
Avoiding Equivariance in Alpha-Prolog

Christian Urban1 and James Cheney2

1 Ludwig-Maximilians-University Munich (urban@mathematik.uni-muenchen.de)
2 Edinburgh University (jcheney@inf.ed.ac.uk)

Abstract. αProlog is a logic programming language which is well-suited for
rapid prototyping of type systems and operational semantics of typedλ-calculi
and many other languages involving bound names. InαProlog, the nominal uni-
fication algorithm of Urban, Pitts and Gabbay is used instead of first-order unifi-
cation. However, althoughαProlog can be viewed as Horn-clause logic program-
ming in Pitts’nominal logic, proof search using nominal unification is incomplete
in nominal logic. Because of nominal logic’sequivariance principle, complete
proof search would require solving NP-hardequivariant unificationproblems.
Nevertheless, theαProlog programs we studied run correctly without equivariant
unification. In this paper, we give several examples ofαProlog programs that do
not require equivariant unification, develop a test for identifying such programs,
and prove the correctness of this test via a proof-theoretic argument.

1 Introduction

Logic programming is particularly suited for implementing inference rules defining re-
lations over terms. Many interesting examples of such inference rules, however, involve
terms with binders andα-equivalence, for which Prolog, for example, provides little
assistance. In [3] we presentedαProlog, which is designed to simplify programming
with binders. For instance, the operation of capture-avoiding substitution forλ-terms
can be implemented inαProlog as follows:

id(X,X).

subst(var(X),X,T,T).
subst(var(X),Y,T,var(X)) :- not(id(X,Y)).
subst(app(M,N),X,T,app(M’,N’)):- subst(M,X,T,M’), subst(N,X,T,N’).
subst(lam(a.M),X,T,lam(a.M’)) :- a # T, a # X, subst(M,X,T,M’).

where the termsvar(X) , app(M,N) andlam(a.M) encode variables, applications
andλ-abstractions. The predicatesubst(E,X,T,E’) defined by the clauses holds
only if E’ contains the result of the usual capture-avoiding substitutionE[X:=T] in
theλ-calculus.

Two features ofαProlog are immediately visible to the user. First, the term lan-
guage includes the term-constructor−.− for forming abstractions, which are used to
encode binding. Second,αProlog has a freshness-predicate, written as−#−, built into
the language; this predicate ensures that a name does not occur freely in a term (by
a name we mean lower-case symbols, for instancea in the expressionlam(a.M)).
In this subst -program, the freshness-predicate is used to make sure that no variable
capture occurs inside the term being substituted.

To illustrate how thesubst -program calculates the result of the capture-avoiding
substitution(λb.a b)[a := b], we consider the query:

subst(lam(b.app(var(a),var(b)),a,var(b),R) (1)

To solve this query,αProlog unifies it with the head of the fourthsubst -clause

subst(lam(a 1.M1),X 1,T 1,lam(a 1.M’ 1)):- a 1# T1,a 1# X1,subst(M 1,X 1,T 1,M’ 1).

where, as in Prolog, the variablesM, X, T andM’ have been replaced with fresh variables
(indicated by the subscript), and also the namea has been freshened (we shall return to
the difference between variables and names later). The unifier thatαProlog calculates is
app(var(a),var(a 1)) for M1, a for X1, var(b) for T1 andlam(a 1.M’ 1) for R.
Next,αProlog checks that the freshness-predicatesa1# var(b) anda1# a hold, and
continues unifying the new querysubst(app(var(a),var(a 1)),a,var(b),M’ 1)
with the thirdsubst -clause. Then it uses the first and secondsubst -clause and af-
ter they succeed,αProlog returnslam(a 1.app(var(b),var(a 1))) as the answer
for R.

Another example, which illustrates how easily inference rules can be implemented
in αProlog, is the following program

mem(X,[X|T]).
mem(X,[Y|T]) :- mem(X,T).

type(Gamma,var(X),T) :- mem((X,T),Gamma).
type(Gamma,app(M,N),T):- type(Gamma,M,arr(S,T)), type(Gamma,N,S).
type(Gamma,lam(x.M),arr(S,T)):-x # Gamma, type([(x,S)|Gamma],M,T).

implementing the usual inference rules for inferring the types ofλ-terms.

x : T ∈ Γ
Γ . x : T

var Γ . M : S → T Γ . N : S
Γ . MN : T

app
x : S, Γ . M : T (x 6∈ FV (Γ))

Γ . λx.M : S → T
lam

Note that, in contrast to for exampleλProlog, abstractions inαProlog bind a concrete
name which isnot restricted to the scope of the abstractions. Therefore it is possible
in αProlog to use a name of a binder in the body of the clause, for instance to append
(x,S) to the contextGammain the thirdtype -clause. The implicit side-condition in
the rulelam requiring thatΓ has no type-assignment forx is implemented inαProlog
by the freshness-predicatex#Gamma.

We have implemented a large number of suchλ-calculus examples, including type
systems and operational semantics for System F,λµ and linearλ-calculi. Our experi-
ence from these examples suggests that the combination of concrete names in abstrac-
tions and the freshness-predicate is very useful for programming with binders. One
question, however, might arise: what are the advantages ofαProlog relative to, for ex-
ample,λProlog [7], which has bothα-equivalence and capture-avoiding substitution
built-in and the typing rules can be correctly implemented by the two clauses:

(type (app M N) T) :- type M (arr S T), type N S.
(type (lam M) (arr S T)) :- (pi x \(type x S => type (M x) T)).

