-formulae
only,V; I = =G is derivable only ifV; I = G is derivable.

Lemma 3. If the sequen¥; I" = G is derivable andV - G ~ G’, then the sequent
V;I' = G’ is derivable.

Proof. SinceV G ~ G’ is inductively defined extending the-equality of the terms
occurring inG andG’, we can prove this lemma by inspection of the inference-rules,
noting that in thg —) . -rules the right-hand side of sequents is always of the fofth

and the lemma for axioms follows from the transitivity-of

For showing our main result, it is convenient to restrict attention to some specific
instances of the-rule. The next lemma shows that we only need to consider unmovable
instances of the-rule.

Definition 2. A w-rule is movableprovided it is not directly under an axiom, otherwise
it is said to beunmovable

Lemma 4. All movable instances of the-rules can be replaced by unmovable in-
stances.

Proof. We call a derivationr-normalised if all instances of the-rule are unmovable.
We first show that ifl’ =2, A has ar-normalised derivation, then we can construct

a m-normalised derivation o’ — A. Using this construction, we can eliminate the
movabler-rules from any derivation one at a time.
There is one case for each left-rule. Fot, we have

A Az

vl =5 A
oA A ot
v, ' — m-A v, I' > m-A

sincer~!.m-A = A. A m-normalised derivation ending in7d-rule must be immedi-
ately followed byAz, we can derive

N Az ora Ax
v, 25 pler A \vA LN Y |

—a n — " 7' Qm
v;I' == 7’7 A v;I' >« A

sincer’-m-A = n’@Qm-A. Forvy, sincer-VX.D = VX.m- x; D and(m-(x} D)[X :=
t] = m+(D[X := 7~ 1]), so we have

(- D)[X:=t] R
D —L v 2y y
VX.- D L — L
v;r — 4 vir X2 4
D[X:=n"1

where by inductiorv; I i A has ar-normalised derivation obtained from

7 D[X:=n"1

that of V; I” 't A . The cases fony, andW;, are straightforward since
7-g(—) commutes witm andW. For >, we have
VY V=G VI =24 A VFVY ViI'=G VI &4
V/(5-G)D(m-A) oL — V/GDA oL
v, AT A A2l Aty U

using Lemma 3 to deriv®¥/; I" = G from V; I = =-G and the induction hypothesis
to obtain ar-normalised derivation ov; I A, A’ from that ofv; I A A

Theorem 1. If I" consists of well-formed clauses and the seqient = G is deriv-
able, then it is derivable without using therule.

Proof. Sincel” consists of well-formed clauses only, dlls in the deduction consist

of well-formed clauses (formulae on the left-hand side are analysed only if they are
selected to be in the stoup-position). By Lemma 4, we can replace this deduction by
one in which allz-rules are unmovable. So we need to consider how unmovable
rules can be eliminated. Recall that unmovableiles occur in segments of the form

" 1
bsav = T+ Sbs,ts ~t

p(Sps,ts) AX
b, Vs T ——5 p(t)

. . ™

v?)’svvl F VtS /l)/s7v,;'F:> Gbs,ts v??’svvl;[‘ M’p(t) D)

L
Vis/Gps,ts OP(Sps,ts 4
Z/S,VI;F ts/ bs,t. P(b,f) p(t) ()

Iy
WNas.VX5.V x5/ Gas, xs DP(Sas, Xs
V’;F as.VXs.Vxs/Gas,xs DP(Sas,Xs) p(t)

Sel
V' T = p(t)

where the/l-quantifier introduces the namés and thev-quantifiers replace the vari-
ablesXs with the termsts. We indicate this by using the notati@h,, x; and G .
The freshness constrairig/, stand for the constraints introduced by tejuantifiers,
that isb # F'V(t) for eachb in bs. Let o be the substitution of the ternis for the
variablesXs, that is the terms introduced by thequantifiers.

