
FBTC 2008

Some investigations concerning the CTMC
and the ODE model derived from Bio-PEPA

Federica Ciocchetta 1 ,a, Andrea Degasperi 2 ,b,
Jane Hillston 3 ,a and Muffy Calder 4 ,b

a Laboratory for Foundations of Computer Science, The University of Edinburgh, Scotland

b Department of Computer science, University of Glasgow, Scotland

Abstract

Bio-PEPA is a recently defined language for the modelling and analysis of biochemical networks. It supports
an abstract style of modelling, in which discrete levels of concentration within a species are considered
instead of individual molecules. A finer granularity for the system corresponds to a smaller concentration
step size and therefore to a greater number of concentration levels. This style of model is amenable to a
variety of different analysis techniques, including numerical analysis based on a CMTC with states reflecting
the levels of concentration.
In this paper we present a formal definition of the CTMC with levels derived from a Bio-PEPA system.
Furthermore we investigate the relationship between this CTMC and the system of ordinary differential
equations (ODEs) derived from the same model. Using Kurtz’s theorem, we show that the set of ODEs
derived from the Bio-PEPA model is able to capture the limiting behaviour of the CTMC obtained from
the same system. Finally, we define an empirical methodology to find the granularity of the Bio-PEPA
system for which the ODE and the CTMC with levels are in a good agreement. The proposed definition is
based on a notion of distance between the two models. We demonstrate our approach on a model of the
Repressilator, a simple biochemical network with oscillating behaviour.
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1 Introduction

In the recent years there have been various applications of process algebras for the
study of biochemical networks [18,17,3,8,1]. An attractive feature of process al-
gebras is the simple abstraction they offer for representing biological entities. In
the π-calculus and related calculi [18,17] each biochemical molecule is abstracted
by a process and reactions are represented by means of communications between
processes. In the recently defined Bio-PEPA formalism [5,6] a different view has
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been proposed: each component abstracts the behaviour of a species. In particu-
lar, species concentrations are discretized into levels and the components capture
concentration levels within a species. The granularity of the system is expressed
in terms of the concentration step size h: when h decreases, the number of levels
increases. This modelling style, based on discrete concentration levels, gives rise
to an underlying continuous time Markov chain (CTMC) which we will call the
“CTMC with levels” to distinguish it from the CTMC which underlies a stochastic
simulation based on individual molecules.

Since Bio-PEPA is an intermediate, formal, compositional representation of
the biological model it supports different kinds of analysis, including stochastic
simulation [11], analysis based on ordinary differential equations (ODEs), numerical
solution of the CTMC with levels and stochastic model checking using PRISM [16].
It is worth noting that each of these analyses can aid understanding different aspects
of the behaviour of the system. Furthermore, when two analyses overlap in scope,
the results obtained can used for verification.

This paper makes the following contributions:

• a formal definition of the CTMC with levels;
• an investigation of the relationship between CTMC with levels and ODEs ob-

tained from the same Bio-PEPA system;
• a proposal for a methodology to find the granularity h for which these two un-

derlying models are in good agreement.

Whilst our work is presented in the context of Bio-PEPA it has potential appli-
cation to a much wider class of models.

The CTMC with levels was introduced in [2] together with the PEPA reagent-
centric view and was subsequently also used in [4]. One advantage of this approach
is that it is based on discrete levels of concentration instead of exact numbers of
molecules, allowing us to deal with incomplete information about molecular con-
centrations, as given in real experimental settings. Furthermore, in comparison to
the CTMC underlying a stochastic simulation, it leads to a reduction of the state
space, leading to models which may be amenable to numerical solution and ap-
proaches such as stochastic model checking. The authors of [2] focused on the case
of reactions with mass-action kinetics and stoichiometry equal to one for all the
reagents. Here we extend this approach to the general case and we investigate some
properties of these Markov chains. Note that this approach is an approximation
and does represent some loss of information compared to both the stochastic sim-
ulation (in which all molecules are represented individually) and ODE model (in
which concentrations vary continuously rather than in discrete jumps).

The second aspect of our work concerns an investigation of the relationship
between the CTMC with levels and the set of ODEs obtained from the same Bio-
PEPA system. Confidence in the compatibility between the two models is important
since we can use them to perform different kinds of analysis. For instance we can
check some properties of the system using model checking before simulating the
model using ODEs. The validity of the results depends on the agreement between
the two approaches. The relationship between the ODEs and the CTMC derived
from a process algebra model has been previously investigated in [10], but in that
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case the authors focused on the pathway centric-view in PEPA. Here we adapt their
approach to the reagent-centric style modelling supported by Bio-PEPA. Using
Kurtz’s theorem [13] we show that the set of ODEs derived from Bio-PEPA is
able to capture the limiting behaviour of the CTMC with levels representing the
discretised system. This involves showing that the CTMC belongs to the family
of density dependent CTMCs, i.e. the rates of the CTMC may depend on a scaled
representation of states, in our case the step size of the species concentrations.

