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Abstract. Circadian clocks are biochemical networks, present in nearly all living
organisms, whose function is to regulate the expression of specific mRNAs and
proteins to synchronise rhythms of metabolism, physiology and behaviour to the
24 hour day/night cycle. Because of their experimental tractability and biological
significance, circadian clocks have been the subject of a number of computational
modelling studies.

In this study we focus on the simple circadian clock of the fungus Neurospora
crassa. We use the Bio-PEPA process algebra to develop both a stochastic and a
deterministic model of the system. The light on/off mechanism responsible for
entrainment to the day/night cycle is expressed using discrete time-dependent
events in Bio-PEPA.

In order to validate our model, we compare it against the results of previous
work which demonstrated that the deterministic model is in agreement with ex-
perimental data. Here we investigate the effect of stochasticity on the robustness
of the clock’s function in biological timing. In particular, we focus on the varia-
tions in the phase and amplitude of oscillations in circadian proteins with respect
to different factors such as the presence/absence of a positive feedback loop, and
the presence/absence of light. The time-dependent sensitivity of the model with
respect to some key kinetic parameters is also investigated.

1 Introduction

Circadian clocks are oscillatory gene networks developed by living organisms in order
to adapt to the 24-hour day/night cycle. In general, the biochemical mechanisms reg-
ulating circadian rhythms are robust enough for approximately 24 hour oscillations to
persist over a range of constant lighting and temperature conditions. Exposure to peri-
odic external stimuli (e.g. light/dark or temperature cycles) has the effect of resetting
these free-running oscillations so as to establish stable phase relationships with the forc-
ing stimulus (circadian entrainment). This enables cyclic changes in the environment to



be anticipated, such as seasonal variations in the length of day (photoperiod) [1]. Circa-
dian rhythms are present in nearly all eukaryotes, from mammals and plants, to insects
and fungi. There is now detailed experimental data showing that these rhythms can be
produced by networks of multiple, interlocked positive and negative feedback loops in
which the protein product of a gene modulates expression of either its own transcript or
that of another target gene in the network [2].

Several mathematical models have been proposed in recent years to describe the
specific oscillation-generating mechanisms in a range of different organisms. These in-
clude the fruit fly Drosophila melanogaster [3, 4], the plant Arabidopsis thaliana [5, 6]
and the mouse Mus musculus [7, 8]. Here we focus on the fungus Neurospora crassa,
which possesses one of the most comprehensively studied circadian networks [9]. In
recent years, a number of mathematical models of the Neurospora clock have been
developed, including continuous-deterministic models that are described in terms of or-
dinary differential equations (ODEs) [10–14], as well as discrete-stochastic models [15,
16]. Such models have been used successfully to explore the relationship between the
architecture of the Neurospora circadian network and the robustness of its function in
biological timing.

Within this theme, our aim in this work is to investigate the effect of stochastic
fluctuations on the performance of the Neurospora clock. While deterministic models
are good approximations of real biochemical systems when the number of molecules
is sufficiently high, at low copy numbers the effect of random fluctuations becomes
significant and so stochasticity needs to be taken into account to obtain a faithful rep-
resentation of the real biochemical system [17]. To explore the effect of these fluctu-
ations on circadian timing in Neurospora, we implement a discrete-stochastic version
of a continuous ODE model previously developed to investigate the entrainment of the
clock by light and temperature [13, 18]. We use the ODE representation of this clock
to validate our stochastic model and to highlight the differences between deterministic
and stochastic representations of the network. In particular, where previous stochas-
tic studies have concentrated mainly on the unforced (free-running) Neurospora clock,
modelling entrainment as a weak modulation of transcription [15, 16], here we investi-
gate how stochasticity affects the robustness of circadian oscillations for a more realistic
model which explicitly incorporates elements of the light-signalling pathway [13, 18].
We exploit discrete time-dependent events to represent light/dark cycles and analyse
the behaviour of the system under different light conditions and in the absence of a core
feedback loop. As part of this analysis, we use a novel sensitivity analysis method to
determine the time within the circadian cycle at which a given phase marker is most
responsive to parameter variations.