(Notice that in this program the typing-context is implicitly given by the “surrounding”
program-context. This program-context can be modified using the universal quantifica-
tion (i.e. pi x \...) and implications in goal-formulae. Therefore there is no clause
for the variable case.) We find the most important reason in favour ofαProlog is that
by having concrete names (namelyx in the type -example) and freshness-predicates
one can almost directly translate the three typing rules into three clauses and obtain a
correct implementation. This should be seen in the context that, despite the elegance of
λProlog, some recent textbooks use (standard) Prolog for implementing inference rules
over λ-terms. For example one of them presents the following implementation of the
typing rules:

mem(X,[X|T]).
mem(X,[Y|T]) :- mem(X,T).

type(Gamma,var(X),T) :- mem((X,T),Gamma).
type(Gamma,app(M,N),T):- type(Gamma,M,arr(S,T)), type(Gamma,N,S).
type(Gamma,lam(X,M),arr(S,T)):-type([(X,S)|Gamma],M,T).

which calculates thewrong type forλ-terms such asλx.λx.(x x). Although this prob-
lem can be fixed by judicious use of cut or side-effects, first-order terms of Prolog are
unwieldy for implementing relations over syntax with binders correctly. On the other
hand,λProlog does not allow concrete names as binders and therefore operations such
as adding the type forx to the typing-context need to be encoded using universal quan-
tification, implications in goals and beta-reduction.

The αProlog language is based on nominal terms and uses the nominal unifica-
tion algorithm of Urban, Pitts, and Gabbay [9], which calculates (most general) uni-
fiers moduloα-equivalence. For example, the query?- id(a.a,b.X) is solved in
αProlog by the capturing substitution[X := b] sincea.a andb.b areα-equivalent.
However, nominal unification is not enough to make the programs given earlier func-
tion as intended. For thisαProlog generates fresh names during proof-search. As seen
above, before a query is unified with the fourthsubst -clause,αProlog generates a
fresh name fora. This ensures that substitutions can always be “pushed” under a binder
without risk of capture.

While in [3] we have described our implementation ofαProlog, its behaviour can
be justified in terms of nominal logic [8, 2]. For instance, the generation of a fresh name
can be expressed in terms of theN-quantifier of nominal logic, and anαProlog clause
A :- B1,..,Bn can viewed as the formulaNa1..an.∀X1..Xn.B1∧··∧Bn⊃A, where
theXi andai are the variables, respectively names, in the clause. The problem is that
the generation of fresh names is more subtle inαProlog than the usual “freshening”
of variables when backchaining a Prolog-clause. The reason is that distinct names are
always considered to denote different values. Consider the clause∀X.p(X) and the
queryp(b) written as a sequent as follows

∀X.p(X) ` p(b) (2)

When constructing a proof for (2), Prolog generates a fresh name for the variableX,
sayX’ , and then unifiesp(X’) andp(b) giving the solution[X’:=b] . A similar
αProlog-clause that has a name in place of the variable behaves differently: if we have
the sequent

Na.p(a) ` p(b) (3)

with the clause Na.p(a) , then “freshening”a to a’ leads to the unification problem
p(a’) ≈?p(b) . Since nominal unification treats names as distinct constants, this prob-
lem is unsolvable. (Treating names as distinct constants is important, because treating
them as substitutable entities would break the most-general unifier property of nominal
unification, see [9].) On the other hand, (3)is provable in nominal logic. This is because
after fresheninga to a’ one can in nominal logic apply the equivariance principle—
expressed as an inference rule3

π·B, Γ ⇒ C

B, Γ ⇒ C
π

whereπ is a permutation of names,B, C stand for formulae andΓ for a multiset of
formulae. This means if thefull Horn-fragment of nominal logic were used as the basis
of αProlog, then we need equivariant unification for complete proof search. Equivariant
unification solves a problem not just by finding a substitution but also by finding a
permutation; for example in (3) the identity substitution and the permutation(a’ b) .

The second author has shown in [1] that equivariant unification and equivariant
matching problems are NP-hard. For proof-search inαProlog this means that one needs
to guess which permutationπ leads to a proof. However, in experimenting withαProlog
we found that such guessing is never needed in the programs we considered. In this
paper we identify a class of nominal Horn-clause programs for which theπ-rule can
be eliminated from deductions (this is the place where equivariant unification prob-
lems arise), and thus nominal unification is complete for proof-search. In order to show
this result, we introduce awell-formednesscondition which guarantees that nominal
unification-based proof search is complete. This condition roughly says that a clause is
“insensitive” to the particular choice of names occurring in it.

Some programs do not satisfy this condition. For example, in the following program
calculating a list of bound variables of aλ-term, the last clause isnot well-formed.

bv(var(X),[]).
bv(app(E1,E2),L) :- bv(E1,L1), bv(E2,L2), append(L1,L2,L).
bv(lam(x.E),[x|L]) :- bv(E,L).

In the last clause, the result accumulated in the second argument depends on which
name is chosen for the binderx . In contrast, the names chosen in thesubst and
type example do not matter (up toα-equivalence) and therefore will satisfy our well-
formedness condition.

The existence of a trivial syntactic criterion for deciding when a clause is “insen-
sitive” to the choice of a name seems unlikely. Consider, for example, allowing names
to only occur bound or in binding position—then thetype -program would be ruled
out sincex occurs free in the body of the clause. Restricting free names to occur only
in the body of a clause would permit the clauser(X):-id(X,a) which is sensitive
to the choice ofa sinceid “propagates” the choice for the namea back to the head
of the clause (id is defined in thesubst -example). Our well-formedness condition is
therefore more subtle; it is a test whether a certain matching problem derived from the
clause is solvable. Despite being technically relatively complex, well-formedness can
be automatically verified.

3 The corresponding right-rule has been shown to be admissible in nominal logic in [5].

The paper is organised as follows: Section 2 describes nominal terms, formulae
and the inference rules ofαProlog’s proof-search procedure. Section 3 introduces a
well-formedness condition for clauses and shows that theπ-rule can be eliminated
from proofs involving only well-formed clauses. Section 4 describes how the well-
formedness condition can be automatically verified. Section 5 concludes and describes
future work.