The last challenge is to determine a value for the step size h which gives good
agreement between the two models. In other words, for a fixed error ε, we want
to find a value h for which the two models differ by less that ε. This leads us to
consider how to express the difference between models and propose an approach
based on the definition of a distance function between the models.

The rest of the paper is structured as follows. Section 2 gives a brief introduc-
tion to Bio-PEPA, a description of the definition of discrete levels and transition
rates in the language. In Section 3 the CTMC with levels is defined. The mappings
from Bio-PEPA to ODEs and CTMCs with levels are described in Section 4 and
the relationship between these models is discussed in Section 5. Firstly, Kurtz’s
theorem is applied to show the convergence of the two models in the limit, i.e. when
the granularity tends to zero. Secondly, we define the distance between the two
models for a given granularity, in order to express a measure of the agreement be-
tween them. In Section 6 the repressilator model, a genetic network with oscillating
behaviour, is considered to illustrate and test our approach. Finally, in Section 7,
some conclusions and directions for future work are reported.

2 Bio-PEPA

In this section we present a short description of Bio-PEPA [5,6] and then we discuss
the definition of discrete levels of concentration and how to derive the transition
rates from the reaction kinetic laws. Some auxiliary definitions for Bio-PEPA and
the operational semantics are reported in the Appendix A.

The context of application is biochemical networks. A biochemical network
is composed of n species that interact through m reactions in o compartments.
The dynamics of reaction j is described by a kinetic law fj . The stoichiometric
coefficients of the reactions are assumed to be integer and bounded. We make the
following assumptions:

• only irreversible reactions are considered: reversible reactions can be seen as the
union of a pair of forward and inverse reactions;

• the reactants of the reaction can only decrease their concentration whereas the
products can only increase it. Enzymes and inhibitors do not change;

• the same species in different situations (e.g. phosphorylated, free, bound...) are
regarded as different species and represented by distinct Bio-PEPA components;

• compartments are static and do not play an active role in reactions. Throughout
this paper we assume that all reactions take place within a single compartment.
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The syntax of Bio-PEPA is defined as:

S ::= (α, κ) op S | S+S | C P ::= P ¤¢
L P | S(l) where op = ↓ | ↑ | ⊕ | ª | ¯ .

The component S is a sequential component (or species component) and repre-
sents the species; the component P , a model component, describes a system as the
interactions between components. The parameter l ∈ N represents the discrete level
of concentration. In the prefix term (α, κ) op S, κ is the stoichiometry coefficient
of the species and the prefix combinator “op” represents the role of the element in
the reaction. Specifically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, ª an
inhibitor and ¯ a generic modifier. The operator “+” expresses the choice between
possible actions and the constant C is defined by an equation C

def= S. Finally,
the process P ¤¢

L Q denotes the synchronisation between components: the set L
determines those activities on which the operands are forced to synchronise. We
can define a Bio-PEPA system as follows:

Definition 2.1 A Bio-PEPA system P is a 6-tuple 〈V,N ,K,FR, Comp, P 〉, where:
V is the set of compartments, N is the set of quantities describing each species, K is
the set of parameters, FR is the set of functional rates, Comp is the set of definitions
of sequential components, P is the model component describing the system.

Each element in the set N associates the step size, initial concentration, number
of levels and compartment with a species. We denote the set of well-defined Bio-
PEPA systems P̃ (see [6] for more details). The behaviour of the system is defined
in terms of an operational semantics (see Appendix A). The derivation of the rate
is reported in Section 2.3.

2.1 Dimerization example

Let us consider the system composed of the following two reactions, representing
the dimerization of a protein and its inverse process:

2A
fMA(k1)−−−−−→ B B

fMA(k2)−−−−−→ 2A (1)

The dynamics are mass-action kinetics (fMA(k1) = k1 ·A2 and fMA(k2) = k2 ·B,
respectively). We assume that initially A = 10 mol/l and B = 0 mol/l and k1 =
k2 = 1.0. In the following we show how to represent this system in Bio-PEPA. This
simple network will be used as a running example throughout the remainder.

We define for each species the step size (h), the number of levels (N), the initial
concentration (M0) and the compartment containing the species (cell):

A : h = 5, N = 2, M0 = 10, cell; B : h = 5, N = 1, M0 = 0, cell;

Note that the stoichiometry of A in the reactions is two and so we need at least two
levels for A. This corresponds to the coarsest granularity possible. We denote the
two reactions α1 and α2 respectively, and define the functional rates: fα1 = fMA(k1)
and fα2 = fMA(k2).
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At this point we can define the set of species components:

A
def= (α1, 2)↓A + (α2, 2)↑A B

def= (α1, 1)↑B + (α2, 1)↓B;

The model component is: A(2) ¤¢
{α1,α2}

B(0).

2.2 Discrete levels of concentration

Each species is characterised by a number of concentration levels, with step size
(granularity) h. Specifically, we assume that all the species in the same compartment
have the same step size 5 . This follows from the law of conservation of mass: there
must be a “balance” between the number of molecules consumed (reactants) and
the ones created (products). Note that a finer granularity of a Bio-PEPA system
corresponds to a smaller step size.

