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Abstract. Hybrid systems are manifest in both the natural and the engineered world, and their complex
nature, mixing discrete control and continuous evolution, make it difficult to predict their behaviour. In
recent years several process algebras for modelling hybrid systems have appeared in the literature, aimed at
addressing this problem. These all assume that continuous variables in the system are modelled monolithi-
cally, often with differential equations embedded explicitly in the syntax of the process algebra expression.
In HYPE an alternative approach is taken which offers finer-grained modelling with each flow or influence
affecting a variable modelled separately. The overall behaviour then emerges as the composition of flows.

In this paper we give a detailed account of the HYPE process algebra, its semantics, and its use for
verification of systems. We establish both syntactic conditions (well-definedness) and operational restric-
tions (well-behavedness) to ensure reasonable behaviour in HYPE models. Furthermore we consider how the
equivalence relation defined for HYPE relates to other relations previously proposed in the literature, demon-
strating that our fine-grained approach leads to a more discriminating notion of equivalence. We present the
HYPE model of a standard hybrid system example, both establishing that our approach can reproduce the
previously obtained results and demonstrating how our compositional approach supports variations of the
problem in a straightforward and flexible way.
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1. Introduction

Predominantly, process algebras have been used to model discrete systems. Their style of modelling, in
terms of agents and actions, matches well with a discrete event view of the world. This form of modelling
encompasses a wide variety of systems as witnessed by the wide-range of applications which have emerged
for process algebra modelling. Nevertheless there are situations in which this discrete view is not entirely
satisfactory. For example there may be inherent properties of the system which vary continuously or because
a fluid abstraction (in which discrete variables are treated as continuous) of some aspects of the system will
bring benefits for modelling, or analysis, or both. We term a hybrid system one which exhibits both discrete
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and continuous behaviour. Given the success and attractiveness of process algebra modelling it is appealing
to investigate whether the same compositional approach can be applied to such hybrid systems.

Hybrid behaviour arises in a variety of systems, both engineered and natural. Consider a thermostatically
controlled heater. The continuous variable is air temperature, and the discrete events are the switching on
and off of the heater by the thermostat in response to the air temperature. Another example would be
a genetic regulatory network, such as the Repressilator [EL00], in which genes can be switched on or off
by interactions with their environment (more precisely, with transcription factor proteins). The behaviour
of such systems can be regarded as a collection of sets of ODEs, the discrete events shifting the dynamic
behaviour from the control of one set of ODEs to another and possibly modifying the values of the variables
immediately after the event. This is the approach taken with hybrid automata [Hen96].

HYPE is a novel process algebra for modelling hybrid systems. A hybrid system consists of values which
change continuously over time with respect to specific dynamics. Discrete events can cause discontinuous
jumps in these values after which different dynamics may come into effect. These events can be triggered
by conditions on the continuously changing values. When modelling a hybrid system we need to capture
both the dynamics and the events which cause the system to move between different dynamics. The novelty
of HYPE lies in how it captures the continuous dynamics of a system, its modular style of definition and
the separation of a discrete controller considered in parallel to the system under study. Unlike previous
process algebras for hybrid systems, HYPE captures behaviour at a fine-grained level, composing distinct
flows or influences. The dynamic behaviour then emerges, via the semantics of the language, from these
compositional elements. For the continuous aspects, we are inspired by the fluid flow semantics of PEPA
models [Hil05, TGH10] which approximates the behaviour of large numbers of discrete components with a
set of ordinary differential equations (ODEs). For the discrete aspects of the model, the controller imposes
sequencing on events and having this separated readily supports investigations into how the same system
may behave under the influence of distinct controllers. Note that although the controller is specified as a
distinct component of the system to aid modularity of definition, its events are triggered by the continuous
values of the system.

Process algebras have the advantage of being compositional hence models are built out of subcomponents
and we fully exploit this feature in HYPE. Existing process algebras for hybrid systems include ACPsrt

hs
[BM05], hybrid χ [vBMR+06], φ-calculus [RS03] and HyPA [CR05]. In [Kha06], Khadim shows substantial
differences in the approaches taken by these process algebras relating to syntax, semantics, discontinuous
behaviour, flow-determinism, theoretical results and availability of tools. However, they are all similar in their
approach in that the dynamic behaviour of each subcomponent must be fully described with the ODEs for
the subcomponent given explicitly in the syntax of the process algebra, before the model can be constructed.
Furthermore an evaluation of continuous variables is inherent in the notion of state.

We aim for a finer-grained approach where each subcomponent is built up from a number of flows and
hence the ODEs are only obtained once the model is constructed. By flow, we mean something that has an
influence on a quantity of interest. For example, in a tank with two inlets and an outlet, both the inlets and
the outlet influence the tank level, hence here we would identify three separate flows. The continuous part
of the system is represented by the appropriate variables and the change over time of a given variable is
determined by a number of active influences which represent flows and are additive in nature. Our approach
also differs in that we explicitly require a controller that consists only of events.

We believe that the use of flows as the basic elements of model construction has advantages such as ease
and simplification of modelling. This approach assists the modeller in allowing them to identify smaller or
local descriptions of the model and then to combine these descriptions to obtain the larger system. The
explicit controller also helps to separate modelling concerns.

In this paper we present a full account of the HYPE language, including both operational and hybrid
semantics. The two are distinct because in HYPE the state of the system does not include an evaluation of
the continuously varying variables; instead it captures the influences which are currently in operation within
the system. Thus each state corresponds to one dynamic regime, captured by a set of ODEs in the hybrid
semantics. We also establish an equivalence semantics for the language and consider how this compares with
the existing bisimulations for hybrid process algebras and hybrid automata which have appeared in the
literature. In particular we consider the bisimulations defined in [BM05] for ACPsrt

hs and the U -bisimulation
of [AMP+03] for hybrid automata, showing that the notion of bisimulation in HYPE is more discriminating
than that for hybrid automata.

This paper is a revised and extended version of the paper which appeared in [GBH09]. Here we have
substantially revised the definition of what it means for a HYPE model to be well-defined and furthermore
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considered when a model may be considered to be well-behaved and how to check for such a property. A
model which is not well-behaved may exhibit instantaneous Zeno behaviour, completing an infinite number of
events in a single time instant. The work on comparing bisimulations is extended and here, additionally, we
compare the expressive power of HYPE with that of hybrid automata at the level of composition of models.
Finally a new example of HYPE modelling that considers a train gate controller [AHH96], is presented.

The structure of the rest of the paper is as follows. In the next section we introduce our syntax for
hybrid systems, explaining its components. In the following sections, we present the operational semantics
and the hybrid semantics, explaining how we go from the notion of state to the ODEs which describe the
system dynamics. We then identify the subclass of HYPE models which we consider to be well-defined
and discuss how to check that a HYPE model is well-behaved. We also compare composition of models in
HYPE and hybrid automata. We define a notion of bisimulation in Section 8 and compare it with previous
bisimulations for hybrid languages from the literature. To illustrate the power of HYPE, in Section 10 we
present an example, a train gate controller. The remaining sections discuss related work, conclusions and
future research.

2. HYPE Definition

This section will present HYPE by way of a running example of the temperature control system of an orbiting
spacecraft. As the orbiter travels around the earth, it needs to regulate its temperature to remain within
operational limits. It has insulation but needs to use a heater at low temperatures and at high temperatures
it can erect a shade to reduce temperatures. The modelling spirit of HYPE focusses on flows. In our example,
we identify four flows affecting the temperature. One is due to thermodynamic cooling, one is due to the
heater, one is due to the heating effect of the sun and one is due to the cooling effect of the shade. The
strength and form of a flow are modified by events. We first define the heater which can be on or off.

Heat def
= on : (h, rh, const).Heat + off : (h, 0, const).Heat + init : (h, 0, const).Heat

This is a summation of prefixes. Each prefix consists of two actions. Events (a ∈ E) are actions which happen
instantaneously and trigger discrete changes. They can be caused by a controller or happen randomly and
can depend on the global state of the system, specifically values of variables. In the example, the events are
on, switching on; off, switching off and init, the initialisation event.

Activities (α ∈ A) are influences on the evolution of the continuous part of the system and define flows.
An activity is defined as a triple and can be parameterised by a set of variables, α(W) = (ι, r, I(W)). This
triple consists of an influence name ι, a rate of change (or influence strength) r and an influence type name
I(W) which describes how that rate is to be applied to the variables involved, or the actual form of the
flow1. In Heat , there are two distinct activities, (h, rh, const) and (h, 0, const). The first one gives the effect
of the heater being on: the influence name is h which represents the influence from the heater on the orbiter’s
temperature, rh is the strength of the heater, and it is associated with the function called const . The second
captures the effect of the heater being off. It again affects influence h, it has strength 0 and the form it takes
is const .

The interpretation of influence types will be specified separately, so that experimentation with different
functional forms of the heating flow can occur without modifying the subcomponent. Hence, in HYPE we
separate the description of the logical structure of flows from their mathematical interpretation. We now
describe the other flows for the example.

Shade def
= up : (d,−rd, const).Shade + down : (d, 0, const).Shade + init : (d, 0, const).Shade

Sun def
= light : (s, rs, const).Sun + dark : (s, 0, const).Sun + init : (s, 0, const).Sun

Cool(K) def
= init : (c,−1, linear(K)).Cool(K)

The only event in the last definition is the initialisation event, as once cooling is in effect it does not change.
The influence name is c and its strength is −1. The influence type linear(K) will be interpreted as a linear
function of its variable K which represents the temperature of the system. We also need to model the change
in sunlight. We do this by keeping track of time with the following component (which is kept simple for

1 For convenience, we will use I for I(W) when W can be inferred.
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reasons of space).

Time def
= light : (t, 1, const).Time + dark : (t, 1, const).Time + init : (t, 1, const).Time

These subcomponents can be combined to give the overall uncontrolled system2.

Sys def
= (((Heat BC

{init}
Shade) BC

{init}
Sun) BC

{init}
Cool(K)) BC

{init,light,dark}
Time

Here BC
L

represents parallel cooperation. L is the set of events over which synchronisation must occur. Events
not in L can occur independently. Sys is called the uncontrolled system because all events are possible and
no causal or temporal constraints have been imposed yet. For instance, we need to specify that the heater
can only be switched off after it has been switched on. We now give controllers/sequencers for the heater,
the shade and the effect of the sun. Note that these correspond to the starting states set by init events. For
example, in Heat , init sets the heater to off (the influence strength is 0), therefore on is the next event to
occur.

Conh
def
= on.off.Conh

Cond
def
= up.down.Cond

Cons
def
= light.dark.Cons

Con def
= Conh BC∅ Cond BC∅ Cons

Controllers only have event prefixes. Their behaviour is affected by the state of the system through event
conditions which determine when events occur. The controlled system is constructed from cooperation of the
controller and the uncontrolled system and the controller must be prefixed by the initialisation event init.
For the example, the controlled system is described by

TempCtrl def
= Sys BC

M
init.Con with M = {init, on, off,up,down, light,dark}.

This has defined the structure of our system but we require additional definitions to capture further details.
We need to link each influence with an actual variable. This is done using the function iv . For the example,
iv(h) = iv(s) = iv(d) = iv(c) = K where K is the actual variable for the temperature of the orbiter, and
iv(t)=T , the variable for time. Note that an influence can only be associated with one variable, in agreement
with the interpretation of influences as flows. This does not mean that only one variable can be affected by
an event. For another variable Y that was also affected by the heater being on (power consumption, say),
we could define a subcomponent with a prefix on:(p, r, I) and set iv(p) = Y .

We define the influence types as JconstK = 1 and Jlinear(X)K = X. The influence types are used to
describe how influences are affected by variables in the system. The type const is used when there is no
dependency and linear(X) is used when the influence depends linearly on the value of the variable X. Non-
linear dependencies can also be defined through this mechanism. Examples of non-linear ODEs occur in the
description of the motion of a pendulum and when mass action is used in biological modelling.

Finally, we define what triggers an event, and how it affects variables, with the function ec. Each event
condition consists of an activation condition and a reset.

The activation condition is a positive boolean formula (one without negation) containing equalities and
nonstrict inequalities on system variables or the symbol ⊥. We choose this specific restriction since it guar-
antees that the set represented by such a formula is a closed set, being the finite union and intersection of
closed sets. We require closed sets so that the first instant in which a guard becomes true is defined in a
consistent way.

The variable reset is a conjunction of equality predicates of the form V ′ = f(V) where V ′ denotes the
new value that V will have after the reset, while V denotes the previous value. Resets of the form V ′ = V
can be left implicit, and the identity reset is denoted true. Event conditions are associated with events by
the function ec. The example has the following event conditions.

