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The Problem

• The behaviour of cells is governed and
coordinated by biochemical signalling networks
that translate external cues (hormones, growth
factors, stress etc) into adequate biological
responses such as cell proliferation,
specialisation or death, and metabolic control.

• Since regulatory malfunction underlies many
diseases such as cancer, a deep understanding
is crucial for drug development and other
therapies.
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The Challenge in Systems Biology…
• One of the great challenges in Systems Biology is to model and

analyse biochemical networks when there is a lack of exact
quantitative data.

• Traditional approaches to modelling biochemical networks are based
on differential equations, which require exact rate constants in
order model realistically the reactions.

• The aim of this interdisciplinary project is to model diverse biochemical
networks and develop an associated computational system to facilitate
their simulation and analysis which does not require exact quantitative
data for all reactions.

• The biochemical behaviour of the pathways in which we are interested
is being studied in the context of the biological effects of differentiation;
these data have to be generated in cells, and are not amenable to
analysis using differential equations without making unwarranted
assumptions about concentrations.

• Our approach is based on modelling quantitative and qualitative
aspects using concurrency theories and tools.
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Aims
• Model dynamic behaviour of biochemical networks

• Develop a computational system to analyse their behaviour

• Guide experimental design

Approach
Continuous cross check between modelling & real experimental

data.

Model system: MAPK signalling network

A target of current drug discovery efforts in important disease areas
e.g. cancer, arteriosclerosis, stroke, heart disease, chronic
inflammatory and degenerative diseases.
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BPS Project Team
• Collaborative: Dept Computing Science, Inst Biomedical and Life

Sciences, Beatson Cancer Research Institute.

• David Gilbert (PI) [BRC/DCS]

• Muffy Calder [DCS]
• Walter Kolch, [IBLS & Beatson Institute]

• 3 researchers:
– bioinformatician – Richard Orton
– concurrency specialist – Vladislav Vyshemirsky
– biologist  – Oliver Sturm

• 2 PhD studentships (Scottish Enterprise)
– Amelie Gormand (wet lab)
– Text mining (vacant)
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Complexity: real
bioinformatics
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BPS: Biochemical Pathway Simulator

Walter Kolch, Oliver Sturm, Amelie Gormand

Wet lab



BPS University of Glasgow 8

Meta
bolis

m

 10
%

Communication 
& signalling
  15%

Unkn
ow

n

Func
tio

n

   4
2%

Genome maintenance 

& transcription

13.5%

15% of our known  genes are involved in signal transduction.
This is more than in metabolism, genome maintenance or gene
transcription!!



Raf-1

MEK
ERK1,2MEK1,2

ERK1,2

B-Raf

Rap1
cAMP
 GEF

Akt

Receptor
  e.g. 7-TMR

α
β
γ

tyrosine
 kinaseβ

γ

SOSshc
grb2

Ras

PAK

Rac
PI-3 
  K

Ras

cAMP

PKA
cAMP

PDE

cAMP AMP

αAdCyc

cAMPATP

PKA
cAMP

MKP

transcription
    factors

nucleus

cell membrane

cytosol

heterotrimeric
   G-protein

Signal transduction pathways are organised as networks.

What happens?
Why does it happen ?

 How is specificity
achieved?

We can describe the general topology and single biochemical steps.
However, we do not understand how the network functions as a whole.
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The  Array View

Many more
data points, but

still seen in
functional

isolation from
each other
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Pathway modelling: challenges & opportunities

Problem: The complexity of signalling networks makes an
exhaustive analysis of the kinetics that connect various inputs
with outputs impractical.

Hypothesis: Pathway modelling reduces the experimental load by
identifying the network nodes that are important for biological
decision making.

Problem: How do cells distinguish signals from noise?
Hypothesis: Pathway modelling can reveal relevant mechanisms.

Problem: How do biochemical networks make biological
decisions?

Hypothesis: Pathway modelling can reveal thresholds that
translate quantitative biochemical reactions into qualitative
biological responses.