We assign to each species different concentration levels, from 0 to a maximum
number N. This ensures that the CTMC has a finite state space — a condition
which is necessary to make numerical analysis feasible. The maximum level Ni for
each species i is defined according to prior knowledge and experimental evidence.
Given a maximum concentration Mi for the species i, the maximum level is given
by dMi/he. If the maximum values are not available we can consider stochastic
simulation to obtain an estimate for the upper bound of the species concentration.
This approach is proposed in [7].

If li is the current level for species i, the concentration is taken to be xi = li · h.
The initial concentration and the initial level of i are xi,0 and li,0, respectively.

2.3 Derivation of rates

In the following we show how to derive the transition rates when discrete concentra-
tions are used. The transition rate is defined by (∆t)−1, where ∆t is the time taken
to vary the concentration of reactants/products a number of levels in the CTMC.
Stoichiometry equal to one: Let fj be the kinetic law and let y be one product of
the reaction j. The rate equation for that species with respect to the given reaction
is dy/dt = fj(x̄), where x̄ is the set (or a subset) of the reactants/modifiers of the
reaction. Applying the Taylor expansion (up to two terms) we obtain:

yn+1 ≈ yn + fj(x̄n) · (tn+1 − tn)

We define yn+1 − yn = 1 · h and then derive the respective time interval (tn+1 −
tn) = ∆t as ∆t = h

fj(x̄n) . From this we obtain the transition rate fj(x̄n)
h . Note that

if stoichiometry one we have a variation of one level between the states.
Stoichiometry possibly different from one: We assume the kinetic law is mass-
action in this case. Let y be a product of the reaction and let κ be its stoichiometric
coefficient with respect to that reaction. Applying the expansion again we obtain:

yn+1 ≈ yn + κ · r ·
nr∏

i=1

xκi
i,n · (tn+1 − tn)

5 For modifiers the step size can be chosen arbitrarily since their concentration is unchanged by a reaction.
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where r is the rate constant, xi, with i = 1, ..., nr are the reactants of the reaction,
κi are the associated stoichiometric coefficients and nr is the number of distinct
reactants in the reaction.

Now we can fix yn+1 − yn = κ · h. and derive the rate as
r·Qnr

i=1 x
κi
i,n

h .
Summary: The rate associated with a transition from one state u to another state
v can be calculated as: rj = fj [u]

h , where h is the step size of the reactants and
fj [u] is the evaluation of the functional rate in the state u. When the stoichiometric
coefficient of a reagent is κ then the reagent varies by κ levels as a result of the
transition.

The kinetic law function fj for reaction j must satisfy some mild conditions:

• it is continuously differentiable;
• it is strictly positive in its domain.

We impose the first condition, which is useful to prove some results about the
CTMC, whereas the second condition follows because we assume that the reactants
decrease their concentration and products increase it. All the most well-known
kinetic laws satisfy these properties.

3 CTMC with levels

The term CTMC with levels indicates a CTMC whose states capture levels of con-
centration of the species and the transitions from one state to another reflect changes
of these levels.

Definition 3.1 A state of a CTMC with levels is defined as a vector of levels
σ = (l1, l2, ..., ln), where li, for i = 1, 2, ..., n, is the level of the species i. The
transitions of a CTMC with levels represent biochemical reactions. Each transition
causes a change in the number of levels of one or more species, as determined by
the stoichiometry. The transition rates are as defined in Section 2.3.

For the analysis, it is necessary that the CTMCs are finite. Starting from a
finite number of levels, is possible to obtain an infinite CTMC only if there are some
reactions of the kind “→ A” or “C → C +A”. We call these creation reactions. We
term a biochemical network without creation reactions a bounded chemical network.
We then have the following result.

Proposition 3.2 Let Xh be a CTMC corresponding to a bounded biochemical net-
work with granularity h. Let σ0 = (l1,0, l2,0, ..., ln,0) be the initial state. If the values
li,0(i = 1, ..., n) are finite then Xh is finite and the maximum value of the level
depends on σ0 and the stoichiometric coefficients of the reactions.

In particular, if all stoichiometric coefficients are equal to one and there are no
reactions with more than one product, in each state σ each component li satisfies:
li ≤ (

∑n
j=1 lj,0).

If we allow creation reactions, it could happen that some species do not have a
maximum concentration. In this case it is necessary to assume a maximum level
also for the species that grows infinitely in order to guarantee a finite CTMC. Note
that this is an approximation and we have to pay attention to the results obtained
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Fig. 1. CTMC with levels for the dimerization example (h = 5).
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Fig. 2. CTMC with levels for the dimerization example (h = 1).

from the analysis (e.g. model checking). However, in many situations, unbounded
network may have a pragmatic (average) bound value because of the quantitative
relations between the molecules and the reactions composing the network.

Finally, the complexity of the CTMC is expressed in terms of the number of
states. This number depends on the amount of levels of the species. An upper
bound for the number of states is given by

∏n
i=1(Ni+1), where Ni is the maximum

level of the species i and n the number of species.