2 Note that in HYPE uncontrolled systems all possible controllable behaviour is exhibited, awaiting a suitable controller to
instigate appropriate triggers. This is in contrast to, say, an embedded system, where the uncontrolled system would be aspects
of behaviour outside the scope of the controller.
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ec(init) = (true, (K ′ = k0 ∧ T ′ = 0))
ec(off) = ((K ≥ k1), true) ec(on) = (K ≤ k2, true)
ec(up) = ((K ≥ k3), true) ec(down) = (K ≤ k4, true)

ec(light) = ((T = 12), true) ec(dark) = (T = 24, T ′ = 0)

where the ki(1 ≤ i ≤ 4) are fixed temperature values. Most events are urgent – the event must occur as soon
as its event condition is satisfied. For events that can happen randomly such as breakdowns, we introduce a
special event condition ⊥ which means that the event can happen nondeterministically in time (sometimes
termed lazy jumps)3. In the example, the init event has an associated event condition of true and so this
must happen immediately and light happens when 12 hours have passed. The event init has a reset that
defines the values of the variables and on has a reset of true meaning that no values are changed. Figure 1
presents all components of the HYPE model of the orbiter in one place. For a comparison of different process
algebras for modelling hybrid systems (other than HYPE) see [Kha06, TCT01] and we discuss this further
in Section 9.

In the preceding informal discussion, we have introduced the main constituents of a HYPE model in-
cluding the combination of flow components with a controller component, variables, association between
influences and variables, conditions that specify when events occur, and definitions for the influence type
functions. To understand the dynamics of this system, we need to derive ODEs to describe how the variables
change over time. To do this we present operational semantics that define the behaviour of our controlled
system. Before that we present the formal definition of HYPE. In the rest of the paper, V is a set or tuple
of variables with W ⊆ V denoting an arbitrary subset of V.

Definition 2.1. A controlled system is constructed as follows.

• Subcomponents are defined by Cs(W) def
=S, where Cs is the subcomponent name and S satisfies the gram-

mar S′ ::= a : α.Cs(W) | S′ + S′ (a ∈ E , α ∈ A), with the free variables of S in W.

• Components are defined by C(W) def
=P , where C is the component name and P satisfies the grammar

P ′ ::= Cs(W) | P ′ BC
L
P ′, with the free variables of P in W and L ⊆ E .

• An uncontrolled system Σ is defined according to the grammar Σ′ ::= Cs(W) | C(W) | Σ′ BC
L

Σ′, where
L ⊆ E and W is a set of system variables.

• Controllers only have events: M ::= a.M | 0 | M+M with a ∈ E and Con ::= M | Con BC
L

Con with
L ⊆ E .

• A controlled system is ConSys ::= Σ BC
L

init.Con where L ⊆ E . The set of controlled systems is CSys .

A controlled system together with the appropriate sets and functions, gives a HYPE model.

Definition 2.2. A HYPE model is a tuple (ConSys,V, IN , IT , E ,A, ec, iv ,EC , ID) where

• ConSys is a controlled system as defined above.

• V is a finite set of variables4.

• IN is a set of influence names and IT is a set of influence type names.

• E is a set of events of the form a and ai.

• A is a set of activities of the form α(W) = (ι, r, I(W)) ∈ (IN × R× IT ).

• ec : E → EC maps events to event conditions. Event conditions are pairs of formulas, the first with free
variables in V and the second with free variables in V ∪ V ′.

• iv : IN → V maps influence names to variable names.

• EC is a set of event conditions.

• ID is a collection of definitions consisting of a real-valued function for each influence type name JI(W)K =
f(W) where the variables in W are from V.

• E , A, IN and IT are pairwise disjoint.

3 We have not done so here but it is possible to have events that are probabilistic rather than nondeterministic in time. Tuffin
et al [TCT01] use a value drawn from a exponential distribution for the time until the next event and we consider the use of
stochastic delays in [BGH10a].
4 In [GBH09], a set of formal variables X was also defined but with experience, it became clear that these variables were not
required and have been dropped.
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Heat def
= on : (h, rh, const).Heat + off : (h, 0, const).Heat + init : (h, 0, const).Heat

Shade def
= up : (d,−rd, const).Shade + down : (d, 0, const).Shade + init : (d, 0, const).Shade

Sun def
= light : (s, rs, const).Sun + dark : (s, 0, const).Sun + init : (s, 0, const).Sun

Cool(K) def
= init : (c,−1, linear(K)).Cool(K)

Time def
= light : (t, 1, const).Time + dark : (t, 1, const).Time + init : (t, 1, const).Time

Sys def
= (((Heat BC

{init}
Shade) BC

{init}
Sun) BC

{init}
Cool(K)) BC

{init,light,dark}
Time

Conh
def
= on.off.Conh

Cond
def
= up.down.Cond

Cons
def
= light.dark.Cons

Con def
= Conh BC∅ Cond BC∅ Cons

TempCtrl def
= Sys BC

M
init.Con with M = {init, on, off,up,down, light,dark}

iv(t) = T iv(h) = iv(s) = iv(d) = iv(c) = K

ec(init) = (true, (K ′ = k0 ∧ T ′ = 0))

ec(off) = ((K ≥ k1), true) ec(on) = (K ≤ k2, true)

ec(up) = ((K ≥ k3), true) ec(down) = (K ≤ k4, true)

ec(light) = ((T = 12), true) ec(dark) = (T = 24, T ′ = 0)

JconstK = 1 Jlinear(X)K = X

Fig. 1. HYPE model of the orbiter

In the sequel, we will use P , Q, . . . for controlled systems (rather than ConSys) and for HYPE models.
When referring to a HYPE model, the meta-variable for the controlled system will be used, such as P , and
the tuple will be implied. In the case of two HYPE models P and Q without reference to the tuple, we
will assume two implied tuples with identical elements except for the first elements. The syntax of HYPE is
moderately complex because hybrid systems are complex structures displaying both continuous and discrete
behaviour. Despite the complexity, the example shows how it is straightforward to construct a HYPE model
once flows and the controller are identified. Additionally the modularity of definition helps the modeller to
check that everything is specified.

3. Operational Semantics

We now introduce the behaviour of HYPE models by defining an appropriate semantics. We start by con-
sidering the events that can happen, and construct a labelled transition system describing this behaviour.
To define the operational semantics, a notion of state is required. States record for each influence, its cur-
rent strength and influence type. Each configuration will have an associated state which will capture the
continuous behaviour in that configuration.

Definition 3.1. An operational state of the system is a function σ : IN → (R×IT ). The set of all operational
states is S. A configuration consists of a controlled system together with an operational state

〈
ConSys, σ

〉
and the set of configurations is F .

We use ‘state’ for ‘operational state’ in the rest of this document. For convenience, states may be written as
a set of triples of the form (ι, r, I(W)) where there is at most most one triple containing ι. This is the same
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Prefix with
influence:

〈
a : (ι, r, I).E, σ

〉
a−→
〈
E, σ[ι 7→ (r, I)]

〉

Prefix without
influence:

〈
a.E, σ

〉
a−→
〈
E, σ

〉
Choice:

〈
E, σ

〉
a−→
〈
E′, σ′

〉〈
E + F, σ

〉
a−→
〈
E′, σ′

〉 〈
F, σ

〉
a−→
〈
F ′, σ′

〉〈
E + F, σ

〉
a−→
〈
F ′, σ′

〉
Cooperation
without
synchronisation:

〈
E, σ

〉
a−→
〈
E′, σ′

〉〈
E BC

M
F, σ

〉
a−→
〈
E′ BC

M
F, σ′

〉 (a 6∈M)

〈
F, σ

〉
a−→
〈
F ′, σ′

〉〈
E BC

M
F, σ

〉
a−→
〈
E BC

M
F ′, σ′

〉 (a 6∈M)

Cooperation
with
synchronisation:

〈
E, σ

〉
a−→
〈
E′, τ

〉 〈
F, σ

〉
a−→
〈
F ′, τ ′

〉〈
E BC

M
F, σ

〉
a−→
〈
E′ BC

M
F ′,Γ(σ, τ, τ ′)

〉 (a ∈M,Γ defined)

Constant:

〈
E, σ

〉
a−→
〈
E′, σ′

〉〈
A, σ

〉
a−→
〈
E′, σ′

〉 (A def
=E)

Fig. 2. Operational semantics for HYPE

〈Heat , σ〉 init−−→ 〈Heat , σ1〉 〈Shade, σ〉 init−−→ 〈Shade, σ3〉

〈Heat BC
init

Shade, σ〉 init−−→ 〈Heat BC
init

Shade, σ3〉

σ = {h 7→ ∗, d 7→ ∗, s 7→ ∗, c 7→ ∗, t 7→ ∗}

σ1 = σ[h 7→ (0, const)] = {h 7→ (0, const), d 7→ ∗, s 7→ ∗, c 7→ ∗, t 7→ ∗}

σ2 = σ[d 7→ (0, const)] = {h 7→ ∗, d 7→ (0, const), s 7→ ∗, c 7→ ∗, t 7→ ∗}

σ3 = Γ(σ, σ1, σ2) = {h 7→ (0, const), d 7→ (0, const), s 7→ ∗, c 7→ ∗, t 7→ ∗}

Fig. 3. Example derivation using Γ (∗ indicates an undefined value)

form as an activity to reflect the fact that the state captures the activities that are currently in effect. The
notion of state here is not a valuation of system variables but rather a collection of flows that occur in the
system.

The operational semantics give a labelled transition system over configurations (F , E ,→ ⊆ F × E × F).
We write F a−→F ′ for (F, a, F ′) ∈ →. In the following, E,F ∈ CSys . The rules are given in Figure 2 and
are fairly standard. In Choice, Prefix without influence, Cooperation without synchronisation and Constant,
states are not changed by the application of the rule. For Prefix with influence, the state needs to be updated,
and for Cooperation with synchronisation, the two new states in the premise of the rule are merged using
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σ0 = {h 7→ (0, const), d 7→ (0, const), s 7→ (0, const), c 7→ (−1, linear(K)), t 7→ (1, const)}
σ1 = {h 7→ (0, const), d 7→ (0, const), s 7→ (rs, const), c 7→ (−1, linear(K)), t 7→ (1, const)}
σ2 = {h 7→ (0, const), d 7→ (−rd, const), s 7→ (0, const), c 7→ (−1, linear(K)), t 7→ (1, const)}
σ3 = {h 7→ (0, const), d 7→ (−rd, const), s 7→ (rs, const), c 7→ (−1, linear(K)), t 7→ (1, const)}
σ4 = {h 7→ (rh, const), d 7→ (0, const), s 7→ (0, const), c 7→ (−1, linear(K)), t 7→ (1, const)}
σ5 = {h 7→ (rh, const), d 7→ (0, const), s 7→ (rs, const), c 7→ (−1, linear(K)), t 7→ (1, const)}
σ6 = {h 7→ (rh, const), d 7→ (−rd, const), s 7→ (0, const), c 7→ (−1, linear(K)), t 7→ (1, const)}
σ7 = {h 7→ (rh, const), d 7→ (−rd, const), s 7→ (rs, const), c 7→ (−1, linear(K)), t 7→ (1, const)}

Fig. 4. The states of the orbiter temperature control system

the function Γ. The updating function σ[ι 7→ (r, I)] is defined as

σ[ι 7→ (r, I)](x) =

{
(r, I) if x = ι

σ(x) otherwise.

The notation σ[u] will also be used for an update, with σ[u1 . . . un] denoting σ[u1] . . . [un]. The partial
function Γ : S × S × S → S is defined as follows.

(Γ(σ, τ, τ ′))(ι) =


τ(ι) if σ(ι) = τ ′(ι),

τ ′(ι) if σ(ι) = τ(ι),

undefined otherwise.

When synchronisation occurs, two states must be merged and the function uses the previous state and the
new states to determine which values have changed and then puts these changed values into the new state. Γ
will be undefined if both the second and third argument differ from the first argument, namely if the values
in the new state both differ from the old state since this represents conflicting updates. Figure 3 illustrates
the use of Γ. We show in Section 5 how we can constrain the syntactic form of our models to ensure that
conflicts do not occur in updates while also ensuring well-structured models.

The next two definitions will be useful in referring to the states of the model.

Definition 3.2. The derivative set of a controlled system P , ds(P ) is defined as the smallest set satisfying

• if 〈P, σ〉 init−−−→〈P ′, σ′〉 then 〈P ′, σ′〉 ∈ ds(P )

• if 〈P ′, σ′〉 ∈ ds(P ) and 〈P ′, σ′〉 a−→〈P ′′, σ′′〉 then 〈P ′′, σ′′〉 ∈ ds(P ).

Definition 3.3. The set of states of the derivative set of a controlled system P is defined as st(P ) = {σ |
〈Q, σ〉 ∈ ds(P )}.

In the TempCtrl model, there are eight states of interest (we have omitted the state before the init event)
given in Figure 4. Each state captures the influences that are currently active. Since the influence strengths
and types of c and t do not change, and each of h, d and s have two possible strengths, there are eight states.
For example, σ3 reflects that the heater (h) is off (and has no effect), the shade (d) is up, the sun (s) is
shining, cooling (c) is happening, and time (t) is passing.