We use Bio-PEPA [19, 20] as our modelling language. Bio-PEPA is a process al-
gebra recently developed for modelling biochemical systems. Among its key strengths
as a language for systems biology is the fact that it is equipped with different seman-
tics, enabling both continuous-deterministic and discrete-stochastic representations of
the same model description to be automatically generated. Another important feature
of Bio-PEPA is that it permits the definition of generic rate laws. This allows the spec-
ification of complex kinetic formulae, such as those used in the ODE representation of
the original Neurospora model (see Sect. 4 below). In addition, time-dependent events
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can be easily incorporated, enabling periodic external stimuli such as light/dark cycles
to be represented in a straightforward manner.

The rest of the paper is structured as follows. The circadian clock of Neurospora
crassa and the Bio-PEPA model of the clock are described in Sect. 2 and Sect. 4, re-
spectively. Bio-PEPA is introduced in Sect. 3. In Sect. 5 the simulation and analysis
results are presented. Finally, in Sect. 6 we report some concluding remarks.

2 The Circadian Clock of Neurospora Crassa

Neurospora exhibits a 22 hour rhythm in asexual spore formation (conidiation) when
grown in constant darkness (DD). The conidiation rhythm is a key clock output which
can be entrained by both light and temperature [21]. In natural 24 hour cycles of alter-
nating light and dark (LD), the phase of entrainment (judged by the time of conidiation
onset) coincides with the middle of the night in both long and short days, providing a
simple, biologically relevant measure of circadian function [22, 13, 18].

The core, multi-loop genetic oscillator believed to underlie the conidiation rhythm
is formed by the rhythmic gene frequency (frq) and the constitutively expressed gene
white collar-1 (wc-1) [9]. The protein product of the white collar-1 gene, WC-1, com-
prises the positive element of a central negative feedback loop, activating transcription
of frq. The protein product of the frq gene, FRQ, is the negative element of the loop,
interacting with frq-bound WC-1 to inhibit frq expression [23, 24]. In addition to its
role as a transcriptional inhibitor, FRQ positively regulates expression of WC-1, giv-
ing a positive feedback loop that interlocks with the central loop [25]. Light entrains
the clock by promoting the binding of a flavin chromophore to WC-1, resulting in a
light-activated form which enhances frq transcription [24].

Fig. 1. A schematic representation of the gene network underlying the model of the
Neurospora clock. WC-1* represents light-activated WC-1. The dashed lines indicate
light-dependent gene-protein interactions.
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A network diagram for the model of the core oscillator that we consider here is
shown in Fig. 1. For the ODE representation of the model presented in [13, 18], the
repressive action of FRQ transcription factor (hereafter called PF) on frq-bound WC-
1 transcription factor (PW) and frq-bound light-activated WC-1 transcription factor
(PWL) was assumed to occur through a noncompetitive inhibition process modelled
using Hill kinetics. Hill kinetics were also used to describe the upregulation of WC-1
translation by PF as well as the light-dependent increase in the transcription of wc-1
mRNA (MW), necessary to simulate loss-of-function wc-1 mutants [13]. Michaelis-
Menten kinetics were used to describe enzyme-mediated degradation of mRNA and
protein, while the conversion of PW to PWL was modelled as a reversible first order
mass-action reaction PW
 PWL with a light-dependent forward rate. The light input
to the ODEs took the form of a smoothly differentiable function that switches rapidly
between 0 and 1 at dawn (t = tdawn), and from 1 back to 0 at dusk (t = tdusk), modelling
the lighting protocol commonly used in circadian experiments.

In order to obtain oscillatory behaviour, a delay was introduced into the central
negative feedback loop by assuming that just-translated FRQ protein (E1F) is modi-
fied into a second intermediate protein (E2F) before being converted into transcription
factor [13]. The conversion processes MF → E1F → E2F → PF, which include
translation of FRQ from frq mRNA (MF), were each modelled as first order mass-
action reactions. Similarly, a delay was introduced into the positive feedback loop by
introducing two intermediate WC-1 protein species (E1W and E2W), and describing
the conversions MW → E1W → E2W → PW with first order kinetics.