Below we give a deduction without the-rule where thebs and ts are suitably
changed. For this we choose first some fresh natn@gth the proviso thatr-cs = cs,
which means they are unaffected by the permutation introduced by-thée (such
fresh names always exist). From the well-formedness of the clause in the stoup-position,
we know that there is a substitutiorr and a permutation’ such that

cS # XS, VXS F 0/(p(scs,Xs)) ~ p(sbs,Xs) (5)
cs # Xs,Vxs b o' (7'-Ges, xs) = Gos,xs

hold where we use the short-hand notatien# Xs to refer the sets of freshness con-
straintse; # X1,...,¢; # X, for all names; in ¢s. By Lemma Zii), ~ is preserved
under substitutions, so we can infer from (5) that

cs # Xst o oo’ (p(ses,xs)) = o(D(Sbs,xs)) (6)
cs # Xstkooo' (n-Ges,xs) = 0(Gs, xs)

hold where the right-hand sides ar@ +s) andGys s, respectively. Note that tHe x,
“vanish” because we have that # Xs F o(V x,). From (6) we can further infer that

cs # Xs b0 00" (p(seax)) & 7 (P(S0s,15)) @)
cS # Xs T+0 O O'/(Tr/'Gcs,Xs) ~ 7T'(CTVb.s,ts) (8)

hold by Lemma {i) asserting that: is preserved under permutations. Recall that we
chosen the:s so thatr does not affect them. So if we apply the substitutions’ and

the permutationr to the left-hand side of (7) we haveo o o’ (p(s¢s,xs)) = P(Ses,ts7)

for some termgs’. Moreover we haves # Xs - s¢s 150 & T-Sps,1s Which means we
can replace in the deduction (#)sss s bY s¢s,s» and get by transitivity ofs a correct
instance of the axiom. Thus we can form the deduction:

" ’
Vcsvv = Scs,ts! t

p(t)

AX
Scs,m’)

. . (
VIV F Vi VI VST = G Vi, VT

Vst /Gcs,ts’ DP(Scs,ts’)

oL

vV T p(t)
4
Nas.VXs5.V xs/Gas. Xs Sas,Xs
vl R N0

Sel
V' T = p(t) €

without ther-rule. We still need to ensure th&t/,, V';I' = G, and V7, V'
Vs are derivable. The second sequent is derivable becauge Xs - o(V xs). For
the first sequent we can infer from the original (sub)deductign, V/; I' = Gis s
by Corollary 1 thatV},, V';I" = m-Gys s is derivable (this deduction does not in-
troduce any newr-rules). In (8) we can pull out the permutatiari and we have
w0 00 (1'Ges xs) = mAn’+(0 0 0'(Ges,x5))- Therefore applying the substitution
to Ges, xs QivesTQrn'+(0 0 0/ (Ges,x5)) = mQ7' -G 5,450 (taking thets” we introduced

for s.s 15 earlier). Thus by Lemma 3 we can show tRgf,, V'; I = G, s IS deriv-
able.

Each transformation decreases the numbernafles in a deduction by one and thus
by repeated application we will eventually end up with-&ree proof. ad

We have shown that when all the formulasiinare well-formed, every deduction of
I' = G containingr-rules can be replaced by one withattrules. Consequently,
nominal unification is sufficient for executing well-formefProlog-programs.

4 Verification of Well-Formedness Using Nominal Matching

In this section we consider the question of how to verify the well-formedness condition
given in Definition 1. For a clauddas.VXs.V 45 x5 /G as,xs DAas, xs, We need to find
a substitutionr and permutatiom which make the two judgements

bs # X8, Vas,xs = 0(Aps,xs) & Ags,xs aNA bs # X8, Vs, xs F 0(7-Ghs,x5) ~ Gas, xs

hold. For the first judgement, can be found by nominal matching. But for the second
judgement, finding both substitutionand permutationr requires solving (NP-hard)
equivariant matching problems. This seemingly negative result should, however, be seen
in the context that well-formedness only needs to be verified once per clause, rather
than repeatedly during proof-search. Thus, the one-time cost of performing equivariant
unification in checking well-formedness is negligible compared to the cost of perform-
ing equivariant unification throughout computation. Furthermore, as can be seen from
the examples, the number of names in a clause is usually small. Taking the following
proposition (whose proof we omit)