2 Terms, Formulae and Proof-Search Rules

The terms used inαProlog arenominal terms(see [9] for more details) as defined by
the grammar:

t ::= a | π·X | 〈〉 | 〈t, t〉 | a.t | f(t)

wherea is a name,X a variable,f a function symbol andπ a permutation expressed
as a list of swappings(a1 b1) · · · (an bn). We have the operations−@− and(−)−1 for
composing (list concatenation) two permutations and inverting (list reversal) a permu-
tation, respectively. Constants are encoded as function symbols with unit arguments
f(〈〉), andn-tuples are encoded by iterated pairs〈t1, · · · 〈tn−1, tn〉〉. Following [9], we
refer to terms of the formπ·X assuspensions, because the permutationπ is suspended
in front of a variable waiting to be applied to a term substituted forX.

Formulae are divided into goal formulaeG and definite (or program) clausesD
defined as

G ::= p(t) | G∧G | G∨G | > B ::= G ⊃ p(t) D ::= Nas.∀Xs.∇/B

wherep(t) stands for an atomic predicate with the argumentt (we shall also write
A for such formulae whenever the argument is unimportant);>,∧,∨,⊃ are standard
connectives; and∇ is a set of freshness constraints of the forma1 # X1, . . . , an # Xn

(Xi andai being variables and names, respectively). The intended meaning of∇ in
D-formulae is that a clause is applicable only if its freshness constraints are satisfied.
For freshness constraints and quantifier-free formulae we shall use the notationQas,Xs

(Q ::= ∇|G|B) to indicate that the terms ofQ are built up from namesas and variables
Xs (we have the usual convention thatas stands for lists of names andXs for lists of
variables; similarly Nas stands for Na1 . . . Nan and∀Xs for ∀X1 . . .∀Xn). We call a
D-formulaclosedwhen it has no free variables and free names, that is the formula must
be of the form Nas.∀Xs.∇as,Xs/Bas,Xs . Fig. 1 shows two examples illustrating how
D-formulae relate to theαProlog-clauses given at the beginning.

There is a delicate point with respect to binding: while in nominal terms the con-
structora.(−) is not a binder in the traditional sense (it onlyactsas a binder), in for-
mulae the quantifiersNa.(−) and∀X.(−) do binda andX, respectively. Therefore we
have the usual convention that formulae are identified if they only differ in the names
of binders (i.e.∀X.(−) and Na.(−)), and operations on formulae need to respect this
convention. As a result the definition of the permutation operation introduced for nom-
inal terms in [9] needs to be extended. We define a generalised permutation operation
π·B(−) that depends on a set of variablesB. The permutationπ only acts upon vari-
ablesnot in B. Whenever a permutation is “pushed” under a∀X.(−)-quantifier, then
X is added to the set of variables the permutation does not affect. The definition of the

subst(var(X),X,T,T).
∀X, T. ∅ /> ⊃ s(var(X), X, T, T)

subst(lam(a.M),X,T,lam(a.M’)) :- a # T, a # X, subst(M,X,T,M’).
Na.∀M, X, T, M ′. {a #T, a #X} / s(M, X, T, M ′)⊃ s(lam(a.M), X, T, lam(a.M ′))

Fig. 1.Two examples showing howαProlog-clauses relate toD-formulae (s is a predicate symbol
standing forsubst). We have the usual convention that clauses stand for closedD-formulae.

Terms: []·Ba
def
= a

((a1 a2) :: π)·Ba
def
=

8><>:
a1 if π·Ba = a2

a2 if π·Ba = a1

π·Ba otherwise

π·BX
def
=

(
X if X ∈ B
π·X otherwise

π·B(π′·X)
def
= π@π′·X

π·B(〈〉) def
= 〈〉

π·B(〈t1, t2〉)
def
= 〈π·Bt1, π·Bt2〉

π·B(f(t))
def
= f(π·Bt)

π·B(a.t)
def
= (π·Ba).(π·Bt)

Formulae: π·B(>)
def
= >

π·B(p(t))
def
= p(π·Bt)

π·B(G1 ? G2)
def
= (π·BG1) ? (π·BG2)

for ? ::= ∧|∨

π·B(G⊃A)
def
= (π·BG)⊃ (π·BA)

π·B(∇/B)
def
= ∇/(π·BB)

π·B(Na.D)
def
= Na.π·BD

π·B(∀X.D)
def
= ∀X.π·{X}∪BD

Fig. 2. Definition of the permutation operationπ·B(−) for terms and formulae. In the clause for
the new-quantifier, it is assumed thata is renamed, so that the permutationπ can safely be pushed
under the binder without capture.

permutation operation is given in Fig. 2. We use the shorthand notationπ·(−) in caseB
is the empty set. This is a generalisation of the permutation action given in [9]; however,
when a permutation acts on a formula with quantifiers, it acts only on the free names
and free variables.

Similar problems arise in the definition of the substitution operation—with respect
to the abstractionsa.(−) substitution is possibly-capturing, whereas with respect to the

N- and∀-quantifier it must be capture-avoiding. For terms we can use the definition
given in [9]: a substitutionσ is a function from variables to terms with the property
that σ(X) = X for all but finitely many variablesX. If the domain ofσ consists of
distinct variablesX1, . . . , Xn andσ(Xi) = ti for i = 1 . . . n, we sometimes writeσ
as[X1 := t1, . . . , Xn := tn]. Moreover, we shall writeσ(t) for the result of applying a
substitutionσ to a termt; this is the term obtained fromt by replacing each variableX
by the termσ(X) and each suspensionπ·X in t by the termπ·σ(X) got by lettingπ
act on the termσ(X). This definition is extended to formulae as follows:

σ(>)
def
= >

σ(p(t))
def
= p(σ(t))

σ(G1 ? G2)
def
= σ(G1) ? σ(G2)

for ? ::= ∧|∨

σ(G⊃A)
def
= σ(G)⊃σ(A)