4. Hybrid Semantics

We have defined the labelled transition system via the operational semantics and it captures the discrete
behaviour of the system in terms of events. We now move on to consider the continuous behaviour of the
system. We extract a set of ODEs for each state which appears in a configuration in the labelled transition
system, thus describing the continuous behaviour at that configuration. We will label this set as Pσ where
P is the constant used for the controlled system and σ is the state.

Given a controlled system P , and a derivative 〈P ′, σ〉 ∈ ds(P ), the ODEs associated with the state σ are
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defined as follows.

P ′σ =
{dV

dt
=
∑{

r × JI(W)K
∣∣ iv(ι) = V and σ(ι) = (r, I(W))

} ∣∣∣ V ∈ V}
For each variable, we identify the influences that are associated with that variable, and then, using the
information in the state, the ODE is contructed from the product of the strength and type of each influence.
The influence type allows the variables on which the variable depend to appear in the ODE. Hence, for each
state, we have a collection of ODEs, one for each variable V . We keep influence strength and influence type
separate since in many examples, the influence strength varies whereas the influence type does not, allowing
a fine-grained description of dynamics. For a discussion of the range of ODEs expressible in HYPE, refer to
Section 9.

We obtain the following ODE from σ3.

TempCtrlσ3
=
{dK

dt
= rs − rd −K,

dT

dt
= 1
}

Therefore, this process enables us to obtain ODEs describing how the continuous part of the system evolves,
and we have different sets of ODEs to describe the different dynamics that can be in operation. We wish
to combine this information with the event conditions already defined and an obvious way to do this is
to translate this information into a hybrid automaton. Therefore, this well-supported formalism provides a
powerful back-end for HYPE.

Hybrid automata are dynamic systems presenting both discrete and continuous evolution. They consist of
variables evolving continuously in time, subject to abrupt changes induced by discrete instantaneous control
events. When discrete events happen the automaton enters its next mode, where the rules governing the flow
of continuous variables change. See [Hen96] for further details.

Definition 4.1. A hybrid automaton is a tuple H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent),
where

• X = {X1, . . . , Xn} is a finite set of real-valued variables. The time derivative of Xj is Ẋj , and the value
of Xj after a change of mode is X ′j .

• The control graph G = (V,E) is a finite labelled multigraph. Vertices in the set V are the (control) modes,
while edges in the multiset E are called (control) switches and model the happening of a discrete event.

• Associated with each vertex v ∈ V there is a set of ordinary differential equations Ẋ = flow(v) referred
to as the flow conditions, where flow(v) is a vector field from Rn to Rn. Moreover, init(v) and inv(v) are
two formulae on X specifying the admissible initial conditions and some invariant conditions that must
be true during the continuous evolution of variables in v.

• Edges e ∈ E of the control graph are labelled by an event event(e) ∈ E and by jump(e), a formula on
X stating for which values of variables each transition is active, and by reset(e), a formula on X ∪X′

specifying the change of the variables’ values after the transition has taken place. Moreover, each edge
e ∈ E can be declared urgent, by setting to true the boolean flag urgent(e), meaning that the transition
is taken at once when jump(e) becomes true. Otherwise, the transition can be taken nondeterministically
whenever jump(e) is true. Two edges with the same vertices must differ in at least one of event , jump or
reset .

Definition 4.2. Given a hybrid automaton H, an (automaton) state is a pair (v,x) for v ∈ V and x =
(x1, . . . , xn) a tuple of values in Rn.

Consider a HYPE model (P0,V, IN , IT , E ,A, ec, iv ,EC , ID) with initial configuration 〈P0, σ0〉 ∈ F . For
P0 the only possible transition is the event init. Let 〈P, σ〉 be the configuration reached after its occurrence,
〈P0, σ0〉 init−−−→〈P, σ〉. We introduce some notation for ease of referring to event conditions.

Definition 4.3. Given a HYPE model with ec : E → EC , let ec(a) = (act(a), res(a)) where act(a) describes
the activation condition for event a and res(a) which describes the reset for event a.

Definition 4.4. The hybrid automaton H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent) can be
obtained from the HYPE model (P0,V, IN , IT , E ,A, ec, iv ,EC , ID) as follows.

• The set of modes V is the set of configurations reachable in 0 or more steps from 〈P, σ〉, namely ds(P0).
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Fig. 5. Hybrid automaton of the orbiter temperature control system

• The edges E of the control graph connect two modes (v1, v2) iff v1 = 〈P1, σ1〉, v2 = 〈P2, σ2〉 and
〈P1, σ1〉 a−→〈P2, σ2〉 is a derivation for some a.

• X = V is the set of variables of the HYPE system.

• E is the set of events E of P0.

• Let vj = 〈Pj , σj〉, then flow(vj)[Xi] =
∑
{rJI(W)K | iv(ι) = Xi and σj(ι) = (r, I(W))}.

• init(v) =

{
res(init), if v = 〈P, σ〉
false, otherwise

with primes removed from variables5.

• inv(v) = true.

• Let e = (〈P1, σ1〉, 〈P2, σ2〉) with 〈P1, σ1〉 a−→〈P2, σ2〉. Then event(e) = a and reset(e) = res(a). Moreover, if
act(a) 6= ⊥, then jump(e) = act(a) and urgent(e) = true, otherwise jump(e) = true and urgent(e) = false.

Given a HYPE model P , we denote its hybrid automaton as H(P ). As long as there is a finite number of
subcomponents (since infinite sum is not possible) and a finite number of controller components, then the
number of modes is finite6. Figure 5 shows the HYPE model from the example as a hybrid automaton. Note
that in this case, which modes are visited is determined by the values of ki, i = 0, . . . , 4.

We do not use invariants in HYPE models because they are specific to modes of the hybrid automata,
which are obtained in HYPE as the possible configurations of the controlled system. This implies that
invariants should be specified within the controlled system, not orthogonally as for event conditions. This
conflicts with the modelling philosophy of HYPE. However, the behaviour of invariants can be obtained in
our setting by incorporating them in the activation condition of events, that is by forcing events to happen
as soon as the conditions that would have been specified by an invariant become false.

The behaviour of a hybrid automaton can be defined in terms of a transition system [Hen96].

Definition 4.5. The timed transition system of a hybrid automaton has a set of states S ⊆ V × Rn with
initial states S0 and transitions labelled with elements from E ∪ R such that

1. (v,x) ∈ S whenever inv(v)(x) holds and (v,x) ∈ S0 whenever init(v)(x) holds.

2. (v,x) a−→(v′,x′) whenever there is an edge e ∈ E such that e = (v, v′), event(e) = a, jump(e)(x) and
reset(e)(x,x′) both hold.

5 res(init) is a reset so uses primed variables to refer to the new values of variables whereas init(v) is an initialisation condition
and refers to variables without primes.
6 To ensure finiteness of controller components, recurrent controller components with increasing indices should be avoided, for
example Coni

def
= a.Coni+1. This type of unbounded controller is unlikely to be required when modelling hybrid systems, and

hence a maximum controller can be specified, for example Conn
def
= a.0.
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Fig. 6. Traces for the orbiter with shade and heating (left) and without shade and heating (right) where rh = 200, rd = 100,
rs = 400, k0 = 350, k1 = 250, k2 = 250, k3 = 300 and k4 = 300.

3. (v,x) τ−→(v′,x′) whenever v = v′ and there is a differentiable function f : [0, τ ]→ Rn with first derivative
f ′ : (0, τ)→ Rn such that f(0) = x and f(τ) = x′ and for all t ∈ (0, τ), inv(v)(x) holds and flow(v)(x) =
f ′(x). Moreover, for all t ∈ (0, τ) and all e = (v, u) ∈ E with urgent(e) = true, jump(e)(f(t)) = false.

The third condition of this definition ensures that a transition associated with the passing of time can
only proceed if no jump condition becomes true for an urgent edge. Therefore continuous behaviour can only
continue if a mode change is not required. Note that for our mapping of HYPE models to hybrid automata,
this definition is somewhat simplified by the lack of invariants.

Definition 4.6. Given a timed transition of a hybrid automaton, a trace of the hybrid automaton is a
sequence of the form (v0,x0) ρ0−−→(v1,x1) ρ1−−→ . . . where (vi,xi) ∈ S, (v0,x0) ∈ S0 and ρi ∈ E ∪ R.

With the appropriate software, we can construct simulations of our HYPE models, and demonstrate their
traces graphically. Note that HYPE models are not necessarily deterministic. The presence of non-urgent
transitions can introduce non-determinism, as can choice between events when activation conditions become
true in the same time instant. In the case of the orbiter, we do have determinism. A trace is demonstrated
in the left graph of Figure 6 for the parameters rh = 200, rd = 100, rs = 400, k1 = 250, k2 = 250, k3 = 300,
k4 = 300 and k0 = 350. If we remove the temperature controls in the orbiter, we obtain the right hand graph
which demonstrates the temperature extremes which can be achieved. This graph is based on the HYPE
model

((Sun BC
{init}

Cool(K)) BC
{init,light,dark}

Time) BC
{init,light,dark}

init.Cons

This section has defined the semantics of HYPE models, both discrete and continuous. In the example,
the subcomponents of the orbiter have a very specific form which is not required by the HYPE definition
which is more liberal. In the next two section, we consider how constraining some aspects of models can
result in models with desirable behaviour.

5. Well-defined HYPE models

Now that we have defined the behaviour of HYPE models, we wish to specify a subset of HYPE models that
have “good” structure and behaviour. We introduce the notion of a well-defined HYPE model and reason
about how this notion affects derivation of transitions specifically where the cooperation operator is used.
First we require some auxiliary definitions.

Definition 5.1. Given a controlled system P , the set of events, ev(P ) is defined structurally as

ev(a :α.S) = {a} ev(a.S) = {a} ev(S1 + S2) = ev(S1) ∪ ev(S2) ev(P1 BC
L
P2) = ev(P1) ∪ ev(P2)

Definition 5.2. Given a controlled system P , the set of influences, in(P ) is defined structurally as

in(a : (ι, r, I(W)).S) = {ι} in(a.S) = ∅ in(S1 + S2) = in(S1) ∪ in(S2) in(P1 BC
L
P2) = in(P1) ∪ in(P2)
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Definition 5.3. Given a controlled system P , the set of prefixes, pr(P ) is defined structurally as

pr(a :α.S) = {a :α} pr(a.S) = ∅ pr(S1 + S2) = pr(S1) ∪ pr(S2) pr(P1 BC
L
P2) = pr(P1) ∪ pr(P2)

Definition 5.4.

A well-defined controlled system has the following properties.

1. Subcomponents have the form S(W) def
=
∑n
j=1 aj :(ι, rj , Ij(W)).S(W)+init:(ι, r, I(W)).S(W) where n ≥ 0,

aj 6= ak for j 6= k and aj 6= init for all j.

2. For each pair of subcomponents Si and Sj , in(Si) ∩ in(Sj) = ∅ for i 6= j.

3. For a component Ci BC
L
Cj , ev(Ci) ∩ ev(Cj) = L.

4. For the uncontrolled system Σ, ev(Σ) = E and in(Σ) = IN .

5. For the controlled system Σ BC
L

init.Con, ev(Σ) ∩ ev(init.Con) = L and ev(Con) ⊆ ev(Σ).

This definition ensures that HYPE models are built up out of individual flows in a consistent manner. Each
subcomponent captures the events that affect a particular influence and this influence is linked to a variable
by the function iv . The first two conditions ensure a one-to-one relationship between subcomponents and
influence names. The third and fifth conditions ensure that when an event happens, all subcomponents and
controllers react to it. We use the symbol BC∗ in HYPE models to show when these two conditions hold in
a model. The fourth condition ensures there are no unused events or influence names, and is useful to know
when defining the synchronisation of two HYPE models. The orbiter is a well-defined HYPE model.

The fifth condition permits events to appear in the uncontrolled system that do not appear in the
controller, since not all events need to depend causally on other events, and we do not wish to compel
modellers to define a controller for each of these events. However, for simplicity of definitions, in the remainder
of this document, we will assume that there is a controller for each event u that does not appear in any
defined controller, with the form Conu

def
= u.Conu.

Not only does well-definedness ensure our models have a specific form that exemplifies how we build
them, but as we will show in Section 8 this form is useful when we consider equivalence semantics and reason
about the behaviour of our models. Note that we also impose, through the definition of a HYPE model,
the conditions that resets and initial values are deterministic, namely a single value is defined. Additionally,
activation conditions define closed sets, as guaranteed by the use of nonstrict inequalities and of positive
boolean formulae to combine them.

We now present a result that follows from well-definedness. The function Γ used in the cooperation
rules, is always defined. This ensures that it is always possible to derive a transition for two components in
cooperation.

Proposition 5.1. Let E and F be components of a well-defined HYPE model such that 〈E, σ〉 a−→〈E′, τ〉
and 〈F, σ〉 a−→〈F ′, τ ′〉 then the transition 〈E BC

M
F, σ〉 a−→〈E′ BCM F ′,Γ(σ, τ, τ ′)〉 is always possible for a ∈M .