The ODE representation of the model comprises 9 equations with 34 kinetic pa-
rameters. The parameters were fitted to gene and protein expression time series in DD
and LD using a bipartite optimisation method developed for high-dimensional compu-
tational biology models [5]. This technique combines a random parameter search with
simulated annealing to minimise a qualitative cost function that assesses the goodness-
of-fit of the model to key experimental data sets [5, 13]. For the ODE model, the best
parameter set was taken to be that yielding the smallest cost function score following
the application of the optimisation scheme to 50 million randomly distributed points in
the 34-dimensional parameter space [18]. This optimal parameter set yielded a good fit
to each of the target time series, and also reproduced the variation in entrainment phase
with photoperiod observed experimentally [18]. We use the same parameter set here for
the Bio-PEPA representation of the model detailed in Sect. 4.

3 Bio-PEPA

In this section we give a short description of Bio-PEPA [19, 20], a language that has
recently been developed for the modelling and analysis of biological systems. The
main components of a Bio-PEPA system are the species components, describing the
behaviour of each species, and the model component, describing the interactions be-
tween the species and initial amounts.

The syntax of the Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ | 	 | � P ::= P BC
L

P | S (x)
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where S is the species component and P is the model component. In the prefix term
(α, κ) op S , κ is the stoichiometry coefficient of species S in reaction α, and the prefix
combinator “op” represents the role of S in the reaction. Specifically, ↓ indicates a
reactant, ↑ a product, ⊕ an activator, 	 an inhibitor and � a generic modifier. We can use
the shorthand notations (α, κ) op and α op for (α, κ) op S and (α, 1) op S , respectively.

The operator “+” expresses the choice between possible actions, and the constant C
is defined by an equation C

def
= S . The process P BC

L
Q denotes synchronisation between

components P and Q; the set L determines those activities on which the operands are
forced to synchronise, with BC

∗
denoting a synchronisation on all common action types.

In the model component S (x), the parameter x ∈ R represents the initial concentration
(or the number of molecules in a discrete-stochastic setting). The reader is referred
to [19] for further details on the language and its semantics.

Recently Bio-PEPA has been extended to incorporate events [26], constructs that
represent changes in the system due to some triggering conditions. This allows bio-
chemical perturbations to the system to be represented, such as the timed introduction
of reagents or the modulation of system components by external stimuli. A Bio-PEPA
event has the form (id, trigger, event assignment, delay), where id is the event name,
trigger is a mathematical expression involving the components of the Bio-PEPA model
and/or time, event assignment is a list of assignments causing some changes to elements
in the system, and delay is either 0 (immediate events) or a positive real value (delayed
events).

A Bio-PEPA system representing a biochemical network consists of a set of sequen-
tial components, a model component, and context (defining information such as kinetics
rates, parameters, locations, and events). Its formal definition is the following:

Definition 1. A Bio-PEPA system P is a 8-tuple 〈t, L,N ,K ,FR,Comp, P, Events〉,
where: t is time, L is the set of locations, N is the set of (auxiliary) information for
the species,K is the set of parameters, FR is the set of functional rates, Comp is the set
of species components, P is the model component and Events is the set of events.

Bio-PEPA offers a formal representation of biochemical systems, on which differ-
ent kinds of analysis can be carried out, through the defined mappings into continuous-
deterministic and discrete-stochastic modelling languages. The Bio-PEPA language is
supported by software tools which automatically process Bio-PEPA models and gen-
erate other representations in forms suitable for different kinds of analysis [19, 27]. In
particular, the generated simulation model can be executed using the Dizzy simula-
tion tool [28], in which both stochastic simulation algorithms and differential equation
solvers are implemented.

4 The Bio-PEPA Model of the Circadian Clock

In the following we provide an overview of the Bio-PEPA model for the circadian clock
described in Sect. 2. The full model is reported in the Supplementary Material.