4 From Bio-PEPA to CTMC with levels and to ODEs

In this section we outline how the CTMC with levels and the system of ODEs
underlying a Bio-PEPA model are derived.

4.1 From Bio-PEPA to CTMC with levels (πCTMC)

Let πCTMC be the function that derives a CTMC with levels from a Bio-PEPA
system. We do not define this function formally here, but states are derived from
a labelled transition system, via the operational semantics, and transition rates are
as described in Section 2.3. From any Bio-PEPA system we can apply the semantic
rules to generate the labelled transition system where each node is a derivative of
the system. We have the following result:

Theorem 4.1 For any finite Bio-PEPA system P = 〈V,N ,K,FR, Comp, P 〉, if we
define the stochastic process Xh(t) such that Xh(t) = Pi indicates that the system
behaves as derivative Pi at time t, then Xh(t) is a CTMC.

The proof is analogous to that presented for PEPA [12]. The rate associated
with each activity is obtained by evaluating the functional rate in the system.

The CTMC is characterised by an infinitesimal generator matrix Q whose off-
diagonal entries are the transition rates, and whose diagonal entries are the negative
row sums.

4.1.1 Dimerization example (continued)
Consider the dimerization example again; we derive the CTMC with levels for two
values of h: h = 5 and h = 1, as illustrated in Figures 1 and 2. When h = 5 there
are two states, (2, 0) and (0, 1), and two transitions with rates:

q1,2 = k1 ·A2/h = 1 · (10)2/5 = 20, q2,1 = k2 ·B/h = 1 · 5/5 = 1.
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When h is smaller (h = 1) then there is a finer granularity. There are six states
and ten transitions (see Figure 2). As a further example (not illustrated), when
h = 0.1 there are 51 states and 100 transitions.

4.2 From Bio-PEPA to ODEs

Let πODE be the definition of the set of ODEs from a Bio-PEPA model. A crucial
part is the derivation of the stoichiometry matrix D = {dij}. The entries of the
matrix are obtained as follows: for each sequential component Ci consider the prefix
subterms Cij representing the contribution of the species i to the reaction j. If the
term represents a reactant we write the corresponding stoichiometry κij as −κij in
the entry dij . In the case of a product we write +κij . All other cases are null.

πODE entails three steps: 1) definition of the stoichiometry (n ×m) matrix D,
where n is the number of species and m is the number of molecules; 2) definition of
the kinetic law vector (m× 1) vKL containing the kinetic laws of each reaction; 3)
definition of the vector (n× 1) x, with xT = (x1, x2, ..., xn).

The ODE system thus obtained has the form:

dx
dt

= D × vKL

where the vector of initial concentrations is x0, with xi,0 = li,0 · h, i = 1, ..., n.

4.3 Dimerization example (continued)

We define the vector xT = (xA, xB) and the kinetic vector vKL
T = (k1 ·x2

A, k2 ·xB).
The stoichiometry matrix D associated with the system is


−2 +2

+1 −1




The system of ODEs obtained by πODE is:

dxA

dt
=−2 · k1 · xA + 2 · k2 · xB

dxB

dt
= +k1 · xA − k2 · xB

with initial conditions (xA,0, xB,0)T = (10, 0).

5 Comparison of CTMC with levels and ODEs

In this section we consider how to compare the two models derived from a Bio-
PEPA system P and how to define the granularity h so that the difference between
the two models is acceptable.

First we apply Kurtz’s Theorem [13,15] to our case. This theorem tells us that,
under some conditions, the limit of a sequence of density dependent CTMCs (the
CTMCs with levels), as h approaches 0, is a set of ODEs.
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Second we consider how to define the difference between the two models. We
define a distance measure and discuss the factors to consider when choosing h in
order to ensure that the distance between the two models is less than an acceptable
error ε.

In the following we introduce the notation used, then we show that the CTMC
with levels derived from a Bio-PEPA system satisfies the conditions of Kurtz’s
Theorem. Finally, we observe that the set of ODEs extracted from the Bio-PEPA
system coincides with those in the theorem.

5.1 Application of Kurtz’s Theorem

Kurtz’s Theorem applies to a sequence of density dependent Markov chains. In the
original theorem the dependency is expressed in terms of the volume V , but we
express the dependency in terms of the granularity h. Note that when h decreases,
the number of levels in the system increases. The formal definition of the Theorem
with its conditions is reported in the Appendix B.

Let Xh be the CTMC describing the model with granularity h. Given a state of
the CTMC σ, we denote by hσ the vector (h · l1, h · l2, ..., h · ln), where h is the step
size and li is the level of the species i. Let D be the stoichiometry matrix obtained
from the Bio-PEPA system and Dj the jth column of D. This vector represents the
stoichiometric coefficients for all the species in a given reaction j. The kinetic law
associated with the reaction j is denoted by fj(hσ,Dj), where the dependency from
both the state and the stoichiometric coefficients is expressed explicitly. Here we
focus on Bio-PEPA systems representing bounded biochemical networks, at least
pragmatically.