σ(∇/B)
def
= σ(∇)/σ(B)

σ(Na.D)
def
= Na.σ(D)

σ(∀X.D)
def
= ∀X.σ(D)

with the proviso that the quantified names and variables are suitably renamed so that
no capturing is possible. For example, ifσ = [X := 〈a, Y 〉] and t = a.X, then

∇ ` 〈〉 ≈ 〈〉
(≈-unit)

∇ ` t1 ≈ t′1 ∇ ` t2 ≈ t′2

∇ ` 〈t1, t2〉 ≈ 〈t′1, t′2〉
(≈-pair) ∇ ` t ≈ t′

∇ ` f t ≈ f t′
(≈-fun. symbol)

∇ ` t ≈ t′

∇ ` a.t ≈ a.t′
(≈-abs-1)

a 6= a′ ∇ ` t ≈ (a a′)·t′ ∇ ` a # t′

∇ ` a.t ≈ a′.t′
(≈-abs-2)

∇ ` a ≈ a
(≈-name)

(a # X) ∈ ∇ for all a ∈ ds(π, π′)

∇ ` π·X ≈ π′·X
(≈-suspension)

∇ ` a # 〈〉
(#-unit)

∇ ` a # t1 ∇ ` a # t2

∇ ` a # 〈t1, t2〉
(#-pair)

∇ ` a # t

∇ ` a # f t
(#-fun. symbol)

∇ ` a # a.t
(#-abs-1)

a 6= a′ ∇ ` a # t

∇ ` a # a′.t
(#-abs-2)

a 6= a′

∇ ` a # a′
(#-name)

(π−1·a # X) ∈ ∇
∇ ` a # π·X (#-suspension)

Fig. 3. Inductive definitions for≈ and#. The reader is referred to [9] for more details.

σ(t) = a.〈a, Y 〉, but if D = Na.∀Y.∅/>⊃A(a, Y,X) then formingσ(D) gives the
formula Na′.∀Y ′.∅/>⊃A(a′, Y ′, 〈a, Y 〉). We use the notationσ(∇) to mean that ev-
ery freshness constrainta # X in ∇ is replaced bya # σ(X).

It is crucial for programming inαProlog that abstractionsa.(−) have concrete
names. This allows us to formulate thetype -clause for lambda-abstractions in the
usual fashion whereby the abstracted namex and its type is just added to the context
Gamma. Furthermore, the work reported in [9] provides us with a simple algorithm for
unifying nominal terms. This unification algorithm does not calculate unifiers to make
nominal terms syntactically equal, but equal modulo an equivalence relation≈. For
example when unifying the two termsa.a ≈? b.X, the nominal unification algorithm
produces the unifier[X := b]. While the relation≈ is intended to capture the (tradi-
tional) notion ofα-equivalence, it is in fact a more general relation. For example,≈
is not just a relation between two nominal terms, but a relation that depends on some
freshness constraints∇. Figure 3 gives a syntax-directed inductive definition for judge-
ments of the form∇ ` (−) ≈ (−), which asserts that two terms are≈-equal under the
hypotheses∇; the definition depends on the auxiliary relation∇ ` (−) # (−), which
defines when a name isfreshfor a term under some hypotheses. This definition depends
on the auxiliary notion of a disagreement set,ds, between two permutations (the set of
names on which the permutations disagree) given by:{a | π1·a 6= π2·a}.

We can extend≈ to quantifier-freeG-formulae as follows:

∇ ` > ≈ >
∇ ` t ≈ t′

∇ ` p(t) ≈ p(t′)

∇ ` G1 ≈ G3 ∇ ` G2 ≈ G4

∇ ` G1 ? G2 ≈ G3 ? G4
for ? ::= ∧|∨

The advantage of setting up the formalism in this way is that the≈-equivalence has
a number of good properties, which will play an important rle in our proof for show-
ing that theπ-rule can be eliminated. For example,≈ is preserved under (possibly-
capturing) substitutions and behaves well with respect to the permutation operation.
This is made precise in the following lemma.

∇; Γ ⇒ >>R

∇; Γ ⇒ G ∇; Γ ⇒ G′

∇; Γ ⇒ G∧G′ ∧R
∇; Γ ⇒ Gi

∇; Γ ⇒ G1∨G2
∨Ri

∇; D, Γ
D−→ p(t)

∇; D, Γ ⇒ p(t)
Sel

∇ ` t′ ≈ t

∇; Γ
p(t′)−−−→ p(t)

Ax
∇ ` ∇′ ∇; Γ ⇒ G ∇; Γ

p(t′)−−−→ p(t)

∇; Γ
∇′/G⊃p(t′)−−−−−−−−→ p(t)

⊃L

∇; Γ
D[X:=t′]−−−−−−→ p(t)

∇; Γ
∀X.D−−−−→ p(t)

∀L

b # Xs,∇; Γ
(a b)·D−−−−→ p(t)

∇; Γ
Na.D−−−→ p(t)

NL
∇; Γ

π·D−−→ p(t)

∇; Γ
D−→ p(t)

π

Fig. 4.Proof-search rules ofαProlog. In the new-left rule it is assumed thatb is a fresh name not
occurring in the conclusion andXs are all free variables inΓ andp(t).

Lemma 1. The permutation and substitution operations preserve≈ in the sense that

(i) if ∇ ` t ≈ t′ then∇ ` π·t ≈ π·t′ for all permutationsπ and

(ii) if ∇ ` t ≈ t′, then∇′ ` σ(t) ≈ σ(t′) for all substitutionsσ with ∇′ ` σ(∇)
(whereby∇′ ` σ(∇) means that∇′ ` a # σ(X) holds for each(a # X) ∈ ∇).

The proof of these two facts are a minor extension of the proofs given for [9]; they hold
because permutations are bijections on names, and substitutions act on variables only
(not names). The properties stated in Lemma 1 should be compared with the notion
of α-equivalence we imposed (on the meta-level) on quantifiedD-formulae. There,
whenever a permutation or substitution is pushed under a binder, we might have to
rename its binder in order to avoid possible capture.