The clock is characterised by robust entrainment to light/dark cycles. Light entrains
the clock by modulating general kinetic laws different from mass-action that abstract
complex sequences of more elementary steps [13, 18]. These features can be easily
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represented in Bio-PEPA using events and functional rates. From the Bio-PEPA de-
scription of the clock we can derive both the model for stochastic simulation and the
related system of differential equations.

In order to derive a stochastic model, the continuous concentration values of ODE
models must be translated into discrete numbers of molecules. In general, assuming
concentrations are expressed in molars (M), the initial amounts must be multiplied
by the factor NA · V (where NA is the Avogadro number and V is the volume of the
compartment in which the reactions take place), and the kinetic parameters must be
rescaled accordingly (see [29] for details). For the Neurospora model, as the compart-
ment size and absolute concentration values are not known to any great accuracy, we
follow the approach used in [15] and introduce a generic scaling factorΩ that modulates
the number of molecules. Specifically, concentrations are turned into discrete numbers
of molecules by multiplying them by Ω, and the kinetic parameters are also rescaled by
Ω (see the Supplementary Material for details).

Reactions and kinetic laws. Each reaction is associated with an action type and a
functional rate, expressing the kinetic law. For instance, the transcription of MF
under upregulation by PWL and inhibition by PF is represented by the action type
transcription MF by PWL and the kinetic law:

transcription MF by PWL =
a1 · PWLn

(1 + (PF/b1)g) · (PWLn + b2
n)

Species. Each biological species is abstracted by a Bio-PEPA species component. Be-
low we report the definition of PF; the other species are described similarly.

PF
def
= (transcription MF by PW, 1) 	 + (transcription MF by PWL, 1) 	 +

(transformation E2F to PF, 1) ↑ + (degradation PF, 1) ↓ +

(translation E1W by PF, 1)⊕

PF is involved in five reactions: it is an inhibitor of the transcription of MF with
and without the influence of light (first line), a product of the transformation from
E2F to PF, a reactant in the degradation of PF (second line) and an activator of the
translation of E1W (last line). Note the use of shorthand notation in the definition
of PF.
The full system is described in terms of the model component

MF(m f 0) BC
∗

E1F(e1 f 0) BC
∗

E2F(e2 f 0) BC
∗

PF(p f 0) BC
∗

MW(mw0) BC
∗

PW(pw0) BC
∗

PWL(pwl0) BC
∗

E1W(e1w0) BC
∗

E2W(e2w0)

where the values in parenthesis are the initial values for the species.
Events. Entrainment by light/dark cycles is represented by events in Bio-PEPA. In

the initial state the system is in dark conditions and, therefore, the transformation
from the protein PW to the form activated by light (PWL) is not possible. This
is represented by setting the kinetic parameter r1 for the transformation reaction
PW → PWL equal to 0. At dawn, the reaction is suddenly activated and therefore
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r1 is reset to its maximum value 5.1759. At dusk the reaction is deactivated again
by resetting r1 to 0. This periodic sequence of parameter changes is represented by
the following set of immediate events

Events = [(dawni; t = tdawn · i; r1 = 5.1759; 0),
(duski; t = tdusk · i; r1 = 0; 0), i = 1, 2, . . . ,D ]

where D is the number of simulated days, and tdawn and tdusk are the times of the
day at which dawn and dusk occur, respectively. By changing the values of tdawn

and tdusk we can simulate the effect of changing the photoperiod (tdusk − tdawn), a
key entrainment parameter for the Neurospora clock [22, 18]. Here we focus on
two conditions: constant darkness (DD) and alternating 12-hour cycles of light and
dark (12:12 LD).

5 Model Analysis

In this section we present the validation of our model against the original ODE repre-
sentation and we illustrate some analysis results. We use a version of the Dizzy simu-
lator [28] developed at the University of Edinburgh [30], which extends the tool with
sensitivity analysis techniques and additional simulation methods. The time-dependent
events in the Bio-PEPA model are translated into time-dependent reaction rates in the
Dizzy model (defined in terms of the step function theta, which is predefined in Dizzy),
and we use the Gibson-Bruck stochastic simulation algorithm [31]. The choice of this
algorithm is due to its efficiency (in simulation time) with respect to other stochastic
simulators and to the fact it supports time-dependent rates.