In order to apply Kurtz’s Theorem, we first show that the CTMC Xh is density
dependent and that all the conditions of the theorem are satisfied.

Xh is density dependent From the definition of CTMC with levels, we have that
the entry qu,v of the infinitesimal generator matrix is

qu,v =
∑

A(Pu|Pv)

fj [u] · h−1 if u 6= v qu,u = −
∑

u6=v

qu,v otherwise.

where A(Pu|Pv) = {α | Pu
α−→ Pv} and fj [u] is the evaluation of the functional

rate in state Pu. Using the notation above, the rate is fj(hσ, Dj) · h−1.

Conditions of Kurtz’s theorem Let x0 be the initial concentration vector for
the ODEs. The initial level vector is l0 = dx0/he. Thus limh→0 h · l0 = x0.

Consider the system of ODEs dX(t)/dt = F (x) where F (x) =
∑

Djfj(x, Dj)
with initial condition X(0) = x0. By hypothesis, the trajectory of X(t) is
bounded, so we can assume it is bounded by some open set E. Since each ki-
netic law is continuously differentiable (the first condition for the kinetic laws in
Section 2.3), it follows that f is Lipschitz. This the first condition of Kurtz’s The-
orem. The second and third conditions of Kurtz’s Theorem state that for each
transition the rate of change is bounded and that there is a bound for the whole
state space so that the impact of each transition is bounded. By the assumptions
made for the kinetic laws and because stoichiometric coefficients are assumed to
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be integer and bounded, it is clear that both these conditions are also satisfied.
In particular, for the third condition, we can observe that f(x, Dj) = 0 for all
|Dj | > C with C =

∑
i,j dij .

ODE systems Consider the ODE system πODE(P), for a given Bio-PEPA system
P. We can observe that F (x) = D×vKL, as the kinetic law vector vKL contains
all the functions fj for all the reactions. The ODE system πODE(P) coincides with
the one in Kurtz’s Theorem, with initial condition xi,0 = li,0 ·h, for i = 1, 2, ..., n.

5.2 Distances between the two models

The result in Section 5 confirms that, in the limit, the agreement between the ODEs
and the CTMC with levels derived from a Bio-PEPA system is complete. However
it does not tell us about the relationship between the two models for a given finite h.
In [4] the authors showed experimentally that in some pathways the two models are
indistinguishable for just few levels, for example when h = 1 and h = 7, but these
results are not generalised. Here we investigate the relationship between the step
size h of the CTMC and the agreement with ODEs. In [14,15] Kurtz reported some
estimates for the probability of convergence between the two models. However the
estimation is complex and offers a poor guide for choosing h. In the following we
propose a measure of distance between the two models. There are various possible
ways to define this measure. One possibility is to define it in terms of the difference
between the ODE simulation trajectory and the expected value (numerical solution)
of the CTMC, for all the species in the biological network, with respect to a time
interval. This gives the following definition of distance:

fdist =
Tsim∑

t=1

n∑

i=1

(
Xh

i (t) · h− xi(t)

)2

where xi is the ODE trajectory for the species i, Xh
i (t) is the numerical solution of

the CTMC for the species i at time t, n is the number of species in the network,
Tsim is the simulation time and t indicates a simulation time point.

We propose the following empirical approach to find the value of h for which we
have good agreement between the models.

• Let us consider a well-defined Bio-PEPA system P, the CTMC Xh = πCTMC(P)
and the ODEs solution X of the model πODE(P).

• Let Tsim be the simulation time (this depends on the model) and ε > 0 the
acceptable discrepancy between the two models.

• Starting from an initial granularity we calculate the distance measure for the
simulation time. If the measure is greater than ε then change h and try again.

Clearly the choice of ε is crucial. Furthermore, the numerical solution of the
CTMC may be unfeasible for even moderately sized models. In this case, instead
of considering the expected value from the numerical solution of the CTMC, we
can define the distance in terms of the average (mean) of some value over repeated
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CTMC simulation runs. This leads to the following distance function:

fdist,avg =
Tsim∑

t=1

n∑

i=1

(
X̄h

i (t) · h− xi(t)

)2

where X̄h
i (t) is the average level for species i in the CTMC at time t over Nrun runs

and the other variables are as before. In this approach the main challenge is the
definition of the number of simulation runs needed to have a good approximation
of the expected value. Increasing the number of simulation runs we obtain a bet-
ter approximation of the expected value for the CTMC, however the calculations
become more expensive. Generally we can obtain indistinguishable curves for a
relative small number of runs.

In both the definitions, the distance between the two models generally decreases
with the step size h. However, note that for very small h the number of states
becomes large and even the simulation of the CTMC may become prohibitively
expensive. Thus there is a trade-off between accuracy (in terms of both number of
runs and step size) and tractability. The resolution of this trade-off is left to the
modeller.

5.3 Dimerization example (continued)

In Figure 3 we report some analysis results for the dimerization example. The ODE
simulation is reported at the top. The other two graphs show the time evolution of
the expected value of the CTMC with levels for h = 5, h = 1, h = 0.1 and h = 0.01,
for both A and B.