Next we introduce the inference rules on which proof-search is based inαProlog

(see Figure 4). Sequents are of the form∇;Γ ⇒ G or ∇;Γ D−→ p(t) where the for-
mer modelsgoal-directed proof-searchand the latter modelsfocused backchaining(the
formula above the sequent arrow is usually called thestoup-formula). These inference
rules are adapted from a standard focusing approach to first-order logic programming
(for example [4]).4 The main novelty of these rules is the presence of the freshness-
constraints∇. Traditionally axiom rules are formulated as

p(t′), Γ ⇒ p(t)
Ax

, or in focusing proofs asΓ
p(t′)−−−→ p(t)

Ax
,

where the termst andt′ need to be syntactically equal. InαProlog this requirement is
relaxed: terms only need to be being equal modulo≈. However,≈ only makes sense
in the context of some freshness constraints. Consequently, inαProlog, the axiom-rule
takes the form

∇ ` t′ ≈ t

∇; Γ
p(t′)−−−→ p(t)

Ax

where the context∇ explicitly records all freshness constraints in a sequent. The only
inference rule which adds new freshness-constraints to this context is theN-rule; that

4 The question of establishing the precise relation between the inference rules given here and
nominal logic introduced in [8] is beyond the scope of this paper, but will appear in a full
version (some results concerning this question have already been presented in [5]).

is whenever a N-quantifier is analysed, a new name is chosen and some freshness-
constraints are added to∇ in order to enforce the “freshness” of this name.

The⊃L-rule includes the judgement∇ ` ∇′ where∇′ is the set of freshness con-
straints associated with theD-formula in the stoup. This judgement requires that all
constraints in∇′ (being of the forma # t) are satisfied by the∇, that is for alla # t
the judgement∇ ` a # t defined in Fig. 3 holds.

Of most interest in this paper is theπ-rule. In a “root-first” proof-search, this rule is a

source of non-determinism. For example, if we want to prove the sequent∅;
p(a)−−→ p(b),

we need theπ-rule in order to make the termsa and b ≈-equivalent—in this case,
only after applying a permutation such as(a b) to a may the axiom-rule be used. Prima
facie theπ-rule is innocuous, however, the problem of simultaneously unifying nominal
terms and finding aπ is, as mentioned earlier, an NP-hard decision problem. In the next
section we shall show that such problems never need to be solved provided the program
clauses are well-formed.

3 Elimination of the π-Rule

We implementedαProlog using the nominal unification algorithm. With this implemen-
tation we were able to calculate the expected results for programs such assubst and
type . The reason for this is, roughly speaking, that the name we used for specifying the
clauses dealing withλ-abstractions does not matter. When using nominal unification,
the following renamed clauses (wherea andx are renamed tob andy , respectively)

subst(lam(b.M),X,T,lam(b.M’)):- b # T, b # X, subst(M,X,T,M’).

type(Gamma,lam(y.M),arr(S,T)):- y # Gamma, type([(y,S)|Gamma],M,T).

behave just the same as the original clauses, in the sense that all queries successfully
solved by the original versions are solved by the renamed versions. In contrast, the
namea in the clausesp(a) , q(a.X,X) andr(X) :- id(X,a) determines which
queries can be solved successfully using nominal unification and which cannot: given
our inference rules, which choose a fresh name fora, there are some queries whose
answers can only be found using theπ-rule, and this means they cannot be solved using
nominal unification. Consider for example the following deduction.

. . .

∅ ` c ≈ c

∅;
p(c)−−→ p(c)

Ax

∅;
∅/>⊃ p(c)−−−−−−−→ p(c)

⊃L

∅;
∅/>⊃ p(b)−−−−−−−→ p(c)

π (c b)

∅;
Na.∅/>⊃ p(a)−−−−−−−−−→ p(c)

NL

In this deduction theπ-rule, applying the permutation(c b) (annotated to theπ-rule), is
crucial for the sequent being provable and it will turn out that it is impossible to elim-
inate it from this deduction. Consequently, a proof-search procedure based on nominal
unification will not find this proof.

If we impose the following well-formedness condition onD-formulae, we can en-
sure that theπ-rule can always be eliminated from corresponding deductions and hence
the nominal unification algorithm alone is sufficient for solving queries.

Definition 1. A closedD-formula Nas.∀Xs.∇as,Xs/Gas,Xs ⊃Aas,Xs is well-formed
if there exists a substitutionσ and a permutationπ such that

(i) bs # Xs,∇as,Xs ` σ(Abs,Xs) ≈ Aas,Xs and
(ii) bs # Xs,∇as,Xs ` σ(π·Gbs,Xs) ≈ Gas,Xs

where thebs are some fresh names (different fromas).

Let us illustrate this condition with some examples. Clauses without names clearly sat-
isfy the condition. For example the firstsubst -clause in Fig. 1

∅ ` σ(S(var(X), X, T, T)) ≈ S(var(X), X, T, T) and ∅ ` σ(π·>) ≈ >

trivially satisfies the condition by taking forσ the identity substitution and forπ the
empty permutation. More complicated is the case of the secondsubst -clause in Fig. 1

∇ ` σ(S(lam(b.M), X, T, lam(b.M ′)) ≈ S(lam(a.M), X, T, lam(a.M ′))
∇ ` σ(π·S(M, X, T, M ′)) ≈ S(M, X, T, M ′)

where∇ is {b # M, b # X, b # T, b # M ′, a # X, a # T}. In this case

σ = [M := (a b)·M, X := (a b)·X, T := (a b)·T, M ′ := (a b)·M ′] and π = (a b)

verify that the clause is well-formed.
Before we formally show that allπ-rules can be eliminated from deductions con-

sisting of well-formed clauses only, we outline our proof-plan with some examples.
Consider the following deduction, which has aπ-rule on the top right-hand side. The
corresponding permutation(e d) transformsp(b.d) into p(b.e) so that the axiom-rule is
applicable.