5.1 Validation of the Model

As a preliminary step, we validate the Bio-PEPA model by comparing it against the
original deterministic representation [18, 13]. In Fig. 2(a) and Fig. 2(b) we show the
comparison for the DD system and for 12:12 LD cycles respectively. In each graph we
plot three time-series: the behaviour of the original model (dashed lines), the solution
of the system of ODEs generated by the Bio-PEPA model (solid lines), and the average
behaviour over 10 stochastic simulation runs with scaling factor Ω = 10000 (points).
The variables plotted are the clock outputs frq mRNA (MF), wc-1 mRNA (MW), total
FRQ protein (FP = E1F + E2F + PF), and total WC-1 protein (WP = E1W + E2W +

PW + PWL).
The scaling factor Ω = 10000 was chosen with the purpose of having a reason-

ably high number of molecules to minimise the effect of stochastic fluctuations [29].
Consequently, in both DD and LD systems, the time-series resulting from the determin-
istic and the stochastic analysis of the Bio-PEPA models are in very close agreement,
with the stochasticity almost unnoticeable, despite the small number of simulation runs.
Comparing the deterministic time-series generated by our model against that of the
original model, we observe that in the DD system they are in perfect agreement, while
a small difference can be observed in the LD system (especially for WP): the reason
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(a) Simulations in DD.
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(b) Simulations in LD.

Fig. 2. Comparisons of the original ODE model of the Neurospora clock with the deter-
ministic and stochastic Bio-PEPA representations. Black bars represent lights-off and
white bars lights-on.

for this difference resides in the different ways in which the light switch is modelled:
a smooth function in the original ODE model versus discrete events in the Bio-PEPA
model. A similar agreement was obtained for different photoperiods (results not shown).

5.2 Effect of the Scaling Factor Ω on Stochasticity

Higher values of the scaling factor Ω correspond to larger molecular populations in
the stochastic model, yielding smaller stochastic fluctuations [29]. We have seen in
the previous section that for Ω = 10000 the stochasticity is reduced to such a point
that even with a small number of simulations runs, the average simulation behaviour is
near-identical to the deterministic behaviour. As a consequence, the higher the scaling
factor, the more regular the circadian oscillations will be, whereas we expect the effects
of noise to be more evident with a smaller scaling factor. Figure 3 shows the average
oscillations in total FRQ protein FP for different values of Ω (10, 100 and 1000). We
observe that for Ω = 10 the average behaviour of the stochastic system differs signif-
icantly from the FP oscillation in the deterministic system, yielding unstable oscilla-
tions that are inconsistent with the stable cycling of FRQ observed experimentally [9].
By contrast, for Ω = 100 and Ω = 1000, regular oscillating dynamics are obtained.
We also note that the average oscillations for Ω = 100 and Ω = 1000 are very close
to the deterministic solution, indicating that increasing Ω in this range only affects the
variability about the average. We consider a scaling factor Ω = 1000 in the remainder
of the work. Similar results (with slightly higher variability) were obtained in all cases
with Ω = 100.

5.3 Investigating the Role of Positive Feedback

In this section, we study how the positive feedback loop of the Neurospora network
affects its stochastic behaviour. A previous analysis of the deterministic model identi-
fied the upregulation of WC-1 production by FRQ transcription factor, controlled by
the parameter a7, as a key regulatory process in the light entrainment of the clock [18].
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Fig. 3. The effect of increasing Ω on the LD system. Plotted are time-series showing os-
cillations in total FRQ protein FP averaged over 1000 stochastic simulations for Ω=10,
100 and 1000 (coloured lines). Each time series has been normalised by Ω to enable
comparison with the FP oscillations obtained from the deterministic model (black line).