Proof. The first two conditions of well-definedness ensure that each subcomponent is associated with exactly
one influence name and vice versa. Therefore in(E) ∩ in(F ) = ∅. Let ι be an influence name appearing in E.
Since it does not appear in F , σ(ι) = τ ′(ι) since it cannot have been modified in the derivation of F , hence
(Γ(σ, τ, τ ′))(ι) is defined. A similar argument can be applied to influence names appearing in F and not E.
Hence Γ(σ, τ, τ ′) is defined.

Additionally, we provide a result about the form that the configurations of a HYPE model take.

Proposition 5.2. If P is a well-defined HYPE model with controlled system P def
= Σ BC∗ init.Con then

ds(P ) = {〈Σ BC∗ Con, τ〉, 〈Σ BC∗ D1, σ1〉, . . . , 〈Σ BC∗ Dn, σn〉} where, for arbitrary state σ, the derivative set
of the controller is ds(init.Con) = {〈Con, σ〉, 〈D1, σ〉, . . . , 〈Dn, σ〉}. Moreover, each Σ BC∗ Di is well-defined.

Proof. First note that by the particular form of Σ imposed by well-definedness, for any event a that appears
in Σ, 〈Σ, ρ〉 a−→〈Σ, ρ′〉 for some states ρ, ρ′. This means that the configurations of Σ BC∗ Con are totally
determined by the events that are allowed by the controller. Moreover, the value of σ in ds(Con) does not
determine these events. Additionally, BC∗ is a static operator. For well-definedness, note that Conditions 1-4
in Definition 5 hold for Σ since Σ BC∗ init.Con is well-defined, and Condition 5 is only required to hold of
the system before the event init has occurred.
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We can also reason about derivatives and the relationship between states. In well-defined HYPE models,
subcomponents are defined as a number of simple loops, reflecting events that can occur and the associated
changes in the continuous part of the system. For such systems, we can show that the current state in a
configuration does not determine which future events happen (only the controller can influence this) and
hence the state can be discounted in certain settings.

The next proposition shows how, if we know how one state is related to a prior state, then we can conclude
that a similar relationship holds if we use a different state. Additionally, we can express a state modification
in terms of the a minimum number of updates, one for each influence that changes.

Proposition 5.3. In a well-defined controlled system, if 〈P ′, σ[ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)]〉 is a deriva-
tive of 〈P, σ〉, then 〈P ′, τ [ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)]〉 is a derivative of 〈P, τ〉. Moreover, it is the case
that σ[ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)] = σ[ι′1 7→ (r′1, I

′
1)] . . . [ι′m 7→ (r′m, I

′
m)] for m ≤ n where each influence

name ι′k appears at most once.

Proof. We first consider the single step case and prove this by induction on the the height of the derivation
of the transition. Symmetrical cases have been omitted.

Prefix with influence P ≡ a : (ι, r, I).P1 so 〈a : (ι, r, I).P1, σ〉 a−→〈P1, σ[ι 7→ (r, I)]〉. Similarly, we also have
〈a : (ι, r, I).P1, τ〉 a−→〈P1, τ [ι 7→ (r, I)]〉.

Prefix without influence P ≡ a.P1 so 〈a.P1, σ〉 a−→〈P1, σ〉. Similarly, 〈a.P1, τ〉 a−→〈P1, τ〉.
Choice P ≡ P1 + P2 so 〈P1, σ〉 a−→〈P ′, σ[ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)]〉 by a shorter inference. By the

inductive hypothesis, it is the case that 〈P1, τ〉 a−→〈P ′, τ [ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)]〉, and therefore
〈P1 + P2, τ〉 a−→〈P ′, τ [ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)]〉.

Cooperation without synchronisation P ≡ P1 BC
L
P2 with a 6∈ L so we know that 〈P1, σ〉 a−→〈P ′, σ[ι1 7→

(r1, I1)] . . . [ιn 7→ (rn, In)]〉 by a shorter inference. Straightforward.

Cooperation with synchronisation P ≡ P1 BC
L
P2 with a ∈ L. We have the transitions 〈P1, σ〉 a−→〈P ′1, σ′1〉

and 〈P2, σ〉 a−→〈P ′2, σ′2〉 by a shorter inference where σ′1 = σ[η1 7→ (s1, J1)] . . . [ηm 7→ (sm, Jm)] and σ′2 =
σ[ξ1 7→ (t1,K1)] . . . [ξp 7→ (tp,Kp)] such that Γ(σ, σ′1, σ

′
2) = σ[ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)] with

P ′ ≡ 〈P ′1 BCL P ′2,Γ(σ, σ′1, σ
′
2)〉. So by the inductive hypothesis 〈P1, τ〉 a−→〈P ′1, τ ′1〉 and 〈P2, τ〉 a−→〈P ′2, τ ′2〉

where τ ′1 = τ [η1 7→ (s1, J1)] . . . [ηm 7→ (sm, Jm)] and τ ′2 = τ [ξ1 7→ (t1,K1)] . . . [ξp 7→ (tp,Kp)] and

〈P, τ〉 a−→〈P ′1 BCL P ′2,Γ(τ, τ ′1, τ
′
2)〉. Note that Γ(τ, τ ′1, τ

′
2) = τ [ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)] since the same

influences have been updated to the same values, and Γ is defined piecewise over influences.

Constant Straightforward.

We can use an identical proof to go from an (n − 1)-step derivation to an n-step derivation. Hence by
induction, over the length of the derivation, this result holds for all derviations.

Finally, because of the lack of dependence on previous states in the labelled transition system, it is
possible to reduce the number of updates by only retaining the last update for a given influence name ι.

The next proposition shows that the state is irrelevant when considering the actions that can be performed
by a system.

Proposition 5.4. The labelled transition systems of 〈P, σ〉 and 〈P, τ〉 are isomorphic if P is well-defined.

Proof. This can be proved using Proposition 5.3.

We can also consider what happens to a system after the first init event. Note that the definition of a well-
defined controlled system requires that the first transition be an init event since all events must appear in the
cooperation set and Con is prefixed by init. The following proof shows that the starting state is irrelevant
since the init action will set every value in the state.

Proposition 5.5. Let P be a well-defined controlled system. If 〈P, σ〉 init−−−→〈P ′, σ′〉 and 〈P, τ〉 init−−−→〈P ′, τ ′〉
then σ′ = τ ′.

Proof. By definition of a well-defined controlled system, there is a prefix containing init and ι for every ι in
the controlled system. Assuming A = {ι1, . . . ιn} which appear in the controlled system and no others, then
a state σ maps each ι to a rate and influence type pair. After an init each ι will be updated and the state
before the transition is irrelevant, namely σ′ = σ[ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)] = ∅[ι1 7→ (r1, I1)] . . . [ιn 7→
(rn, In)] = τ [ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)] = τ ′ by Proposition 5.3.
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6. Well-behaved HYPE models

We have considered the syntactic form that HYPE models can take, and the advantages of this at the level
of the labelled transition system. We now consider a notion of behaviour that ensures our models show
reasonable behaviour, and motivate it by considering the underlying hybrid automaton of the model.

Definition 6.1. A HYPE model P is well-behaved if it has a finite number of finite sequences of simultaneous
instantaneous events and these sequences are independent of the initial state of the system.

This ensures that our models cannot perform an infinite number of discrete steps in a single time instant.
We call this unwanted behaviour instantaneous Zeno behaviour by analogy with Zeno behaviour which
describes the possibility of an infinite number of steps in a finite time period. Our focus on this unwanted
instantaneous behaviour is informed by our later work [BGH10a] where we consider Piecewise Deterministic
Markov Processes [Dav93] as a semantic model which excludes this behaviour.

We now characterise well-behaved HYPE models in terms of their event conditions and controllers by
constructing an instantaneous activation graph or I-graph for a model, and checking it for acyclicity.

The I-graph captures information about the flow of data in the HYPE model. It simulates the behaviour
of the instantaneous transitions so that each sequence of simultaneous instantaneous events corresponds to
a path in the graph. This overapproximates behaviour since it is based on constraints imposed by the event
conditions and the controller only, and does not take account of changes that occur due to initial conditions
or continuous flow. This means additional information that could further constrain the possible values is
ignored. This is an appropriate approach to take because we want to reason about the HYPE model without
investigating its full behaviour.

For each event, we consider the intersection between its activation region (the set of points making the
activation condition true for the event) and its reset region (the set of points reachable immediately after
the occurrence of the event). Such set-based constraints thus take into account overlap only at the set level
and not at the single value level. This means that the I-graph does not capture the changes in the value of a
variable, only the regions that these values can fall into. When necessary, we also overapproximate activation
and reset regions with computable sets to ensure that testing for acyclicity of an I-graph is decidable.

We will show that if no cycles are found in the I-graph, then instantaneous Zeno behaviour is not
possible in the HYPE model (which, in this context, means in the hybrid automaton), but we cannot know
the converse – a cycle in the graph does not guarantee that there is instantaneous Zeno behaviour in the
model since these are overapproximations.

We start with some preliminary definitions.

Definition 6.2. Given an event a, V(a) is the set of variables that appear explicitly in ec(a) = (act(a), res(a)).

Hence V(a) contains all of the variables in V except those that have implicit identity resets for a. From this,
we can define when two events have disjoint (explicit) variables.

Definition 6.3. Events a and b are independent if V(a,b) = V(a) ∩ V(b) = ∅.

We wish to investigate the overlap of values between resets of one event and activation conditions of another,
and also take into account the scheduling of events by the controller. Let ra be the reset res(a), expressed
as a function.

Definition 6.4. For any event a, let Ga = {x ∈ Rn | act(a) is true for x} and Ra = ra(Ga)

Ga describes all points at which act(a) is true and hence the event a is active, and Ra takes an image
of this set, so we can consider Ra as all possible values that the system can take after the occurrence of
a. For V 6∈ V(a), the value associated with V will be R. We can then determine enablers and inhibitors of
events. In the following definition, π{Vi1

,...,Vip}(A) ⊆ Rp for A ⊆ Rn is the projection of A to the coordinates
associated with variables Vi1 , . . . , Vip .

Definition 6.5. Consider two non-independent events a and b of an HYPE model. Then

• a is a (potential) enabler of b if and only if πV(a,b)(Ra) ∩ πV(a,b)(Gb) 6= ∅;
• a is an inhibitor of b if and only if πV(a,b)(Ra) ∩ πV(a,b)(Gb) = ∅.
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Fig. 7. Two tanks with separate inputs and joint output

This definition considers how the resets of one event can affect whether another event can happen im-
mediately after it. We can use these ideas as the basis for constructing a graph that captures the possible
sequences of instantaneous events.

As mentioned in the previous section, we assume a controller for every uncontrolled event u of the form
Conu

def
= u.Conu. It is not sufficient only to require that uncontrolled events inhibit themselves (an obvious

condition to avoid infinite instantaneous sequences of the same event) since their event conditions may
interact with the event conditions of other events, and hence we must consider these controllers from the
beginning of the construction of the I-graph.

First, we let ds(init.Con) = {C1, . . . , Cm} be the controller states (by applying the definition of ds in the
obvious manner to the controller, and then ignoring the state which is identical for each controller derivative).
The state init.Con is not in this set. Let the instantaneous events appearing in the controller be {a1, . . . , ak}
and ev(Ci) is the subset of events that can be executed in mode Ci of the controller. Note that we are not
working compositionally here. For a vector κ of k values, we write κ[i ← u] to represent the ith position
being updated with the value u. This vector will record which events are enabled and which are inhibited.

Definition 6.6. Given a HYPE model P with controller Con, the instantaneous activation graph, or I-graph,
is given by GP (Con) = (VP (Con), EP (Con)) where vertices are defined by

VP (Con) =
⋃

Ci∈ds(init.Con)

(
{Ci} × ev(Ci)× {0, 1}k

)
⊆ {C1, . . . , Ck} × {a1, . . . , ak} × {0, 1}k.

The edge (Ci, ai, κi)→ (Cj , aj , κj) belongs to EP (Con) if and only if

1. 〈Ci, σ〉 ai−→〈Cj , σ〉 is a transition in the labelled transition system of the controller,

2. κi[i] = 1,

3. κj [j] = 1,

4. κj = κi[k1 ← 0] . . . [ks ← 0][l1 ← 1] . . . [lr ← 1] where ak1 , . . . , aks are the events for which ai is an
inhibitor and al1 , . . . , alr are the events for which ai is an enabler.

The boolean vector κ records if an event is enabled or not. Hence, the second condition ensures that ai can
fire and the third condition ensures that an edge is only added when it is possible for the next action to
fire – this reduces the number of edges in the graph. The fourth condition encodes the updating of what is
enabled. A node (C, a, κ) describes being in the state C with a as the next action together with a vector
describing which events are possible before the event a has occurred. The I-graph represents information
about the structure of the controller and the event conditions of a HYPE model.