Proposition 1. If G5, xs equivariantly matches witt¥,,; x;, then a matching exists in
which the permutation consists of swappings; b;) only.

into account, we can just enumerate all possible casegiyenn names) and solve
each of the nominal matching problems. If one problem can be solved, then we have a
o and arr as required by the condition.

5 Conclusion

We have shown that for well-formedProlog programs, all instances of theule can
be removed from deductions. As a result, proof search using only nominal unification
is complete for such programs, which coincides with our experimental results gained
from our implementation afiProlog. This is a significant result, because the alternative
is to use an NP-hard equivariant unification algorithm for proof search.

In order to be well-formed, thiggpe -program given in the Introduction needs to be
stated as follows

type(Gamma,lam(x.M),arr(S,T)) :-
x# Gamma, x#S, x#T, type([(x,S)|Gamma],M,T).

explicitly giving the freshness constraint8S andx#T . These constraints do not af-

fect the meaning of the program because term variables are expected (by programmer
convention) not to appear in types. In fact, our implementationRrolog is strongly

typed and therefore can determine automatically from type information that lambda-
term variables can never occur in types. Thus, our analysis could be made more precise
by taking type information into account.

Let us briefly mention whether our result can be strengthened. The logic program-
ming language\Prolog [7] has convincingly demonstrated the usefulness of implica-
tions in G-formulae (that is extending logic programming to the setting of Hereditary
Harrop formulae). ImProlog we would like to allow implications ig:-formulae as
well. Whether our result extends to such formulae is still open. It seems that our defini-
tion of G-formulae can be extended to include existential and universal formulae. How-
ever, our proving technique for showing this would require some subtle modifications—
for example we would need to define when two formulae with quantifierssegqual,
which is non-trivial. However, we expect that this can be done. What is impossible is
to allow N-quantifiers in goal-formulae. Such formulae really need equivariant unifica-
tion.

Acknowledgements: This research was supported by a fellowship for Urban from the Alexander-
von-Humboldt foundation.

References

1. J. Cheney. The complexity of equivariant unification.Phoc. of International Colloquium
on Automata, Languages and Programminglume 3142 o NCS pages 332—-344, 2004.

. J. CheneyNominal Logic ProgrammingPhD thesis, Cornell University, Ithaca, NY, 2004.

3. J. Cheney and C. Urban. Alpha-prolog: A logic programming language with names, binding,
anda-equivalence. In B. Demoen and V. Lifschitz, editd?spc. of International Conference
on Logic Programmingvolume 3132 o£ NCS pages 269-283, 2004.

4. R. Dyckhoffand L. Pinto. Proof Search in Constructive Logic. In S. Barry Cooper and John K.
Truss, editorsProc. of the Logic Colloquium 199%olume 258 ofLondon Mathematical
Society Lecture Note Seriggages 53—-65. Cambridge University Press, 1997.

5. M. J. Gabbay and J. Cheney. A proof theory for nominal logic.Pioc. of Annual IEEE
Symposium on Logic in Computer Sciermages 139-148, 2004.

6. J. C. Mitchell.Concepts in Programming Language3UP Press, 2003.

7. G. Nadathur and D. Miller. Higher-order logic programming. In D. M. Gabbay, C. J. Hog-
ger, and J. A. Robinson, editotldandbook of Logics for Atrtificial Intelligence and Logic
Programming volume 5, pages 499-590. Clarendon Press, 1998.

8. A. M. Pitts. Nominal logic, a first order theory of names and bindingformation and
Computation186:165-193, 2003.

9. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unificatibheoretical Computer Science
323(1-2):473-497, 2004.

N