By comparing the ODE trajectory and the numerical solutions, we can observe
that for a large step sizes (h = 5) there is a discrepancy between the two curves,
both for A and B. When we decrease the step size h, the discrepancy between
the two curves becomes smaller and for h = 0.1 (corresponding to 100 levels) the
expected value of the CTMC (almost) coincides with the ODE. This is as predicted
by Kurtz’s Theorem. If we consider the average of some simulation runs instead of
the expected value, we obtain similar results for 100 runs. However, for h = 5 and
h = 1 there is a large variability between the different simulation runs.

In the table below we report the distance fdist between the ODE and CTMC
for different values of h. If we fix the admissible distance between the models as
ε = 1.05, then we have h = 0.1.

distance h = 5 h = 1 h = 0.1 h = 0.01

fdist 53.69 3.7 1.02 1.00

6 The repressilator

The repressilator is a synthetic genetic regulatory network with oscillating behaviour
[9]. It consists of three genes (denoted G1, G2, G3 ) connected in a feedback loop,
such that the transcription of a gene is inhibited by one of the other proteins (de-
noted P1, P2, P3 ). A schema of the network is reported in Figure 4.
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Fig. 3. Dimerization example. On the top: ODE simulation. The other two graphs represent the numerical
solution for the CTMC for A (on the left) and B (on the right) for h = 5, h = 1, h = 0.1 and h = 0.01.

 

 P2 mRNA2             G2 

            G3  mRNA3 P3             G1  mRNA1  P1

trl2tr2 d2 d5

tr1 trl1
d1d6trl3tr3 d3 d4

Fig. 4. Repressilator model.

The reactions are: the transcription of the three mRNAs with inhibition by one
of the proteins (reactions tr1, tr2, tr3), the translation of mRNAs into the proteins
(reactions trl1, trl2, trl3), degradation of both mRNAs and proteins (reactions di

with i = 1, ..., 6).
Note that this network contains some creation reactions (transcription and trans-

lation reactions) therefore it is an example of unbounded network according to our
definition. However, it is pragmatically bounded: it is not allowed to species to in-
crease indefinitely. This is due to the regulatory effect of degradation and inhibition.
Kurtz’s Theorem can be applied.

This network is described in Bio-PEPA as follows:
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mRNA1 def= (d1, 1)↓mRNA1 + (tr1, 1)↑mRNA1 + (trl1, 1)⊕mRNA1

mRNA2 def= (d2, 1)↓mRNA2 + (tr2, 1)↑mRNA2 + (trl2, 1)⊕mRNA2

mRNA3 def= (d3, 1)↓mRNA3 + (tr3, 1)↑mRNA3 + (trl3, 1)⊕mRNA3

P1 def= (d4, 1)↓P1 + (trl1, 1)↑P1 + (tr3, 1)ª P1

P2 def= (d5, 1)↓P2 + (trl2, 1)↑P2 + (tr1, 1)ª P2

P3 def= (d6, 1)↓P3 + (trl3, 1)↑P3 + (tr2, 1)ª P3

while the model is defined as:

((((mRNA1(0) ¤¢
∅ mRNA2(2)) ¤¢

∅ mRNA3(0)) ¤¢
{trl1,tr3}

P1 (1 )) ¤¢
{trl2,tr1}P2 (0 )) ¤¢

{trl3,tr2}P3 (3 )

The parameters and the initial concentrations are defined as in [9] i.e. the initial
levels are defined according to the initial values of the model. There are no com-
partments defined explicitly in the model. So we consider the default compartment
vCell : 1. The step size, the number of levels, the initial concentration and location
of species are declared as:

mRNA1 : h = 5, N = 2,M0 = 0, , vCell; mRNA2 : h = 5, N = 2,M0 = 0, , vCell;

mRNA3 : h = 5, N = 2,M0 = 0, , vCell; P1 : h = 5, N = 50, M0 = 5, , vCell;

P2 : h = 5, N = 50,M0 = 0, , vCell; P3 : h = 5, N = 50, M0 = 15, , vCell;

For all the species we consider the step size h = 5. The numbers of levels are
derived in terms of the concentration in the biological model. The set of functional
rates is:

ftr1 =
α

1 + P32
+ α0; ftr2 =

α

1 + P12
+ α0; ftr3 =

α

1 + P22
+ α0;

ftrl1 = fMA(β); ftrl2 = fMA(β); ftrl3 = fMA(β);

fdi = fMA(1) i = 1, 2, 3, 4, 5, 6.

fMA(r) denotes mass-action with rate constant r. All three repressors have same
behaviour except for their DNA-binding specificities. We assume that all the degra-
dation reactions have rate 1. The other parameters are: α = 250, α0 = 0, and β = 5.

From the Bio-PEPA system we can derive the CTMC and the ODE model as
usual (reported in the Appendix C). For each temporal point we show the mean and
the standard deviation of the 100 runs. In Figure 5 we report some analysis results.
The ODE simulation is reported at the top, left. The other graphs show the time
evolution of the average of 100 simulation runs for the CTMCs with h = 5, h = 0.1
and h = 0.01. For the Repressilator the numerical calculation of the expected value
of the CTMC is too expensive.