We now introduce an example to illustrate how this construction works. Figure 7 shows two tanks that
each have an input, and which are drained to a common pipe with a switch that allows liquid to be drained
from either tank A or tank B. Once A is empty, the tap is switched for B to drain and vice versa. Each tank
stops filling once it is full with capacity cA or cB , and a very small amount of liquid is lost reducing the level
by a small amount, say l which is much smaller than either capacity. The initial state of the model is when
tank A is draining and B is filling and the initial values are between empty and full. The HYPE model is
now defined. Here we use ‖ for BC

∅
.
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InA
def
= fullA:(inA, 0, c).InA + emptyB :(inA, rin, c).InA + init:(inA, rin, c).InA

OutA
def
= emptyA:(outA, 0, c).OutA + emptyB :(outA,−rout, c).OutA + init:(outA,−rout, c).OutA

InB
def
= fullB :(inB , 0, c).InB + emptyA:(inB , sin, c).InB + init:(inB , sin, c).InB

OutB
def
= emptyB :(outB , 0, c).OutB + emptyA:(outB ,−sout, c).OutB + init:(outB , 0, c).OutB

CA
def
= fullA.CA CB

def
= fullB .CB

CdA
def
= emptyA.CdB CdB

def
= emptyB .CdA

System def
= ((InA BC

N
OutA) BC

N∪M
(InB BC

M
OutB)) N = {emptyB , init}

BC
L

init.(CA ‖ CB ‖ CdA) M = {emptyA, init}
L = {fullA, fullB} ∪N ∪M

iv(ιA) = A iv(ιB) = B

ec(emptyA) = (A = 0, true) ec(fullA) = (A = cA, A
′ = cA − l)

ec(emptyB) = (B = 0, true) ec(fullB) = (B = cB , B
′ = cB − l)

ec(init) = (true, A′ = A0 ∧B′ = B0) JcK = 1

Fig. 8. HYPE model of the two tanks

C1 C2 fullA, fullBfullA, fullB

emptyA

emptyB

Fig. 9. Labelled transition system of the controller for the two tanks model

The HYPE model is given in Figure 8. The values of rin, rout, sin, sout determine the behaviour of the
system. Since the system starts with tank A draining, if rin ≥ rout then liquid will only be taken from tank
A. When rin > rout then the tank will fill repeatedly. If rin < rout and sin ≥ sout then there will be a single
switch to tank B after which all liquid will be drained by tank B. This means that the most interesting
behaviour occurs in the situation when rin < rout and sin < sout.

Figure 9 gives the labelled transition system of the controller for the two tanks model. Recall that the
labelled transition system does not consider event conditions. Here C1 = CA ‖ CB ‖ CdA and C2 = CA ‖
CB ‖ CdB . There are many cycles in this system, but for the purposes of this example, the two of interest
are the infinite sequence of events that consists of emptyA, emptyB repeated, and the infinite sequence that
consists of fullA, fullB , emptyA, emptyB . The I-graph for this controller is given in Figure 10. It only includes
vertices that are reachable from vertices where κ consists of ones. As can be seen, it is not possible to obtain
the second of the sequences, since fullA inhibits emptyA and fullB does not enable it. In fact, there are no
cycles involving fullA or fullB . However, the cycle consisting of emptyA, emptyB is possible, and it occurs
when the levels of tanks A and B are both initialised to zero. Otherwise, by induction on the number of
emptyA and emptyB that have fired, it can be shown that the cycle does not happen. This example shows
both the limits of I-graphs but also how it is possible to detect undesirable situations.

Note that by having a separate controller, we are able to reason about the behaviour of the model, and
either show that certain bad behaviours do not happen, or at least alert the modeller to the possibilities of
these behaviours, which then may be ruled out by further investigation of specific parameters of the model.
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C1
fullB
0011

C1
emptyA
1100

C1
fullA
1100

C2
fullB
0111

C2
emptyB
0111

C1
fullA
1111

C1
fullB
1111

C1
emptyA
1111

C1
emptyA
0101

C2
fullA
1111

C2
fullB
1111

C2
emptyB
1111

C2
emptyB
0101

C2
fullB
0011

C2
emptyB
0011

C2
fullA
1100

C1
fullA
1101

C1
emptyA
1101

Fig. 10. I-graph for the two tanks model where the order of the κ vector is fullA, emptyA, fullB , emptyB .

6.1. Ensuring well-behavedness

We now define the property of the I-graph that ensures its HYPE model is well-behaved.

Theorem 6.1. A HYPE model with an acyclic I-graph is well-behaved.

Earlier, we defined a HYPE model as well-behaved by the absence of infinite sequences of instantaneous
events. Since the detailed behaviour of a HYPE model is defined in terms of a hybrid automaton, this result
must be proved in terms of hybrid automata and we introduce the appropriate definitions to achieve this.
First, we define a notion of behaviour in a hybrid automaton.

Definition 6.7. Given a hybrid automaton H, a sequence of simultaneous instantaneous events is a finite
or infinite trace

(vi1 ,xi1)
ai1−−→(vi2 ,xi2)

ai2−−→(vi3 ,xi3)
ai3−−→ . . .

such that the events happen in the same time instance, act(aik) is true for xik and res(aik) maps xik to
xik+1

This implies that act(aik) 6= ⊥ for all ik which is correct because we are only considering events that happen
in the same time point rather than after some unspecified delay. From this definition, we can prove the
following lemma.

Lemma 6.1. Given a HYPE model P , let (vi,xi)
ai−→(vj ,xj)

aj−→ be a sequence of simultaneous instantaneous
transitions in H(P ) then xj ∈ Rai

∩Gaj
.

Proof. By definition of the behaviour of hybrid automata.
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Definition 6.8. Given a well-defined HYPE model P def
= Σ BC∗ init.Con, and a configuration v = 〈Σ BC∗ C, σ〉

in H(P ), con(v) = C. For an automaton state (v,x), con((v,x)) = con(v).

Since P is well-defined, the model must have the form 〈Σ BC∗ C, σ〉 and additionally, C ∈ ds(init.Con), both
from Proposition 5.2.

We now have the following results about I-graphs relating them to the behaviour of a hybrid automaton.

Lemma 6.2. Given a HYPE model P , let (vi1 ,xi1)
ai1−−→(vi2 ,xi2)

ai2−−→(vi3 ,xi3)
ai3−−→ . . . be an infinite or finite

sequence of instantaneous events firing in the same time instant in H(P ). Then

(con(vi1), ai1 , 1
h)→ (con(vi2), ai2 , κi2)→ (con(vi3), ai3 , κi3)→ . . .

is a path in G, the I-graph of P where κik+1
is constructed from κik as described in Definition 6.6.

Proof. First we consider the induction step. Suppose (vik−1
,xik−1

)
aik−1−−−−→(vik ,xik)

aik−−→(vik+1
,xik+1

)
aik+1−−−→ and

we know that (con(vik−1
), aik−1

, κik−1
)→ (con(vik), aik , κik). We need to show that the I-graph contains the

edge (con(vik), aik , κik)→ (con(vik+1
), aik+1

, κik+1
). The transition (vik ,xik)

aik−−→(vik+1
,xik+1

) is only possible
if there is a transition in the labelled transition system of P , and moreover, this is only possible if there is
such a transition in the controller, so 〈con(vik), σ〉 aik−−→〈con(vik+1

), σ〉.
Since (vik ,xik)

aik−−→(vik+1
,xik+1

)
aik+1−−−→ and by Lemma 6.1, aik must have been enabled hence κik [ik] = 1.

Similarly, since (vik+1
,xik+1

)
ak+1−−−→, we know κik+1

[ik+1] = 1. Finally, κik is correct by induction and κik+1
is

an update of κik taking into account which events aik has enabled and inhibited. Since there is a node with
Cik+1

and aik+1
for each possible κ, the edge can be constructed. Hence the four conditions to be satisfied

for an edge in the I-graph have been satisfied.
Returning to the base case, the same argument can be used for the first condition and third condition, the

second condition is immediate and the fourth condition follows since κi2 captures which events are inhibited
by ai1 .

This lemma allows us to now prove the theorem stated at the start of this section, and thereby characterise
the I-graphs that give us well-behaved HYPE models.

Proof of Theorem 6.1: For a HYPE model P , we need to show that H(P ) has a finite number of finite
sequences of instantaneous events that can fire in the same time instance and these sequences are independent
of the initial state of the system.

From Lemma 6.2, the I-graph of a HYPE model captures the sequences of instantaneous events which
can occur in the execution of H(P ) since by construction, all events appear in the controller. If there are
no cycles in the I-graph, which is finite by construction, then there are no infinite sequences possible in the
execution. Since an I-graph is finite, there can only be a finite number of finite sequences in H(P ). Finally,
since there are nodes in the I-graph where the vector κ consist of 1’s which means that all events are active,
this graph is independent of the initial state.

6.2. Results for well-behaved HYPE models

We have now defined well-behavedness for HYPE models and shown how the I-graph of the model can be
used to check for this behaviour. Additionally, this has been related to the hybrid semantics of the models.
We now consider the implications of this definition and result and how we can ensure that it is a decidable
property. As mentioned above, it is not always practicable to determine Ga or Ra. We can extend the
definition of an I-graph as follows.

Definition 6.9. Consider a HYPE model with Ra = ra(Ga) for each event a, and let R′a, G
′
a ⊆ Rn, be a

collection of sets such that for all a, Ra ⊆ R′a and Ga ⊆ G′a. These sets are called extended sets.

Definition 6.10. An extended I-graph of a HYPE model is defined in the same manner as its I-graph but
where extended sets are used to determine enablers and inhibitors.

Our result from the previous section can be carried over to extended sets and hence if the exact sets are
not computable or very hard to compute, we can work with an overapproximation.

Theorem 6.2. A HYPE model with an acyclic extended I-graph is well-behaved.
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Proof. By increasing the size of the sets of values for activation conditions and resets, additional edges may
be added to the I-graph but no edge can be removed. Hence if the extended I-graph is acyclic, so is the
I-graph.

Corollary 6.1. Checking whether a HYPE model with computable extended sets has an acyclic I-graph is
decidable.

Proof. Since an I-graph is finite, and the sets can be computed, it can be effectively constructed and checked
for acyclicity.

If we know the controller has a specific cyclic form, we can also investigate conditions that will prevent a
cycle from occurring in the I-graph. These results apply in the case of extended sets as well.

Proposition 6.1. Let P be a HYPE model with Con def
= a1. . . . .an.Con. If the resets for all ai are the identity

and ∩ai∈ConGai
= ∅ then P is well-behaved. It is straightforward to see that Ra = Ga and at some point

there is no overlap between the sets of two different events.

Proof. The only possible cycle is that consisting of the events a1, . . . , an repeated. Moreover, ∩ai∈ConGai
= ∅

implies that there exist j and k such thatGaj
∩Gak

= ∅. AdditionallyRai
= Gai

for all i. HenceRaj
∩Gak

= ∅
and Raj

∩Gak
= ∅ and hence these events inhibit each other and prevent the formation of a cycle in the

I-graph.

Proposition 6.2. Let P be a HYPE model with Con def
= a1. . . . .an.Con. If there exists i such that Rai

∩Gai+1

is empty (where addition is modulo n) then P is well-behaved.

Proof. The lack of overlap of values at one point in the sequence of the controller prevents a cycle in the
I-graph.

Now that we have presented the basic theory of well-definedness, we can consider how this can be applied
compositionally. We prove the results for the collections of sets Ga and Ra, but since none of the results
depend on the set being minimal, they also apply to extended sets. The first result is to be expected since
the events of the two systems cannot affect each other.

Proposition 6.3. Let Con and Con ′ be two controllers such that all events in Con are pairwise independent
from those of Con ′. If Con and Con ′ are well-behaved then Con ‖ Con ′ is well-behaved.

Proof. The independence of events implies that ev(Con)∩ev(Con ′) = ∅, hence the use of ‖. Let the G be the
I-graph of Con BC∗ Con ′. Its vertices are in the set ds(init.(Con BC∗ Con ′))× (ev(Con) ∪ ev(Con ′))× {0, 1}h.
Assume there is an cycle in G. We will show it is possible to construct a cycle in H, the I-graph of Con.

Let (C1 BC∗ C ′1, a1, κ1)→ (C2 BC∗ C ′2, a2, κ2)→ (C3 BC∗ C ′3, a3, κ3) be a subpath of the cycle in G such
that a3 ∈ ev(Con) and a2 ∈ ev(Con ′). Since the events of the two controllers are disjoint, C2 = C3. Since the
events of Con and Con ′ are pairwise independent, a2 can have no effect on the activation of a3 and hence
κ2[3] must be 1.

Therefore, we know there is an edge (C1 BC∗ C ′1, a1, κ1)→ (C3 BC∗ C ′3, a3, κ3) and (C2 BC∗ C ′2,b2, κ2) can
be removed from the cycle, while ensuring a cycle remains. Similarly all other events from Con ′ can be
removed from the cycle and the remaining cycle will consist only of events from Con1. If we modify the
vertices of G by changing any Ci BC∗ C ′i to Ci and appropriately removing elements from the vectors, we
obtain vertices from H. Moreover, this cycle must appear in H since it is constructed purely with reference
to events in Con. Thus, we have a contradiction.