. . .

` b.e ≈ d.e

∅;
p(b.e)−−−−→ p(d.e)

Ax

∅;
p(b.d)−−−−→ p(d.e)

π (e d)

∅;
∅/>⊃p(b.d)−−−−−−−−→ p(d.e)

⊃L

∅;
∀X.∅/>⊃p(b.X)−−−−−−−−−−−→ p(d.e)

∀L [X := d]

∅;
Na.∀X.∅/>⊃p(a.X)−−−−−−−−−−−−−→ p(d.e)

NL (a b)

Observe that the “choice” of the fresh name (namelyb) introduced by the NL-rule has
no effect on whether this sequent is derivable, since this binder will not bind anything
inside the abstraction. The annotated substitution[X := d] however is important with
respect to theπ-rule we are trying to eliminate. If we had instead substitutede for X,
then the axiom is applicablewithout theπ-rule.

Note, however, that changing the instantiation of∀-quantifiers might have some
“non-local” consequences in deductions. Consider for example the deduction in Fig. 5.
In this deduction, theπ-rule (marked by•) swaps the namesz andy. If we eliminate
this π-rule by applying the swapping to the terms instantiated for the variablesM , X,
T andM ′, then theπ-rule is not needed, but at the same time the subgoal (marked by?)
is changed. The well-formedness condition ensures that the modification of the terms
introduced by the∀L-rules does not affect the provability of the sequent.

To show thatπ-rules can be eliminated from derivations involving well-formed pro-
grams, we first prove some auxiliary facts.

..

...
⇒s(v(z),z,v(y),v(y))

?

..`〈l(b.v(y)),y,v(z),l(b.v(z))〉≈〈l(x.v(y)),y,v(z),l(x.v(z))〉

..;
s(l(b.v(y)),y,v(z),l(b.v(z)))−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

Ax

..;
s(l(b.v(z)),z,v(y),l(b.v(y)))−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

π•

..;
∇/s(v(z),z,v(y),v(y))⊃s(l(b.v(z)),z,v(y),l(b.v(y)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

⊃L

... [M := v(z), X := z, T := v(y), M ′ := v(y)]

∀L

..;
∀M,X,T,M′.∇/s(M,X,T,M′)⊃s(l(b.M),X,T,l(b.M′))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

∀L

..;
Na.∀M,X,T,M′.∇/s(M,X,T,M′)⊃s(l(a.M),X,T,l(a.M′))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

NL

Fig. 5. Deduction proving the facts(l(x.v(y)),y,v(z),l(x.v(z))) where l and v
stand for lambda-abstractions and variables, respectively.

Lemma 2. For all permutationsπ, the sequent∇;Γ ⇒ π·G is derivable only if the
sequent∇;π−1·Γ ⇒ G is derivable (where we use the notationπ·Γ to indicate thatπ
is applied to every formula inΓ).

Proof. By induction on the structure of deductions. It makes use of the property of≈
that∇ ` t ≈ π·t′ holds only if∇ ` π−1·t ≈ t′ holds. By inspection we can further see
that no additionalπ-rule is necessary to show the provability in both directions. ut

The following corollary is a simple consequence of this lemma by the fact that for
closedD-formulaeπ·D = D holds.

Corollary 1. For all permutationsπ and contextsΓ consisting of closedD-formulae
only,∇;Γ ⇒ π·G is derivable only if∇;Γ ⇒ G is derivable.

Lemma 3. If the sequent∇;Γ ⇒ G is derivable and∇ ` G ≈ G′, then the sequent
∇;Γ ⇒ G′ is derivable.

Proof. Since∇ ` G ≈ G′ is inductively defined extending the≈-equality of the terms
occurring inG andG′, we can prove this lemma by inspection of the inference-rules,
noting that in the(−)L-rules the right-hand side of sequents is always of the formp(t)
and the lemma for axioms follows from the transitivity of≈.

For showing our main result, it is convenient to restrict attention to some specific
instances of theπ-rule. The next lemma shows that we only need to consider unmovable
instances of theπ-rule.

Definition 2. A π-rule ismovableprovided it is not directly under an axiom, otherwise
it is said to beunmovable.

Lemma 4. All movable instances of theπ-rules can be replaced by unmovable in-
stances.

Proof. We call a derivationπ-normalised if all instances of theπ-rule are unmovable.

We first show that ifΓ
π·D−−→ A has aπ-normalised derivation, then we can construct

a π-normalised derivation ofΓ
D−→ A. Using this construction, we can eliminate the

movableπ-rules from any derivation one at a time.
There is one case for each left-rule. ForAx, we have

∇; Γ
π·A−−→ π·A

Ax −→
∇; Γ

π·A−−→ π·A
Ax

∇; Γ
A−→ π·A

π−1

sinceπ−1·π·A = A. A π-normalised derivation ending in aπ′-rule must be immedi-
ately followed byAx, we can derive

∇; Γ
π′·π·A−−−−→ π′·π·A

Ax

∇; Γ
π·A−−→ π′·π·A

π′ −→
∇; Γ

π′@π·A−−−−−→ π′·π·A
Ax

∇; Γ
A−→ π′·π·A

π′@π

sinceπ′·π·A = π′@π·A. For∀L, sinceπ·∀X.D = ∀X.π·{X}D and(π·{X}D)[X :=
t] = π·(D[X := π−1·t]), so we have

∇; Γ
(π·{X}D)[X:=t]
−−−−−−−−−−→ A

∇; Γ
∀X.π·{X}D
−−−−−−−−→ A

∀L −→
∇; Γ

D[X:=π−1·t]−−−−−−−−→ A

∇; Γ
∀X.D−−−−→ A

∀L

where by induction∇;Γ
D[X:=π−1·t]−−−−−−−−→ A has aπ-normalised derivation obtained from

that of∇;Γ
π·D[X:=π−1·t]−−−−−−−−−−→ A . The cases for∧L and NL are straightforward since