Problem: Probably there are a few more ….
Hypothesis: We can faithfully model biological processes, if we

can match the unexpected “few more”…
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MAPK pathway in action: PC12 cells switch between  neuronal differentiation
and proliferation
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Acquisition of quantitative data
• How to measure kinetics in vivo?

   Quantitative Immunoblotting (ERK)

   Kinase assays (C-Raf, B-Raf)

   RBD – pulldown assays (Ras/Rap1)

• Prediction of feedback loops/signaling hubs?

   antagonists, RNAi interference

•  Quantify protein concentrations

   Fluorophore labelling of proteins



BPS University of Glasgow 15

ERK activity - NGF vs EGF
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Kinase assays – Raf activation
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cAMP crosstalk with the MAPK pathway in PC12 cells
(Amelie Gormand)

Effect of PDE inhibitors on ERK activation during 

NGF stimulation of PC12 cells
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– What is the best formalism for
modelling signal transduction?

– Is it valid to model pathways as
isolated systems?

– How useful is a computational model
for biological questions ?

– What experiments can we do to
supply meaningful kinetic data?

– What biological questions can be
solved by modelling?

Biological Model
 System

Predictions Testing

Computational
 Model
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Bioinformatics

Richard Orton & David Gilbert
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Overview
• Modelling with differential equations

– Preliminary RKIP model
– Published MAPK models
– Development of new MAPK model

• Model Database

– Biochemical models and associated parameter data
– Modelling data generated from wet lab
– Information on the pathways and proteins involved

• Model Control Tool

– Construction
– Analysis
– Visualisation
– Conversion
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Modelling
• What is modelling?

– Translating a biological pathway (e.g. MAPK) into mathematics for
subsequent analysis

• Why model?

– A computer model can generate new insights: in a complex pathway,
knowing all the proteins involved and what they do, may still not tell you
how the pathway works

– A computer model can make testable predictions
– A computer model can test conditions that may be difficult to study in the

laboratory
– A computer model can rule out particular explanations for an experimental

observation
– A computer model can help you identify what’s right and wrong with your

hypotheses
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Differential Equations
• Differential equations are an established technique for modelling

biological pathways

• They can be used to model the changes in concentration of all the
species in a pathway over time (requires both the rate constants and
initial concentrations)

• The simple example above can easily be expanded to include more
species and reactions

• Differential equations can be used to model various kinetic types
including mass action and michaelis-menten (constants must be known)
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Preliminary RKIP Model
• RKIP (Raf Kinase Inhibitor Protein)

• This differential equation based model was originally
published in:

– Mathematical modelling of the influence of RKIP on the
ERK signalling pathway (Cho et al., 2003)

• This is one of the models currently being used in the
development of our concurrency based approaches

• Therefore, this model was recreated to enable direct
comparisons between the different modelling
approaches to be made:

– Compare simulation results
– Compare performance
– What types of analysis can be performed

• The RKIP model is a small and relatively simple
model that was chosen as a preliminary test model.

• It is not a ‘complete’ model of the MAPK pathway as
the receptors, adaptor proteins and Ras are not
considered
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Published MAPK Models
• Currently, there are a variety of published differential equation based models of the MAPK pathway (activated by EGF)

• These models all differ in the way they represent the MAPK pathway

– Differ in the way some processes are modelled
– Differ in what proteins are involved in the pathway
– Differ in the reactions particular proteins are involved in

• A number of these models were recreated and analysed to assess their relative strengths and weaknesses,
compare their kinetic data and to see how they performed

Hatakeyama et al., 2003

Brightman & Fell, 2000 Schoeberl et al., 2002

Aksan & Kurnaz 2003 Yamada et al., 2004

Kholodenko et al., 1999
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The Schoeberl MAPK Model
• The Schoeberl model is one of the most

comprehensive models of the MAPK
pathway available:

– Computational modelling of the
dynamics of the MAP kinase cascade
activated by surface and internalised
EGF receptors (Schoeberl et al. 2002)

– 125 reactions
– 94 species

– Receptor complex strategy
– Receptor internalisation
– Shc dependent & independent pathway

• However, it does have a number of
errors..
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Model Problems
• The major error in this model is that there is no

negative feedback loop:

– ERK-PP (via MAPKAP1) should phosphorylate
SOS causing it to dissociate from the receptor
complex forming a negative feedback loop

• So why is ERK activation transient and not
sustained?