With a7 at its nominal value aWT
7 = 2.4695, the ODE model yields the correct exper-

imental responses to changes in photoperiod, with the phase of total FRQ protein FP
tracking the middle of the night in both long and short days [18]. Knocking out positive
feedback by reducing a7 to 0 destroys self-sustained oscillations in DD by pushing the
deterministic model through a supercritical Hopf bifurcation [18]. This is in agreement
with the loss of free-running conidiation rhythms reported in experiments [32]. The
destruction of the DD limit cycle has a significant effect on the light responses of the
model, yielding a system that is unable to respond to changes in photoperiod during
long days. This suggests a role for the positive loop in promoting robustness against
seasonal photoperiod changes [18]. Here, we compare the behaviour of the stochastic
and deterministic models for DD and 12:12 LD cycles in the presence and absence of
the positive loop, focusing on the resulting changes to the FRQ oscillation in each case.

The Effect of Removing Positive Feedback on the DD System. Figure 4(a) shows
the difference between the deterministic and stochastic behaviour for the unperturbed
network in DD. While the ODE model exhibits self-sustained FRQ oscillations, the
average oscillation generated by the stochastic system damps to a constant value. This
is a consequence of the individual realisations of the stochastic model going out of phase
with each other, as can be seen in Fig. 4(c) and Fig. 4(d). This phase diffusion in the
free-running system, characterised by a phase distribution spanning the full circadian
cycle, agrees with previous stochastic analysis of circadian models [15].

Setting the positive feedback strength a7 to 0 yields damped FRQ oscillations in the
ODE model, as a7 is below the Hopf bifurcation value (Fig. 4(b)). Individual realisations
of the stochastic model, however, are still oscillatory, albeit with smaller amplitudes
compared to the unperturbed network (Fig. 4(c)). Again, the average FRQ oscillation
damps to a constant value as a consequence of phase diffusion.

The persistence of self-sustained oscillations when positive feedback is removed
demonstrates that stochasticity can introduce greater robustness against modifications
to the network architecture. This finding is consistent with models of the mammalian
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clock for which simulated knockouts that are arrhythmic in ODE implementations can
become rhythmic when stochasticity is incorporated [8].
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(a) FRQ oscillations for a7 = aWT
7 .
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(b) FRQ oscillations for a7 = 0.
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(d) Stochastic variations in FRQ phase.

Fig. 4. Changes to the FRQ protein oscillation FP resulting from the removal of posi-
tive feedback in DD. Black lines in (a) and (b) denote the solution of the deterministic
system, red points the average of 1000 stochastic simulations and red lines the corre-
sponding standard deviations. In (d), the phase of FRQ protein was taken as the time at
which FP has decreased to its half-maximum value over the interval 576 ≤ t ≤ 600.
The histograms show the distribution of this phase marker over all 1000 runs of the
stochastic model. Dotted lines denote the phase of FRQ in the corresponding determin-
istic systems.

The Effect of Removing Positive Feedback on the LD System. Finally, we con-
sider the 12:12 LD system and examine the effect of setting a7 to 0 on the oscillatory
behaviour of the model. Comparing Fig. 4 and Fig. 5, it is clear that for both the un-
perturbed system and the positive loop knockout, entrainment regularises the dynamics,
markedly reducing the variability of oscillations compared to the free-running system
(similar findings were reported for a model of the Drosophila clock in [15]). In both
cases, there is relatively little phase diffusion, as evidenced by phase distributions that
are concentrated about their corresponding deterministic values (Fig. 5(c)). Interest-
ingly, although removal of positive feedback shifts the mean value of FRQ phase, con-
sistent with the analysis of the deterministic system ([18]), the variation about the mean
is unaffected (the standard deviation is 0.3720 for the unperturbed system and 0.3238
for the loop knockout). This demonstrates that the positive loop is able to buffer the
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clock against environmental variations (seasonal changes in photoperiod) without de-
grading its robustness to stochastic fluctuations in the chemical reactions comprising
the oscillatory mechanism.
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(b) a7 = 0.
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(c) Stochastic variations in FRQ phase.