π·B(−) commutes with∧ and N. For⊃L we have

∇ ` ∇ ∇; Γ ⇒ π·G ∇; Γ
π·A−−→ A′

∇; Γ
∇/(π·G)⊃(π·A)−−−−−−−−−−→ A′

⊃L −→
∇ ` ∇ ∇; Γ ⇒ G ∇; Γ

A−→ A′

∇; Γ
∇/G⊃A−−−−−→ A′

⊃L

using Lemma 3 to derive∇;Γ ⇒ G from ∇;Γ ⇒ π·G and the induction hypothesis

to obtain aπ-normalised derivation of∇;Γ A−→ A′ from that of∇;Γ π·A−−→ A′.

Theorem 1. If Γ consists of well-formed clauses and the sequent∇;Γ ⇒ G is deriv-
able, then it is derivable without using theπ-rule.

Proof. SinceΓ consists of well-formed clauses only, allΓ ’s in the deduction consist
of well-formed clauses (formulae on the left-hand side are analysed only if they are
selected to be in the stoup-position). By Lemma 4, we can replace this deduction by
one in which allπ-rules are unmovable. So we need to consider how unmovableπ-
rules can be eliminated. Recall that unmovableπ-rules occur in segments of the form

:
∇′′

bs ,∇′ ` ∇ts

:
∇′′

bs ,∇′; Γ ⇒ Gbs,ts

∇′′
bs ,∇′ ` π·sbs,ts ≈ t

∇′′
bs ,∇′; Γ

π·p(sbs,ts)−−−−−−→ p(t)
Ax

∇′′
bs ,∇′; Γ

p(sbs,ts)−−−−−→ p(t)

π

∇′′
bs ,∇′; Γ

∇ts/Gbs,ts⊃p(sbs,ts)−−−−−−−−−−−−−→ p(t)

⊃L

: } N∀

∇′; Γ
Nas.∀Xs.∇Xs/Gas,Xs⊃p(sas,Xs)−−−−−−−−−−−−−−−−−−−−→ p(t)

∇′; Γ ⇒ p(t)
Sel

(4)

where the N-quantifier introduces the namesbs and the∀-quantifiers replace the vari-
ablesXs with the termsts. We indicate this by using the notationGas,Xs andGbs,ts .
The freshness constraints∇′′

bs stand for the constraints introduced by theN-quantifiers,
that isb # FV (t) for eachb in bs. Let σ be the substitution of the termsts for the
variablesXs, that is the terms introduced by the∀-quantifiers.

Below we give a deduction without theπ-rule where thebs and ts are suitably
changed. For this we choose first some fresh namescs with the proviso thatπ·cs = cs,
which means they are unaffected by the permutation introduced by theπ-rule (such
fresh names always exist). From the well-formedness of the clause in the stoup-position,
we know that there is a substitutionσ′ and a permutationπ′ such that

cs # Xs,∇Xs ` σ′(p(scs,Xs)) ≈ p(sbs,Xs)
cs # Xs,∇Xs ` σ′(π′·Gcs,Xs) ≈ Gbs,Xs

(5)

hold where we use the short-hand notationcs # Xs to refer the sets of freshness con-
straintsci # X1, . . . , ci # Xn for all namesci in cs. By Lemma 1(ii) , ≈ is preserved
under substitutions, so we can infer from (5) that

cs # Xs ` σ ◦ σ′(p(scs,Xs)) ≈ σ(p(sbs,Xs))
cs # Xs ` σ ◦ σ′(π′·Gcs,Xs) ≈ σ(Gbs,Xs)

(6)

hold where the right-hand sides arep(sbs,ts) andGbs,ts , respectively. Note that the∇Xs

“vanish” because we have thatcs # Xs ` σ(∇Xs). From (6) we can further infer that

cs # Xs ` π·σ ◦ σ′(p(scs,Xs)) ≈ π·(p(sbs,ts)) (7)

cs # Xs ` π·σ ◦ σ′(π′·Gcs,Xs) ≈ π·(Gbs,ts) (8)

hold by Lemma 1(i) asserting that≈ is preserved under permutations. Recall that we
chosen thecs so thatπ does not affect them. So if we apply the substitutionσ ◦ σ′ and
the permutationπ to the left-hand side of (7) we haveπ·σ ◦ σ′(p(scs,Xs)) = p(scs,ts′)
for some termsts ′. Moreover we havecs # Xs ` scs,ts′ ≈ π·sbs,ts which means we
can replace in the deduction (4)π·sbs,ts by scs,ts′ and get by transitivity of≈ a correct
instance of the axiom. Thus we can form the deduction:

...
∇′′

cs ,∇′ ` ∇ts′

...
∇′′

cs ,∇′; Γ ⇒ Gcs,ts′

∇′′
cs ,∇′ ` scs,ts′ ≈ t

∇′′
cs ,∇′; Γ

p(scs,ts′)−−−−−−→ p(t)

Ax

∇′′
cs ,∇′; Γ

∇ts′/Gcs,ts′⊃p(scs,ts′)−−−−−−−−−−−−−−→ p(t)

⊃L

: } N∀

∇′; Γ
Nas.∀Xs.∇Xs/Gas,Xs⊃p(sas,Xs)−−−−−−−−−−−−−−−−−−−−→ p(t)