Proposition 6.4. Let Con and Con ′ be two controllers such that for all a ∈ ev(Con) \ ev(Con′) and for
a′ ∈ ev(Con′) \ ev(Con), no a activates an a′ and no a′ activates an a. If Con and Con ′ are well-behaved
then Con BC∗ Con ′ is well-behaved.

Proof. Let theG be the I-graph of Con BC∗ Con ′ with vertices ds(init.(Con BC∗ Con ′))× (ev(Con) ∪ ev(Con ′))
×{0, 1}h. Assume there is a cycle in G. We will show this implies that there is a cycle in H, the I-graph of
Con.

Let (C1 BC∗ C ′1, a1, κ1)→ (C2 BC∗ C ′2, a2, κ2)→ (C3 BC∗ C ′3, a3, κ3) be a subpath of the cycle in G. First
consider the case where a3 ∈ ev(Con) and a2 ∈ ev(Con ′) and a2, a3 6∈ ev(Con) ∩ ev(Con ′). Since the events
are in separate controllers, C2 = C3. Since the unshared events of Con and Con ′ cannot activate each other,
a2 can have no effect on the activation of a3 and hence κ2[3] must be 1.
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Conh‖Cond
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Conh‖Cond
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Conh‖down.Cond

on

1111

off.Conh‖down.Cond

down

1001

off.Conh‖Cond

off

1101

Conh‖Cond

up

0111

off.Conh‖down.Cond

down

1111

off.Conh‖Cond

off

1111

off.Conh‖down.Cond

off

1111

Conh‖down.Cond

down

1111

off.Conh‖Cond

up

1111

off.Conh‖down.Cond

off

0110

Conh‖down.Cond
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Conh‖Cond

on

1101

Fig. 11. I-graph for Conh ‖ Cond where the order of the κ vector is on, off, up, down.

Therefore, we know there is an edge (C1 BC∗ C ′1, a1, κ1)→ (C3 BC∗ C ′3, a3, κ3) and (C2 BC∗ C ′2,b2, κ2) can
be removed from the cycle, while ensuring a cycle remains. Similarly all other events from Con ′ can be
removed from the cycle and the remaining cycle will consist only of unshared events from Con1, and events
that occur in both controllers.

Next let (C1 BC∗ C ′1, a1, κ1)→ (C2 BC∗ C ′2, a2, κ2)→ (C3 BC∗ C ′3, a3, κ3) be a subpath of this reduced cycle
in G with a1, a3 ∈ ev(Con) \ ev(Con ′) and a2 ∈ ev(Con) ∩ ev(Con ′). By the definition of I-graphs, there
must be a transition 〈C2 BC∗ C ′2, σ〉 ai−→〈C3 BC∗ C ′3, σ〉 in the labelled transition system of Con BC∗ Con ′, hence
we know that the transition 〈C2, σ〉 ai−→〈C3, σ〉 exists, because of the use of BC∗ . If we can show that this
transition leads to an edge in the graph, then by the same reasoning in the previous proof, we can conclude
that we have a cycle in H.

We consider a path (C1, a1, κ
′
1)→ (C2, a2, κ

′
2)→ (C3, a3, κ

′
3). We require κ′3[3] = 1 to ensure the existence
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of the second edge, regardless of the value of κ′1[3] and κ′2[3]. If κ′1[3] = 1, then a1 and a2 must not inhibit
a3, and if κ′1[3] = 0, a2 must activate a3. But we know this already from the path in the reduced cycle in G.
Hence we can conclude we have a cycle in H and we have shown a contradiction.

Finally, in this section, we consider the two examples. For the two tanks example, we can apply Propo-
sition 6.3 to determine that the system with ConA ‖ ConB is well-behaved. Since the I-graph of CondB
contains a cycle, we cannot go further than this.

Considering the orbiter, if k2 < k1, then Conh has well-behaved resets by Proposition 6.1 and similarly,
if k4 < k3, then Cond has well-behaved resets. However, neither Proposition 6.3 nor Proposition 6.4 apply
because the events are not independent and activation is possible between events in each controller. Hence,
the I-graph of Conh ‖ Cond must be constructed using the fact that k1 < k4 which allows us to determine
the enabling and inhibition of events by the other events. Figure 11 shows the I-graph, which is acyclic.
Additionally, Cons has well-behaved resets by Proposition 6.2. Hence, using Proposition 6.3, the system
with the controller (Conh BC∗ Cond) BC∗ Cons is well-behaved.

The condition of having an acyclic I-graph is a reasonable combination of practical expressiveness and
effective computability. It allows us to determine which controllers surely do not have instantaneous Zeno
behaviour through a simple graph construction. Moreover, by choosing computable sets, we can ensure
decidability of the process. In our experience, for reasonable models, the acyclicity condition should not
yield too many false positives. Also, I-graphs are unlikely to be too large as only few vertices can be reached
from those where κ is the vector consisting of ones and construction can be done on the fly.

Note that the I-graph construction does not take into account the initial values of variables. The fact
that κ is initially set to ones in the construction means that all events are initially possible. This has the
advantage that the I-graph applies to all behaviours of the HYPE model, regardless of initial values but the
disadvantage that this leads to an overapproximation of behaviour. An alternative approach would be to
construct a graph from the initial conditions, but this would require a more complex algorithm with difficult
termination conditions. This would have been more precise in the sense of being a smaller overapproximation;
however, the cost does not appear to be justified by the benefits. As we can see from the two examples, the
approach taken here, is sufficient to reason about these controllers.

To sum up, the separate definition of the controller in the HYPE model, together with the event conditions
allow us to reason about the behaviour of the model without considering its detailed behaviour in terms of
a hybrid automaton. This supports the design of models that exclude unwanted behaviour.

7. Comparison with hybrid automata

We now compare the expressive power of HYPE with that of hybrid automata at the level of composition of
models. We first need to describe how two different HYPE systems can be composed in a synchronisation.
The explanation of the choices made are given after the definition.

Definition 7.1. Let Pi
def
= Σi BC∗ init.Coni for i = 1, 2 be two well-defined HYPE systems given by (Pi, Vi,

IN i, IT i, Ei, Ai, eci, iv i, EC i, ID i) respectively. The synchronisation of P1 and P2 (P1 ⊗ P2) is the
HYPE model (P, V1 ∪ V2, IN 1 ∪ IN 2, IT 1 ∪ IT 2, E1 ∪ E2, A1 ∪ A2, ec, iv1 ∪ iv2, EC 1 ∪ EC 2, ID1 ∪ ID2)
which is defined whenever IN 1 ∩ IN 2 = ∅ and IT 1 ∩ IT 2 = ∅ and where the well-defined system is
P def

= (Σ1 BC∗ Σ2) BC∗ init.(Con1 BC∗ Con2) and ec is defined by

ec(a) =


ec1(a) if a 6∈ E2
ec2(a) if a 6∈ E1
(act1(a) ∧ act2(a), res1(a) ∧ res2(a)) if a ∈ E1 ∩ E2

The condition IN 1 ∩ IN 2 = ∅ requires influence names to be disjoint. This is necessary to ensure a
well-defined synchronisation. Note that this condition implies that A1 ∩ A2 = ∅ and iv1 ∩ iv2 = ∅. In the
case where the same influence name is used in two different models, one can be renamed to a fresh name, as
they are essentially arbitrary names used to identify flows (unlike variables which have specific meanings).
After renaming, the synchronisation is well-defined.

The condition IT 1 ∩ IT 2 = ∅ requires that influence types are disjoint. It would be possible to allow
shared influence types with identical definitions up to substitution of variable names based on a bijection
between the variables, but our choice is to go for the simpler definition.
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Once these conditions hold, the union of most of the sets can be taken straightforwardly. This allows
for influences from the different models to map to a shared variable which is an important aspect of the
synchronisation definition. For the definition of ec, we need to define ⊥∧φ = φ∧⊥ = φ and ⊥∧⊥ = ⊥. This
means that for a shared event, it is only non-urgent if it is non-urgent in both components. It is reasonable
to treat urgency as stronger than non-urgency.

Proposition 7.1. Given two well-defined HYPE models P1 and P2, P1 ⊗ P2 is well-defined.

Proof. The first condition about the form of subcomponents holds because it holds in both models. The
second condition about disjointness of influences between subcomponents holds because influences are disjoint
between models. The conditions requiring cooperation on all shared events hold by the definition of the
combined controlled systems. Since the two models are well-defined, ev(Σi) = Ei, in(Σi) = IN i, ev(Coni) ⊆
ev(Σi) for i = 1, 2, and hence we know that ev(Σ1 BC∗ Σ2) = E1 ∪ E2, in(Σ1 BC∗ Σ2) = IN 1 ∪ IN 2 and
ev(Con1 BC∗ Con2) ⊆ ev(Σ1 BC∗ Σ2).

To compare synchronisation of HYPE models with a similar construction on hybrid automata, we work
with the definition of product as given in [HH94] modified to take account of urgent actions.

Definition 7.2. LetH1 andH2 be two hybrid automata withHi = (Vi, Ei, Xi, Ei, flow i, init i, inv i, event i,
jumpi, reset i, urgent i) for i = 1, 2. The synchronised product (or parallel composition) of H1 and H2 (H1×H2)
is H = (V1 × V2, E,X1 ∪X2, E1 ∪ E2, flow , init , inv , event , jump, reset , urgent) where

• (e1, e2) = ((v1, v2), (v′1, v
′
2)) ∈ E if

1. v2 = v′2 and event1(e1) 6∈ E2 or

2. v1 = v′1 and event2(e2) 6∈ E1 or

3. event1(e1) = event2(e1) ∈ E1 ∩ E2
• if e = (e1, e2) with

1. event1(e1) 6∈ E2 then event(e) = event1(e1), jump(e) = jump1(e1), reset(e) = reset1(e1), urgent(e) =
urgent1(e1)

2. event2(e2) 6∈ E1 then event(e) = event2(e2), jump(e) = jump2(e2), reset(e) = reset2(e2), urgent(e) =
urgent2(e2)

3. event1(e1) = event2(e2) ∈ E1 ∩ E2 then event(e) = event1(e1), jump(e) = jump1(e1) ∧ jump2(e2),
reset(e) = reset1(e1) ∧ reset2(e2), urgent(e) = urgent1(e1) ∨ urgent2(e2),

• if v = (v1, v2) then flow(v) = flow1(v1) ∧ flow2(v2), init(v) = init1(v1) ∧ init2(v2), inv(v) = inv1(v1) ∧
inv2(v2).

For this definition to give a meaningful product, whenever X ∈ X1 ∩X2, we require that flow1(v1)[X] =
flow2(v2)[X] for a vertex (v1, v2). If this is not the case, flow will evaluate to false for X. For consistency
with the definition of synchronisation, we consider urgency stronger than non-urgency and hence urgent(e) =
urgent1(e2) ∨ urgent2(e2).

Now that we have a definition of product for HYPE models and synchronised product for hybrid au-
tomata, we can compare them and identify whether they have the same or different expressive power.

Theorem 7.1. Let P1 and P2 be well-defined HYPE systems (Pi, Vi, IN i, IT i, Ei, Ai, eci, iv i, EC i, ID i)
for i = 1, 2. If V1 ∩ V2 = ∅ then H(P1 ⊗ P2) = H(P1) × H(P2) when vertices unreachable from the initial
vertex are excluded.

Proof. See Appendix A.

Corollary 7.1. Let P1 and P2 be well-defined HYPE systems (Pi, Vi, IN i, IT i, Ei, Ai, eci, iv i, EC i, ID i)
for i = 1, 2, with hybrid automata H(Pi) = (Vi, Ei,Xi, Ei flow i, init i, inv i, event i, jumpi, reset i, urgent i),
synchronisation P1 ⊗ P2, and synchronised product hybrid automaton H(P1 ⊗ P2) = (V, E,X, E flow , init ,
inv , event , jump, reset , urgent). If X1 ∩ X2 6= ∅, there exists X ∈ X1 ∩ X2 with flow not constant zero at
some mode, and H(P1)×H(P2) is defined then H(P1 ⊗ P2) 6= H(P1)×H(P2).

Proof. Since H(P1) × H(P2) is defined, then for all X ∈ X1 ∩ X2, and for all vertices, v = (v1, v2) in
H(P1) × H(P2), flow1(v1)[X] = flow2(v2)[X]. Each flow i(vi)[X] =

∑
{rJI(W)K | iv(ι) = X and σi(ι) =
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(r, I(W))} where vi =
〈
Σi BC∗ Di, σi

〉
. Without considering the details of the right hand side of the equation,

we can write flow1(v1)[X] = flow2(v2)[X] = f(X).
Using the technique of the proof of Theorem 7.1, we can conclude that

〈
(Σ1 BC∗ Σ2) BC∗ (D1 BC∗ D2),

σ1∪σ2

〉
is a configuration in the labelled transition system of P1⊗P2 and hence it is a vertex in H(P1⊗P2),

say v′. Hence flow(v′)[X] =
∑
{rJI(W)K | iv(ι) = X and (σ1 ∪ σ2)(ι) = (r, I(W))}. Since IN 1 ∩ IN 2 = ∅,

the domains of σ1 and σ2 are distinct. From this, we can conclude that flow(v′)[X] = 2f(X).