For relatively large h, there is a great variability among the different simulation
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Fig. 5. Some analysis results for the Repressilator.

runs and the mean value is very different from the ODE results. For smaller h this
variability decreases and the mean value approaches the ODE trajectory.

In the Table below we report the distances between ODE and CTMC for different
values of h. We consider the definition of distance in terms of the mean value. Note
that these distances are not normalised and the sum is over all the six species of the
system. By observing these values we can see that the distance between the two
models decreases with smaller step sizes.

distance h = 5 h = 1 h = 0.1 h = 0.01

fdist,avg 969105 209817 21796 540

7 Discussion and conclusions

There are three main contributions of this work. Firstly, we gave a formal definition
of the CTMC derived from a Bio-PEPA system. We called it the CTMC with levels,
as its states are characterised in terms of the concentration levels for each of the
species of the system. Secondly, we investigated the relationship, at the limit,
between the ODE model and the CTMC obtained from the same Bio-PEPA system
using Kurtz’s Theorem. Thirdly, we proposed a distance measure between the
CTMC and ODE models and this has been used for finding a “good” granularity
for the system. We tested our approach against a simple example describing a
dimerization reaction and the Repressilator network.

Based on our results, in the case of a low number of levels (i.e. coarse granu-
larity), the behaviour shown by the expected value of the CTMC might or might
not agree from the ODE time evolution. We use a smaller h in order to decrease
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the variability of the CTMC model, and as predicted by Kurtz’s Theorem, obtain a
global behaviour that is closer to that given by the deterministic approach. This can
allow more flexibility to the modeller. For instance, in the presence of experimental
observations that suggest a certain degree of uncertainty, we can choose the model
that better agrees with those observations.

We proposed a distance measure between the CTMC and ODE models and this
has been used for finding a “good” granularity for the system. The definition of
distance is based on the numerical solution of CTMC. As observed in the paper, the
derivation of the numerical solution is often impractical. In order to overcome this
drawback we proposed an alternative definition of distance based on the average
of a number of simulation runs. The selection of the appropriate number of runs
remains an open problem. A deeper investigation of this point and the study of
other definitions of distance between models is planned.

Finally, other future investigations concern the validation of the system against
experimental data and existing knowledge.
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A Auxiliary definitions for Bio-PEPA

In the following we report some auxiliary definitions. For more details see [5,6].

Definition A.1 The set of current action types enabled in the model component
P, denoted A(P ), is defined as:

A((α, κ) op S) = {α} A(S1 + S2) = A(S1) ∪ A(S2)

A(S(l)) = A(S) A(C) = A(S) where C
def= S

A(P1 ¤¢
L P2) = A(P1)\L ∪ A(P2)\L ∪ (A(P1) ∩ A(P2) ∩ L)

If P is a Bio-PEPA system with model component P , the set of current action types
enabled in P is A(P) = A(P ).

The behaviour of the system is defined in terms of an operational semantics. We
define two relations over the processes. The former, called the capability relation
(indicated with −→c), supports the derivation of quantitative information and it is
auxiliary to the latter which is called the stochastic relation (indicated with −→s).
The stochastic relation gives us the rates associated with each action.

The formal definition of these relations in terms of structured operational rules
is presented in Table A.1.

The following definitions concern the derivative of a component, the derivative
set and the derivative graph. We refer to the relation −→s. The case of −→c is
analogous.

Definition A.2 If P (α,r)−−−→sP ′ then P ′ is a one-step −→s system derivative of P.

If P (α1,r1)−−−−→sP1
(α2,r2)−−−−→s....

(αn,rn)−−−−→sP ′ then P ′ is a system derivative of P.

Definition A.3 The system derivative set ds(P) is the smallest set such that:

• P ∈ ds(P);

• if P ′ ∈ ds(P) and there exists α ∈ A(P ′) such that P ′ (α,r)−−−→sP ′′
then P ′′ ∈ ds(P).

Definition A.4 The system derivative graph D(P) is the labelled directed multi-
graph whose set of nodes is ds(P) and whose multi-set of arcs are elements in
ds(P)× ds(P)× Γ, with Γ the set of labels for −→s.

In the following definition we identify the actions describing the transitions from
one state to another.