∇′; Γ ⇒ p(t)
Sel

without theπ-rule. We still need to ensure that∇′′
cs ,∇′;Γ ⇒ Gcs,ts′ and∇′′

cs ,∇′ `
∇ts′ are derivable. The second sequent is derivable becausecs # Xs ` σ(∇Xs). For
the first sequent we can infer from the original (sub)deduction∇′′

bs ,∇′;Γ ⇒ Gbs,ts

by Corollary 1 that∇′′
bs ,∇′;Γ ⇒ π·Gbs,ts is derivable (this deduction does not in-

troduce any newπ-rules). In (8) we can pull out the permutationπ′ and we have
π·σ ◦ σ′(π′·Gcs,Xs) = π@π′·(σ ◦ σ′(Gcs,Xs)). Therefore applying the substitution
to Gcs,Xs givesπ@π′·(σ ◦ σ′(Gcs,Xs)) = π@π′·Gcs,ts′ (taking thets ′ we introduced

for scs,ts′ earlier). Thus by Lemma 3 we can show that∇′′
cs ,∇′;Γ ⇒ Gcs,ts′ is deriv-

able.
Each transformation decreases the number ofπ-rules in a deduction by one and thus

by repeated application we will eventually end up with aπ-free proof. ut

We have shown that when all the formulas inΓ are well-formed, every deduction of
Γ ⇒ G containingπ-rules can be replaced by one withoutπ-rules. Consequently,
nominal unification is sufficient for executing well-formedαProlog-programs.

4 Verification of Well-Formedness Using Nominal Matching

In this section we consider the question of how to verify the well-formedness condition
given in Definition 1. For a clauseNas.∀Xs.∇as,Xs/Gas,Xs⊃Aas,Xs , we need to find
a substitutionσ and permutationπ which make the two judgements

bs # Xs,∇as,Xs ` σ(Abs,Xs) ≈ Aas,Xs and bs # Xs,∇as,Xs ` σ(π·Gbs,Xs) ≈ Gas,Xs

hold. For the first judgement,σ can be found by nominal matching. But for the second
judgement, finding both substitutionσ and permutationπ requires solving (NP-hard)
equivariant matching problems. This seemingly negative result should, however, be seen
in the context that well-formedness only needs to be verified once per clause, rather
than repeatedly during proof-search. Thus, the one-time cost of performing equivariant
unification in checking well-formedness is negligible compared to the cost of perform-
ing equivariant unification throughout computation. Furthermore, as can be seen from
the examples, the number of names in a clause is usually small. Taking the following
proposition (whose proof we omit)

Proposition 1. If Gbs,Xs equivariantly matches withGas,Xs , then a matching exists in
which the permutationπ consists of swappings(ai bi) only.

into account, we can just enumerate all possible cases (2n given n names) and solve
each of the nominal matching problems. If one problem can be solved, then we have a
σ and aπ as required by the condition.

5 Conclusion

We have shown that for well-formedαProlog programs, all instances of theπ-rule can
be removed from deductions. As a result, proof search using only nominal unification
is complete for such programs, which coincides with our experimental results gained
from our implementation ofαProlog. This is a significant result, because the alternative
is to use an NP-hard equivariant unification algorithm for proof search.

In order to be well-formed, thetype -program given in the Introduction needs to be
stated as follows

type(Gamma,lam(x.M),arr(S,T)) :-
x # Gamma, x#S, x#T, type([(x,S)|Gamma],M,T).

explicitly giving the freshness constraintsx#S andx#T . These constraints do not af-
fect the meaning of the program because term variables are expected (by programmer
convention) not to appear in types. In fact, our implementation ofαProlog is strongly
typed and therefore can determine automatically from type information that lambda-
term variables can never occur in types. Thus, our analysis could be made more precise
by taking type information into account.

Let us briefly mention whether our result can be strengthened. The logic program-
ming languageλProlog [7] has convincingly demonstrated the usefulness of implica-
tions inG-formulae (that is extending logic programming to the setting of Hereditary
Harrop formulae). InαProlog we would like to allow implications inG-formulae as
well. Whether our result extends to such formulae is still open. It seems that our defini-
tion of G-formulae can be extended to include existential and universal formulae. How-
ever, our proving technique for showing this would require some subtle modifications—
for example we would need to define when two formulae with quantifiers are≈-equal,
which is non-trivial. However, we expect that this can be done. What is impossible is
to allow N-quantifiers in goal-formulae. Such formulae really need equivariant unifica-
tion.
Acknowledgements:This research was supported by a fellowship for Urban from the Alexander-
von-Humboldt foundation.

References

1. J. Cheney. The complexity of equivariant unification. InProc. of International Colloquium
on Automata, Languages and Programming, volume 3142 ofLNCS, pages 332–344, 2004.

2. J. Cheney.Nominal Logic Programming. PhD thesis, Cornell University, Ithaca, NY, 2004.
3. J. Cheney and C. Urban. Alpha-prolog: A logic programming language with names, binding,

andα-equivalence. In B. Demoen and V. Lifschitz, editors,Proc. of International Conference
on Logic Programming, volume 3132 ofLNCS, pages 269–283, 2004.

4. R. Dyckhoff and L. Pinto. Proof Search in Constructive Logic. In S. Barry Cooper and John K.
Truss, editors,Proc. of the Logic Colloquium 1997, volume 258 ofLondon Mathematical
Society Lecture Note Series, pages 53–65. Cambridge University Press, 1997.

5. M. J. Gabbay and J. Cheney. A proof theory for nominal logic. InProc. of Annual IEEE
Symposium on Logic in Computer Science, pages 139–148, 2004.

6. J. C. Mitchell.Concepts in Programming Languages. CUP Press, 2003.
7. G. Nadathur and D. Miller. Higher-order logic programming. In D. M. Gabbay, C. J. Hog-

ger, and J. A. Robinson, editors,Handbook of Logics for Artificial Intelligence and Logic
Programming, volume 5, pages 499–590. Clarendon Press, 1998.

8. A. M. Pitts. Nominal logic, a first order theory of names and binding.Information and
Computation, 186:165–193, 2003.

9. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification.Theoretical Computer Science,
323(1-2):473–497, 2004.