Fig. 5. Changes to the FRQ protein oscillation FP resulting from the removal of positive
feedback in 12:12 LD cycles. Black lines in (a) and (b) denote the solution of the deter-
ministic system, red points the average of 1000 stochastic simulations and red lines the
corresponding standard deviations. The phase of the FRQ oscillation in (c) was taken
as the time at which FP decreases to its half-maximum value, identified recently as a
molecular correlate of conidiation onset [22, 13, 18]. As in Fig. 4, the phase marker was
computed over the interval 576 ≤ t ≤ 600 for all stochastic realisations of the model.
The dotted lines denote FRQ phase for the ODE model.

5.4 Sensitivity Analysis for the 12:12 LD System

Sensitivity Analysis (SA) aims to identify the relationships between the inputs and out-
puts of mathematical models of biochemical networks [33]. A key goal is the production
of Sensitivity Indices (SI) that quantify these relationships, revealing which factors are
the most influential with respect to model outcome. The most widespread SA method is
“one-at-a-time” (OAT). Given a mathematical model with parameters set to those con-
sidered the most likely (also called nominal parameters), each parameter is perturbed
individually by a fixed value or by a percentage of its nominal value, and the change
in the output(s) of interest measured. OAT has seen widespread use in ODE models
of biochemical interactions; this has included circadian networks for which a standard
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approach has been to compute the sensitivities of period and amplitude over one cycle
of the oscillation [16, 11, 12].

In [34] this method has been extended to stochastic models. In this case, the output
at a given time is not just a value representing the amount of a species as in ODEs; it is,
instead, a set of possible values, obtained from independent stochastic simulations. The
SA extension has been obtained by substituting the difference between perturbed and
nominal output values employed in the traditional approach with a difference measure
based on the density distribution surface of the output, estimated with a suitable number
of simulations. An estimate of this density distance based on stochastic simulations can
be obtained using histogram distance, as originally presented in [35]. This stochastic
version of OAT therefore applies when one is interested in observing the change in the
distribution of the amount of a particular species at a given time.

Here we apply the traditional approach to the means of the stochastic simulations
and also consider the extended approach, based on histogram distance. These are indeed
complementary, as the former does not incorporate any notion of stochastic variability,
while the latter quantifies the likelihood of having the same distribution in both the
perturbed and unperturbed systems. Moreover, a feature of the histogram distance is that
its value will always be 2 when there is no overlapping of the distributions, making the
traditional approach still necessary to determine sensitivities for large displacements.

Figure 6 summarises the result of the local sensitivity analysis obtained by changing
a subset of parameters predicted to have a significant effect on entrained phase. Each
parameter was incremented by 10%, and the results shown are averages over 1000 sim-
ulation runs for Ω = 100 and Ω = 1000. It can clearly be seen that both the density- and
average-based sensitivity measures vary significantly over the circadian cycle for the
parameters considered. For both measures, the most sensitive parameters are a4, d1 and
d3 representing the maximum rates of light-independent wc-1 transcription, frq degra-
dation and wc-1 degradation respectively. All 3 parameters yield maximum sensitivities
with respect to the average-based measure around dusk, when FP is close to its peak
value. By contrast, maximum sensitivities with respect to the density-based measure
occur at the time when FP decreases to its half-maximum value, a molecular correlate
of conidiation onset [22, 13, 18]. This demonstrates that in terms of the average FRQ os-
cillation, the marker of entrained phase most responsive to evolutionary parameter vari-
ations is peak FRQ phase. However, when stochastic variations in the FRQ waveform
are considered, the most responsive marker is the phase of the FRQ half-maximum. As
it is the latter which correlates with physiological entrained phase for the Neurospora
clock, this analysis suggests that stochastic fluctuations in FRQ expression may have
been an important contributing factor to the selection of the half-maximum as a phase
marker in nature.