Definition A.5 Let P be a Bio-PEPA system and let P = πP (P) be the associated
model component. Let Pu, Pv be two derivatives of a model component P with Pv

a one-step derivative of Pu. The set of action types associated with the transitions
from the process Pu to the process Pv is denoted A(Pu|Pv).
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prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l,κ)])−−−−−−−−−→c S(l− κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ)])−−−−−−−−−→c S(l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ)])−−−−−−−−−−→c S(l) with op = ¯,⊕,ª and

0 < l ≤ N if op = ⊕, 0 ≤ l ≤ N otherwise

choice1
S1(l)

(α,w)−−−−→c S′1(l′)

(S1 + S2)(l)
(α,w)−−−−→c S′1(l′)

choice2
S2(l)

(α,w)−−−−→c S′2(l′)

(S1 + S2)(l)
(α,w)−−−−→c S′2(l′)

constant
S(l)

(α,S:[op(l,κ)])−−−−−−−−−−→c S′(l′)

C(l)
(α,C:[op(l,κ)])−−−−−−−−−−→c S′(l′)

with C
def
= S

coop1
P1

(α,w)−−−−→c P ′1

P1 ¤¢L P2
(α,w)−−−−→c P ′1 ¤¢L P2

with α /∈ L

coop2
P2

(α,w)−−−−→c P ′2

P1 ¤¢L P2
(α,w)−−−−→c P1 ¤¢L P ′2

with α /∈ L

coop3
P1

(α,w1)−−−−−→c P ′1 P2
(α,w2)−−−−−→c P ′2

P1 ¤¢L P2
(α,w1@w2)−−−−−−−−→c P ′1 ¤¢L P ′2

with α ∈ L

Table A.1
Axioms and rules for Bio-PEPA.

B Kurtz’s theorem

In the following we report the main theorem described in [13].
First of all we give the definition of Density Dependent Markov Chain, as here

we limit our attention to this kind of CTMCs.

Definition B.1 A family of CTMCs XV , for some parameter V , is called density
dependent if and only if there exists a continuous function f(x, s), x ∈ Rn, s ∈ Zn,
such that the entries of the infinitesimal generators are given by:

qk,k′ = f(σV −1, s) · V s 6= 0

with σ the state vector and s a transition vector containing the modifications to
element of each state (i.e. the number of copies to add or substract) when the
transition is taken.

Theorem B.2 Let XV be a family of density dependent CTMCs with the infinites-
imal generator matrix as in the definition above. Assume X(t) is the solution of
the ODE system dX/dt = F (X), where F (X) =

∑
s sf(x, s) and let X(0) = x0.

If there exists an open set E ⊂ Rn such that X(t) ∈ E and

(i) ∃M, ∀x, y ∈ E | F (x)− F (y) |< M | x− y |;
(ii) sup

∑
s | s | f(x, s) < ∞;

(iii) limd→∞ supx∈E

∑
|s|>d | s | f(x, s) = 0
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then

lim
V→∞

V −1XV (0) = x0 =⇒ ∀δ > 0, ∀t > 0 lim
V→∞

P(sup
z<t

| V −1XV (z)−X(z) |> δ) = 0

The theorem states that, under the given conditions, the system of ODEs can
be defined as the limit of a sequence of density dependent CTMCs. As the theorem
phrased above the states represent numbers of individuals and are normalised with
respect to a parameter V (in this case, the volume). Therefore V −1XV (z) represents
the scaled Markov process with concentrations. In our case the scaling factor is in
terms of h instead of V .

C ODEs and CTMC for the Bio-PEPA Repressilator

From the Bio-PEPA system reported in Section 6 we can derive both the CTMC
model and the ODE system corresponding to the Repressilator. In the former case
we obtain a CTMC with 23 · 503 states (not reported), where 50 is the number of
levels considered for the proteins and 2 is the number of of levels for the mRNAs.

Concerning the derivation of the ODE system, the first step is the derivation
of the stoichiometry matrix. The stoichiometry matrix D associated with the Bio-
PEPA system is:




tr1 tr2 tr3 trl1 trl2 trl3 d1 d2 d3 d4 d5 d6

+1 0 0 0 0 0 −1 0 0 0 0 0 xm1

0 +1 0 0 0 0 0 −1 0 0 0 0 xm2

0 0 +1 0 0 0 0 0 −1 0 0 0 xm3

0 0 0 +1 0 0 0 0 0 −1 0 0 xp1

0 0 0 0 +1 0 0 0 0 0 −1 0 xp2

0 0 0 0 0 +1 0 0 0 0 0 −1 xp3




Each row describes the stoichiometric coefficients for a given species in each reaction.
The last column reports the name of the variables associated with the species in
the network (mi stands for mRNAi and pi for Pi, i = 1, 2, 3). The kinetic vector
vKL is:

(
α

1+x2
p3

+ α0,
α

1+x2
p1

+ α− 0, α
1+x2

p2
+ α0, β · xm1, β · xm2, β · xm3,

1 · xm1, 1 · xm2, 1 · xm3, 1 · xp1, 1 · xp2, 1 · xp3

)T

The ODE system is:
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dxm1

dt
= +

α

1 + x2
p3

+ α0 − 1 · xm1
dxm2

dt
= +

α

1 + x2
p1

+ α0 − 1 · xm2

dxm3

dt
= +

α

1 + x2
p2

+ α0 − 1 · xm3
dxp1

dt
= +β · xm1 − 1 · xp1

dxp2

dt
= +β · xm2 − 1 · xp2

dxp3

dt
= +β · xm3 − 1 · xp3

with the initial conditions (xm1, xm2, xm3, xp1, xp2, xp3)T = (0, 0, 0, 5, 0, 15).
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