• The deactivation of Ras is incorrectly modelled

Ras-GDP Ras-GTP

SOS

GAP

Ras-GDP Ras-GTP

SOS

GAP

Ras-GTPx
Raf

Quick

Slow
Build-up of useless intermediate

This is correct
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Molecular Flow

Start
Branch Point

Flow is predominately down the
Shc-dependent pathway:
currently confirming in the wet
lab

Key Point: Ras-GTP produced

ERK Activated:

But only transiently

Build up of useless intermediate

Lack of Ras-GTP to keep Raf and
therefore MEK and ERK activated

Converted slowly back to Ras-GDP

Does not restart (no
oscillations) as by this
time too many receptors
have been internalised and
degraded

Model Flow
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Model Development
• We are now in the process of developing and validating our own model of the MAPK pathway

• We are using the Schoeberl model as a base to develop from: it is one of the most comprehensive
models of the MAPK pathway available, it agrees well with experimental data and it has been used in
further analyses by various groups

• Most importantly we were able to identify and fix all of the errors (real errors and significant
simplifications)

• Fixing the major (Ras-GTPx) error caused a switch in ERK behaviour from transient to sustained

• This is because there is no now no negative feedback loop to deactivate the signal

ERK-PP before fixes

(transient)

ERK-PP after fixes

(sustained)
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BPS Database and Tools

Web interface to the
database and tools

Model Repository Section
to store the final and

development versions of
the models and

associated information

Wet Lab Section to store
modelling data generated

from the wet lab

Information on the proteins
involved in signal

transduction: sequence,
domains, structure,

annotations, descriptions
and references

• We are currently developing a database to store a variety of the data generated from the project and a number of
software tools to aid in the modelling process

Use friendly Model
Construction Tool

including version handling
and tracking, model

conversion and
visualisation.

In this system we will be able to link
parameter data in the models to the

experiments in the wet lab that determined
them. Furthermore, biochemical

knowledge will be linked to all of the
proteins used in the models.
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BPS Database and Tools

• We are currently developing a database to store a variety of the data generated from the project and a number of
software tools to aid in the modelling process

• Biochemical information on all the proteins in the models, as well as other signal transduction proteins, will also
be stored in the database e.g.:

– Sequence, Domains, Structure, Annotations, Descriptions, Reactions, References

• Modelling data generated from the wet lab will be stored in the database
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Model Construction Tool
• User friendly Model Construction Tool to construct biochemical models, define reaction kinetics and assign parameter data.

• This tool will also be able to graphically display models

• This tool will be SBML compatible and hav e a number of built-in functions to conv ert models to other formats e.g. MatLab and
PRISM

• The tool will include a model v ersion tracking system that tracks all changes to a model from its creation and also hierarchically
links it to related models.

• The tool will run off the BPS database where the models will be stored and integrated with other data
– Parameter data can be linked to the wet lab experiments that determined them
– Biochemical information on any of the proteins in a model can be readily accessed

• The entire system will be web based

• Currently working with Vlad to dev elop database schema and tool ov erv iew
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The Qualitative vs Quantitative Challenge

• How to model & analyse biochemical networks when there is a lack of exact
quantitative data.

• Traditional approaches based on differential equations, which require exact
rate constants & [initial] concentrations

• A pathway modelled by constructing a system of differential equations to
describe the changes in concentration of each of the species in the pathway,
then solved numerically (‘system simulation').

• A severe limitation of this approach :
– the rate constants must be known exactly for each reaction, and
– the concentrations must also be known exactly.

• Obtaining data in sufficient quality and density requires dedicated experimental
efforts.

• In addition, for many of the most interesting molecular systems, such as
signalling pathways, intracellular concentrations are almost impossible to
determine exactly, and associated rate constants are also inexact.
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Experimental observations…
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Multiple observations – error bars?

ERK activity - NGF vs EGF
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Parameter fitting

• Popular method to overcome inexact data.