We have shown that by restricting the HYPE models to those with disjoint sets of variables, they have the
same expressive power with respect to compositionality as hybrid automata. The necessity of this restriction
is shown by the corollary. When two hybrid automata have shared variables, either their product is undefined
or there must be a zero flow for the shared variables, restricting the compositionality of the formalism.

By contrast, in HYPE, influences from each component of the product can map to a shared variable
and hence the ODE for that variable can be determined by both components. Therefore compositionality is
supported fully by the synchronisation product for HYPE, and allows for useful interaction between models.
From this we can conclude that HYPE is more fine-grained and more flexible in its modelling style than
hybrid automata. In many cases, changes to a model can be achieved by composition rather than by rewriting
the model. In further work, we will investigate how this can provide gains in terms of analysis.

8. Equivalence Semantics

An important technique in the realm of process algebras is that of semantic equivalences, where we are able
to define notions that capture the idea of same behaviour. An advantage of working with a process algebra as
a language to describe systems is that we aim to understand how we can identify models that have the same
behaviour at the semantic level but differ syntactically. Additionally, if we can prove congruence, we are able
to substitute one equivalent component or subcomponent for another, in a model. One use of substitution is
to replace a component with a smaller but equivalent component to reduce the size of the labelled transition
system and the resulting hybrid automaton.

We define equivalent behaviour over the labelled transition system given in Section 3 thereby focussing
on the configuration of the system rather than evaluations of continuous variables, allowing us to abstract
away from these details. Since our operational semantics apply to more general terms than those specified
in our HYPE models, we define our equivalence over those more general terms. Let C be the set of terms
obtained by the grammar S ::= a :α.S | a.S | S′ + S′ and P ::= C | P BC

L
P where C def

=S defines a constant.
Note that CSys ⊂ C and hence we can use compositionality results such as congruence to reason about HYPE
models.

We base our equivalence on bisimulation [Mil89], because it is an equivalence that makes strong distinc-
tions relating to issues such as deadlock and branching whereas language/trace equivalence cannot make
these distinctions [vG90].

Definition 8.1. A relation B ⊆ C × C is a system bisimulation if for all (P,Q) ∈ B, for all a ∈ E , for all
σ ∈ S whenever

1. 〈P, σ〉 a−→〈P ′, σ′〉, there exists 〈Q′, σ′〉 with 〈Q, σ〉 a−→〈Q′, σ′〉, (P ′, Q′) ∈ B.

2. 〈Q, σ〉 a−→〈Q′, σ′〉, there exists 〈P ′, σ′〉 with 〈P, σ〉 a−→〈P ′, σ′〉, (P ′, Q′) ∈ B.

P and Q are system bisimilar, P ∼s Q if they are in a system bisimulation.

It is straightforward to show that system bisimulation is a congruence for our operators.

Theorem 8.1. ∼s is a congruence for Prefix, Choice and Cooperation.

Proof. Let P1 ∼s P2. Symmetrical cases have been omitted.

Prefix with influence We have the transition 〈a : (ι, r, I).P1, σ〉 a−→〈P1, σ[ι 7→ (r, I)]〉 and likewise the tran-
sition 〈a : (ι, r, I).P2, σ〉 a−→〈P2, σ[ι 7→ (r, I)]〉. Since P1 ∼s P2, then we can conclude that a : (ι, r, I).P1 ∼s
a : (ι, r, I).P2.

Prefix without influence Similar to the previous case.
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D1
def
= fullA.D1 + fullB .D1 + emptyA.D2 D2

def
= fullA.D2 + fullB .D2 + emptyB .D1

S def
= ((InA BC∗ OutA) BC∗ (InB BC∗ OutB)) BC∗ init.D1

Fig. 12. Alternative controller for two tanks

Choice There are two cases. First if 〈P1, σ〉 a−→〈P ′1, σ′〉, then we have 〈P1 + Q, σ〉 a−→〈P ′1, σ′〉 and since
P1 ∼s P2, 〈P2, σ〉 a−→〈P ′2, σ′〉 with P ′1 ∼s P ′2, and hence 〈P2 + Q, σ〉 a−→〈P ′2, σ′〉 as required. Second,
〈Q, σ〉 a−→〈Q′, σ′′〉 and 〈P1 +Q, σ〉 a−→〈Q′, σ′′〉. Also 〈P2 +Q, σ〉 a−→〈Q′, σ′′〉 and we know Q′ ∼s Q′.

Cooperation We need to show that B = {(P1 BC
L
Q,P2 BC

L
Q)|P1 ∼s P2} is a system bisimulation. There

are three cases. First, if 〈P1, σ〉 a−→〈P ′1, σ′〉 with a 6∈ L then 〈P1 BC
L
Q, σ〉 a−→〈P ′1 BCL Q, σ′〉. Since P1 ∼s P2,

〈P2, σ〉 a−→〈P ′2, σ′〉 with P ′1 ∼s P ′2, and hence 〈P2 BC
L
Q, σ〉 a−→〈P ′2 BCL Q, σ′〉 with (P ′1 BCL Q,P ′2 BCL Q) ∈

B as required. Second, if 〈Q, σ〉 a−→〈Q′, σ′′〉 with a 6∈ L then the proof is straightforward and clearly
(P1 BC

L
Q′, P2 BC

L
Q′) ∈ B. Third and lastly, a ∈ L and 〈P1, σ〉 a−→〈P ′1, σ′〉 and 〈Q, σ〉 a−→〈Q′, σ′′〉, then

〈P1 BC
L
Q, σ〉 a−→〈P ′1 BCL Q′,Γ(σ, σ′, σ′′)〉. Since P1 ∼s P2, 〈P2, σ〉 a−→〈P ′2, σ′〉 with P ′1 ∼s P ′2, and hence

〈P2 BC
L
Q, σ〉 a−→〈P ′2 BCL Q′,Γ(σ, σ′, σ′′)〉. (P ′1 BCL Q′, P ′1 BCL Q′) ∈ B as required.

It can be remarked that ∼s is a robust or stateless bisimulation [CR03, MRG05]. This style of equivalence,
which relates process terms for arbitrary states or data, has been used extensively in hybrid process algebras.
Moreover, our transition system specification in Figure 2 conforms to the process-tyft format which is a
congruence format for stateless bisimulation and this offers an alternative route to proving the theorem
above.

Given bisimilar controllers, we can show that an uncontrolled system combined with either will result in
the same behaviour in terms of system bisimulation.

Corollary 8.1. Given an uncontrolled systems Σ and two controllers such that Con1 ∼s Con2 then
Σ BC

L
init.Con1 ∼s Σ BC

L
init.Con2 if these controlled systems are well-defined.

Proof. By congruence.

Consider the alternative controller in Figure 12 for the two tanks of Section 6. Controllers CA ‖ CB ‖ CdA
and D1 are clearly isomorphic as can be seen from Figure 9, and hence are system bisimilar, because no
state changes can happen during the execution of the controllers on their own. We can apply the corollary
and conclude that System and S are system bisimilar.

The preceding congruence theorem is useful when reasoning about a single model and proving later results
about bisimilar systems; however, due to the constrained form of HYPE models, we are also interested in
congruence with respect to the synchronisation operator between HYPE models, and we now prove this.
We need to lift the definition of system bisimulation to HYPE models, and this is achieved by requiring all
elements of the tuple except the first are identical.

Definition 8.2. Given two well-defined HYPE models (Pi, V, IN , IT , E , A, ec, iv , EC , ID) for i = 1, 2,
they are system bisimilar as models (P1 ∼sm P2) if P1 ∼s P2.

Theorem 8.2. Let P1, P2 and Q be well-defined HYPE models. If P1 ∼sm P2 then P1 ⊗Q ∼sm P2 ⊗Q
and Q⊗ P1 ∼sm Q⊗ P2.

Proof. First, note that the synchronisations are defined because P1 and P2 have the same elements in their
tuples (excluding the first element). This means that the synchronisations will also have this property and
hence can be system bisimilar as models.

We need to construct a relation over P1 ⊗ Q and P2 ⊗ Q and their derivative sets, and show that this
is a system bisimulation. Let Pi

def
= Σi BC∗ init.Coni for i = 1, 2 and Q def

= Σ BC∗ init.Con. Then by definition,
Pi ⊗Q def

= (Σi BC∗ Σ) BC∗ init.(Coni BC∗ Con) for i = 1, 2. By Proposition 7.1, these are well-defined and by
Proposition 5.2, we know that

ds(Pi⊗Q) = {〈(Σi BC∗ Σ) BC∗ (Coni BC∗ Con), τi〉, 〈(Σi BC∗ Σ) BC∗ Di,1, σi,1〉, . . . , 〈(Σi BC∗ Σ) BC∗ Di,n, σi,n〉}
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where, for arbitrary state σ, ds(init.(Coni BC∗ Con)) = {〈Coni BC∗ Con, σ〉, 〈Di,1, σ〉, . . . , 〈Di,n, σ〉}. More-
over, since BC∗ is a static operator, each Di,k has the form Ci,k BC∗ Cj for Ci,k ∈ ds(init.Coni) and Cj ∈
ds(init.Con). We define the relation

R′ =
{(

(Σ1 BC∗ Σ) BC∗ (C1,j1 BC∗ Cj), (Σ2 BC∗ Σ) BC∗ (C2,j2 BC∗ Cj)
)
| Σ1 BC∗ C1,j1 ∼s Σ2 BC∗ C2,j2

}
and let R = R′ ∪ {(P1 ⊗Q,P2 ⊗Q)}. We will show that R is a system bisimulation.

Consider a transition 〈(Σ1 BC∗ Σ) BC∗ (C1,j1 BC∗ Cj), ρ〉 a−→〈(Σ1 BC∗ Σ) BC∗ (C1,k1 BC∗ Ck), ρ′〉. By our as-
sumption that all events appear in the controller, we can conclude that a is a synchronised event in both
the uncontrolled system and the controller. Thus we have 3 subcases: either the events come from Σ1 and
C1,j1 , or from Σ and Cj , or from Σ1 BC∗ Σ and C1,j1 BC∗ Cj . We will prove the last case, as the other two are
simpler.

By shorter inferences in the derivation tree of the transition, we can conclude that 〈Σ1, ρ〉 a−→〈Σ1, µ〉,
〈Σ, ρ〉 a−→〈Σ, ν〉, 〈C1,j1 , ρ〉 a−→〈C1,k1 , ρ〉 and 〈Cj , ρ〉 a−→〈Ck, ρ〉, with ρ′ = Γ(ρ,Γ(ρ, µ, ν), ρ) = Γ(ρ, µ, ν) where
ρ′ is the state appearing in the target configuration of the original transition. Therefore 〈Σ1 BC∗ C1,j1 , ρ〉 a−→
〈Σ1 BC∗ C1,k1 , µ〉 since Γ(ρ, µ, ρ) = µ.

Since Σ1 BC∗ C1,j1 ∼s Σ2 BC∗ C2,j2 , there is a transition 〈Σ1 BC∗ C2,j2 , ρ〉 a−→〈Σ1 BC∗ C2,k2 , µ〉 such that
Σ1 BC∗ C1,k1 ∼s Σ2 BC∗ C2,k2 . By a shorter inference, 〈Σ1, ρ〉 a−→〈Σ1, µ〉 and 〈C2,j2 , ρ〉 a−→〈C2,k2 , ρ〉. This allows
us to infer the transition 〈(Σ2 BC∗ Σ) BC∗ (C2,21

BC∗ Cj), ρ〉 a−→〈(Σ2 BC∗ Σ) BC∗ (C2,k2 BC∗ Ck), ρ′〉 as required.
The symmetric condition is proved similarly. The same approach can be used to show that the pair (P1 ⊗
Q,P2 ⊗Q) are bisimilar by considering their init transitions (they have no others).

The following result shows that it is the prefixes which determine the behaviour of the controlled systems
because of the restrictions imposed on well-defined controlled systems.

Theorem 8.3. Let Σ1 BC
L

init.Con and Σ2 BC
L

init.Con be two well-defined controlled systems.