As previously mentioned, average-based SA computes differences in terms of the
average FP value, while density-based SA also considers the stochastic variability.
Therefore, the differences in the sensitivities when using different scaling factors can
only be captured consistently by using density-based SA. For instance, similar average-
based sensitivities are obtained for Ω = 100 and Ω = 1000 (cf. Figs. 6(a) and 6(c)),
while the density-based sensitivities are in general smaller for Ω = 100 as a conse-
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(c) Average-based sensitivity: Ω = 1000.
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(d) Density-based sensitivity: Ω = 1000.

Fig. 6. Local sensitivity to parameter variation. Sensitivities were computed every 3
hours over one circadian cycle (72 ≤ t ≤ 96). The color gradient represents the differ-
ence in the amount of FP between the nominal and modified parameter sets in each case
(with increasing sensitivity going from black to white). In all panels, the light blue lines
denote the cycle phase at which maximum sensitivity is attained for a given parameter.
Because of the periodic behaviour of the system, qualitatively similar sensitivities are
obtained over other 24h intervals (see Fig. S1 in the Supplementary Material).
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quence of the higher variance causing greater overlapping in the probability distribu-
tions of FP (cf. Figs. 6(b) and 6(d)).

6 Conclusions

In this work we presented and studied a stochastic model of the circadian clock in
Neurospora crassa under two different light conditions: constant darkness and 12:12
light/dark cycles. We used Bio-PEPA as our modelling language. This language al-
lowed us to represent in a straightforward manner two features of the system: complex
kinetic laws and time-dependent events representing cyclic light/dark conditions. The
model was validated against an existing ODE representation describing key behaviours
observed in laboratory experiments, including the variation of entrained phase with
photoperiod. We presented some analysis results illustrating the differences between
deterministic and stochastic representations of the clock. In particular, we investigated
the effect of removing the positive feedback loop, previously identified as a significant
factor in the determination of entrained phase. We found that while removal of pos-
itive feedback destroys self-sustained free-running (DD) rhythms in the deterministic
system, oscillations with significant amplitude persist when stochastic fluctuations are
considered, demonstrating the greater robustness of the oscillatory mechanism in the
stochastic model. In addition, we showed that knocking out the loop has little effect
on the stochastic variability of entrained phase for a given photoperiod, suggesting that
positive feedback can be used to tune the phase-photoperiod relationship without intro-
ducing greater variation due to noise amplification.

Finally, we considered sensitivity analysis techniques in order to identify the most
influential parameters on the circadian function of the 12:12 LD system. We focused on
the variations in FRQ expression resulting from perturbations to 5 putatively sensitive
parameters, applying a local sensitivity method at different time points within the 24-
hour cycle. By using a novel stochastic sensitivity measure based on histogram distance,
we found that the FRQ waveform is maximally sensitive at the time it reaches is half-
maximum level, a molecular correlate for conidiation onset. We commented that this
implicates stochasticity as a potential factor in the selection of this seemingly complex
phase marker by evolution, rather than the phase of peak FRQ expression that is pre-
dicted to be maximally sensitive when variations in average FRQ level are considered.
We conclude that while the local method we used only focuses around a specific point
in the parameter space, it can still be informative, giving an idea about the impact of
parameter changes on the behaviour of the system. In the future, we plan to apply some
global methods in order to explore the full parameter space (or a meaningful subset of
it) and to quantify the relationships between different parameters.

The use of stochastic simulation with our model merits some discussion, as it is
characterised by some non-elementary reactions with complex kinetic laws, abstract-
ing sets of interactions whose details are unknown. The use of Gillespie’s stochastic
simulation algorithm (or its variants, such as Gibson-Bruck [31]) in the case of gen-
eral kinetic laws has been discussed by several authors [36–38]. Rao and Arkin [36]
showed that this approach is valid for some specific kinetic laws, such as Michaelis-
Menten and competitive inhibition. On the other hand, in [37] the authors demonstrated
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that this extension of Gillespie’s algorithm is not always appropriate. Here, we applied
stochastic simulation paying particular attention to the interpretation of the simulation
results and to their validation: in Sect. 5 we showed that the behaviour we obtain us-
ing our stochastic model is in agreement with the known behaviour of the system, and
therefore we conclude that in this case the use of stochastic simulation is appropriate.
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