• Variety of techniques:
– deterministic optimisation
– random search
– clustering
– evolutionary computation
– Simulated annealing
– taboo search
– multiple shooting
– …
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Parameter fitting:
√ Obtain (one) curve

√ Can apply standard simulation & analysis techniques

Χ  Do not preserve the variations possible in the observed values -
are only a ‘best representative’ of a set of possible values.

Χ Need to be combined with methods like sensitivity analysis to
understand the relevance of variability for each parameter.

Χ  Can be misleading in published results
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Further limitations of DE’s
• Lack of techniques for a systematic analysis of the computed

behaviour of the pathways.

• The normal validation of such models is to check by eye that the
shape of the curves for the predicted behaviour accords with
experimental observations.

• Once a model is ‘trusted’ it can be used as the basis for predicting
the behaviour of the pathway when it is modifed, e.g. by gene
knock-out, gene knock-down (RNAi), overexpression, various drug
treatments.
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Analysis of Biochemical Networks
with the PRISM Model Checker

Vladislav Vyshemirsky
Muffy Calder
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Logical Modelling Motivation

• Reasoning about system, not about observed
behaviour
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Model
We developed an approach to modelling
networks using stochastic process algebras
and stochastic model checking and
implemented a computational model of the
RKIP inhibited ERK pathway.

The model allows evaluation of
semiquantitative properties, such as the
probabilities of an activation precedence and
stable state analysis.
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Model Parameters

• Number of Concentration Levels
– Discrete levels are used to model uncertain data
– These levels provide an approximation of “master

behaviour” defined by ordinary differential
equations

– The concept of levels allows  discrete models,
and  consequently, analysis with model checking
tools



BPS University of Glasgow 42

Modelling Technique

Level 0

Level 1

Level 2

Level 3

Level 4

Time is continuous

        other variables are discrete.
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Model Structure

• Model is represented with Continuous Time Markov
Chain
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Model Structure

• The internal structure of the model can be
found in the submitted papers
– For CMSB’05: Analysis of Biochemical Pathways

with the PRISM model checker
– For IEEE Transactions in Computational Biology

and Bioinformatics: Analysis of Biochemical
Pathways with Continuous Stochastic Logic
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Comparison to ODEs

• Similarity of results to classical ODE model
– We developed a technique to build model

simulation trace
– Now we can compare the results
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Steady State Analysis of Stability

Protein becomes
stable from

some point of
time

The query is: “What is the
probability that the protein
will stabilise on some level of
concentration?”
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Steady State Analysis of Stability
The evaluation of  the steady
state probabilities in the
model with 10 discrete levels.

The probabilities to be stable
at levels between 0 and 2 are
quite high, when the other
levels are less likely to be
stable
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Steady State Analysis of Stability
The high probable
stability area is
shaded green.

More levels of
discrete
concentration will
help to make this
area smaller.
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Steady State while varying Parameters

• The value of the stable state can change if
the parameters of the model are changed.

• This experiment considers the change of the
steady state while the rate of protein binding
is changed in some interval.
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Steady State while varying Parameters

Binding rate value
When the binding rate is increased, the probability
to stabilise on levels 2 or 3 (red square) falls
down, and the probability to stabilise on levels 0
or 1 (blue square) rises.
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Activation Sequence Analysis

Peak C

Peak M

This kind of
analysis helps to
decide whether
the sequence of
activation is
stable (high
probable) or not.
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Activation Sequence Analysis
This point shows, that peak C of “red” protein
will be before peak M of “green” protein with
the probability over 98%
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Activation Sequence Analysis
The probability that the
“red” protein will reach
level 2 before the “green”
one reaches level 5 is
more than 98%.

The probability that the
“red” protein will reach
level 2 before the “green”
one reaches level 2 is
almost 96%.

Conclusion: This
activation sequence is
very stable.
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Problems

• Scalability
– We already work with practical networks
– Of the small size

• Properties Library
– We need to develop a library of meaningful

properties
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Take home messages

• Zoom in / zoom out modelling…
(fine/coarse grain)

• Building block approach

• Model validation in-house (wet-dry team)

• More than simulation – (logical) analysis

• Future – software platform

• Interdisciplinary research is exciting!
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