If pr(Σ1) = pr(Σ2) then Σ1 BC
L

init.Con ∼s Σ2 BC
L

init.Con

Proof. We will show that {(Σ1,Σ2)} is a bisimulation. Since we are dealing with well-defined controlled
systems, we know that each prefix occurs in a subcomponent of the form S def

= a : (ι, r, I ( ~X)).S + . . . and
this means that a can always happen. Additionally, for any other prefix starting with a appearing in a
different subcomponent, these events will be synchronised on. Blocking due to a subcomponent being unable
to perform the same action cannot occur because all events are able to occur. Hence the events that Σ1 can
perform are all the events that appear in a prefix in pr(Σ1). Because of the form of S, we have that Σ1

a−→Σ1

for each possible event a. This argument applies for each a in a prefix in pr(Σ2). Since pr(Σ1) = pr(Σ2),
{(Σ1,Σ2)} is a bisimulation and Σ1 ∼s Σ2. Since ∼s is a congruence, we have the result.

This result allows us to tell whether two HYPE models are bisimilar by inspecting the prefixes in the
model description to see if they are the same. Hence bisimulation can be checked syntactically. The next two
results show that bisimilar HYPE models have the same ODEs.

Lemma 8.1. Let P and Q be well-defined controlled systems. If P ∼s Q then st(P ) = st(Q).

Proof. Consider 〈P ′, σ′〉 a derivative of 〈P, σ〉 then σ′ ∈ st(P ). Since P ∼s Q, we can find 〈Q′, σ′〉 with
σ′ ∈ st(Q). Hence st(P ) ⊆ st(Q) and vice versa.

Proposition 8.1. Let P and Q be well-defined controlled systems. If P ∼s Q then for every state σ ∈ st(P ),
Pσ = Qσ.

Proof. The two well-defined controlled systems are (P,V,X , E ,A, ec, iv , pr ,EC , ID) and
(Q,V,X , E ,A, ec, iv , pr ,EC , ID). Hence

Pσ =
{dV
dt

=
∑{

rJI ( ~W )K
∣∣ iv(ι) = V and σ(ι) = (r, I ( ~W ))

} ∣∣∣ V ∈ V}
and

Qσ =
{dV
dt

=
∑{

rJI ( ~W )K
∣∣ iv(ι) = V and σ(ι) = (r, I ( ~W ))

} ∣∣∣ V ∈ V}
which are clearly the same.
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The converse of Proposition 8.1 does not hold. It is possible for two states to be the same and hence give
identical ODEs, but this does not mean that their associated derivatives are system bisimilar. We now go on
to consider bisimulations that have been defined for other hybrid process algebras and those defined directly
on hybrid systems.

8.1. Bisimulations for hybrid process algebras

Other process algebras for hybrid systems use a hybrid transition system with two types of transition: one
type represents discrete events and the other continuous evolution of the system [Kha06]. By comparison,
our transition system only has transitions for events. This gives a smaller transition system on which it is
possible to consider simpler notions of equivalence.

Bergstra and Middelburg [BM05] present two bisimulations for their process algebra for hybrid systems
ACPsrt

hs , defined over a hybrid transition system. One bisimulation fits with their axiomatic definition, and
the other gives congruence with respect to the parallel operator, and was originally defined in [CR03]. We
can recast these equivalences for our transition system and for our language, so that they are of interest
here.

Definition 8.3 (Bergstra and Middelburg 2005). A bisimulation is a binary relation B ⊆ (C × S)×
(C × S) such that for all (〈P, σ〉, 〈Q, σ〉) ∈ B, for all a ∈ E , whenever

1. 〈P, σ〉 a−→〈P ′, σ′〉, there exists 〈Q′, σ′〉 such that 〈Q, σ〉 a−→〈Q′, σ′〉 and (〈P ′, σ′〉, 〈Q′, σ′〉) ∈ B, and

2. 〈Q, σ〉 a−→〈Q′, σ′〉, there exists 〈P ′, σ′〉 such that 〈P, σ〉 a−→〈P ′, σ′〉 and (〈P ′, σ′〉, 〈Q′, σ′〉) ∈ B.

〈P, σ〉 and 〈Q, σ〉 are bisimilar, written 〈P, σ〉↔ 〈Q, σ〉 if they are contained in a bisimulation. P and Q are
bisimilar, written P ↔ Q if 〈P, σ〉↔ 〈Q, σ〉 for all states σ.

Definition 8.4 (Bergstra and Middelburg 2005). A interference-compatible (ic-)bisimulation is a bi-
nary relation B ⊆ C × C such that for all (P,Q) ∈ B, for all a ∈ E , for all σ ∈ S whenever

1. 〈P, σ〉 a−→〈P ′, σ′〉, there exists 〈Q′, σ′〉 such that 〈Q, σ〉 a−→〈Q′, σ′〉 and (P ′, Q′) ∈ B, and

2. 〈Q, σ〉 a−→〈Q′, σ′〉, there exists 〈P ′, σ′〉 such that 〈P, σ〉 a−→〈P ′, σ′〉 and (P ′, Q′) ∈ B.

P and Q are ic-bisimilar, written P ↔=Q if they are contained in a ic-bisimulation.

It can be seen that ↔= is the same as ∼s since our system bisimulation definition also requires identical
states. Both bisimulation and ic-bisimulation are congruences for the sequential operators of ACPsrt

hs ; how-
ever, bisimulation is not a congruence for the parallel and merge operators. On the other hand, certain axioms
are not sound for ic-bisimulation, hence the need for a complex two-level derivation system. In contrast, for
HYPE, these two bisimulations identify the same models as we now show.

Theorem 8.4. For well-defined controlled systems P and Q, P ↔Q implies P ∼s Q.

Proof. Let B = {(P,Q) | P ↔Q}. Consider (P,Q) ∈ B with 〈P, σ〉 a−→〈P ′, σ′〉. Since P ↔Q, there exists
〈Q′, σ′〉 such that 〈Q, σ〉 a−→〈Q′, σ′〉 and 〈P ′, σ′〉↔〈Q′, σ′〉. If P ′↔Q′ then the proof is complete, so let
B′ = {(〈P, τ〉, 〈Q, τ〉) | 〈P, σ〉↔〈Q, σ〉for some σ}. Consider arbitrary τ ′ with 〈P ′, τ ′〉 a−→〈P ′′, τ ′′〉.

We can write τ ′′ = τ ′[ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)] for appropriate n and ιj , rj , Ij , 1 ≤ j ≤ n. Let
σ′′ = σ′[ι1 7→ (r1, I1)] . . . [ιn 7→ (rn, In)]. By Proposition 5.3, 〈P ′, σ′〉 a−→〈P ′′, σ′′〉 and since 〈P ′, σ′〉↔〈Q′, σ′〉,
there exists 〈Q′′, σ′′〉 such that 〈Q′, σ′〉 a−→〈Q′′, σ′′〉 and 〈P ′′, σ′′〉↔〈Q′′, σ′′〉. Moreover 〈Q′, τ ′〉 a−→〈Q′′, τ ′′〉 by
Proposition 5.3 with (〈P ′′, τ ′′〉, 〈Q′′, τ ′′〉) ∈ B′. Hence P ′↔Q′ and (P ′, Q′) ∈ B. The symmetric case is
proved similarly.

Theorem 8.5. For well-defined controlled systems P and Q, P ↔=Q implies P ↔Q.

Proof. Let B = {(〈P, σ〉, 〈Q, σ〉)|P ↔=Q}. Consider (〈P, σ〉, 〈Q, σ〉) ∈ B with 〈P, σ〉 a−→〈P ′, σ′〉. Since P ↔=Q,
there exists 〈Q′, σ′〉 such that 〈Q, σ〉 a−→〈Q′, σ′〉 and P ′↔=Q′, hence (〈P ′, σ′〉, 〈Q′, σ′〉) ∈ B and B is a bisim-
ulation. Since σ is arbitrary, P ↔Q.

The counter-example presented by Bergstra and Middelburg [BM05] to illustrate that congruence of
bisimulation does not hold for a parallel operator uses the fact that in bisimulation, it is only required
that target configurations are bisimilar for a specific state. This can be described as an initially stateless
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bisimilarity [Kha08, MRG05] since it is only for the initial pair that they must be able to match all transitions
for any state. Hence it is possible to have two bisimilar processes, but when each is put in parallel with
another process, the state in the target configuration can change, allowing previously blocked actions to
become available. In contrast, under ic-bisimulation, target configurations are only ic-bisimilar if they have
the same transitions under all possible states. This is described as stateless bisimilarity, because all pairs
must be able to match transitions for any state. One can also consider a state-based bisimulation where pairs
must be able match transitions for specific states only but this type of bisimulation is not considered here.

More specifically, one of the two processes involves the setting of the variable v to 1, followed by an a event
prefixing deadlock, and the other has the same variable setting followed by event a prefixing a condition
v = 0 that must be true for the event b to occur. These are equivalent under bisimulation since for any
derived state, after the a event, the state contains the fact that v is associated with the value 1 and the
b-event can never occur. However, when putting these two in parallel with a process that can change the
value of v to zero, it is possible for the b event to occur in the second process but not the first. In the case of
ic-bisimulation the two target states are not bisimilar since all possible states must be considered, including
those where v = 0.

This cannot occur in HYPE because activation conditions (which determine if something can happen
because a variable has the appropriate value) and resets (which change the values of variables) are disjoint
from the syntactic description of the model, and the labelled transition system generated by the operational
semantics does not take these into account. Thus, although bisimulation may only consider some states when
applied to HYPE models, it is not possible for the same situation to arise.

8.2. Bisimulations on hybrid automata

The standard notion of bisimulation of hybrid automata is defined for a transition system encoding the
dynamical evolution. Both continuous transitions and discrete transitions are used. These two relations
are combined (usually interleaving discrete and continuous transitions) into one relation which defines the
behaviour of the system. The hybrid automata bisimulation is defined on this relation in the usual way
[Hen96, HTP05, DT07]. Most of the research into these bisimulations focusses on finding restrictions on
hybrid automata syntax implying the existence of a finite bisimulation quotient thus guaranteeing decidability
of reachability and of model checking, such as [LPS00].

Another form of bisimulation, the U -bisimulation, acts on the control graph, and it is used for projecting
away some variables and for collapsing some modes of the automaton [AMP+03]. In the following, we consider
a simplified form of this U -bisimulation, where we retain all variables and collapse modes that have the same
structure.

Definition 8.5. Let H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent) be an hybrid automaton.
Two modes v1, v2 are U -bisimilar, v1 ∼HA v2, if and only if the following conditions hold:

1. flow(v1) = flow(v2), inv(v1) = inv(v2), and init(v1) = init(v2);

2. for each edge e1 = (v1, v
′
1) there exists an edge e2 = (v2, v

′
2) such that event(e1) = event(e2), reset(e1) =

reset(e2), jump(e1) = jump(e2), urgent(e1) = urgent(e2), and v′1 ∼HA v′2;

3. for each edge e2 = (v2, v
′
2) there exists an edge e1 = (v1, v

′
1) such that event(e1) = event(e2), reset(e1) =

reset(e2), jump(e1) = jump(e2), urgent(e1) = urgent(e2), and v′1 ∼HA v′2;

This notion of bisimulation is related to system bisimulation. We have the following lemma.

Proposition 8.2. Let P1, P2 ∈ CSys such that P1 ∼s P2. Then 〈P1, σ〉 ∼HA 〈P2, σ〉.
Proof. The first point of Definition 8.5 follows because we are considering the same state σ, assuming the
initial conditions to be the same (they also depend just on σ). The next two points follow from the definition
of ∼s and from the fact that the predicates jump, event , urgent , reset depend just on the event labelling the
edge.

Interestingly, the converse of the lemma does not hold. In fact, two states 〈P, σ〉 and 〈Q, τ〉 of an hybrid
automaton can be U -bisimilar even if σ 6= τ : we only require the differential equations obtained from σ and
τ to be the same. In fact, different states can lead to the same set of equations: consider two activities α and
β mapped by iv to the same variable V . Then, if σ contains (α, 1, I) and (β,−1, I) and τ contains (α, 2, I)

and (β,−2, I), then both σ and τ imply the equation V̇ = 0.
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This means that the notion of bisimulation for hybrid automata is coarser than that for HYPE. Indeed,
in a HYPE model we make explicit the source of each single flow of the system, while in a hybrid automaton
flows are merged together in differential equations, and they cannot be separated in single influences. Stated
otherwise, ODEs irremediably lose information about the logic of the system.

9. Modelling Style

In this section we discuss in more detail the modelling style of HYPE, comparing it with the modelling style
of other hybrid process algebras and hybrid automata.

The main difference between HYPE and other hybrid process algebras is in the description of the continu-
ous dynamics. Most of these process algebras describe the continuous dynamics by explicitly providing ODEs
for each variable [BM05, CR05, RS03, vBMR+06] and this is also the case for hybrid automata [Hen96]. In
HYPE, we have adopted a different approach, modelling a set of influences, or flows, that affect the evolution
of continuous variables, and then deriving the ODE by looking at the set of active influences in each mode.
Discrete modes themselves are not modelled explicitly, but are derived from the operational semantics of
the language. Since this represents a significant change in style from the existing process algebras, it was
not feasible to develop HYPE as an extension of an existing hybrid process algebra. Instead we decided that
HYPE must be developed afresh, centred on the idea of additive influences.

The advantage of this mechanism to describe continuous dynamics is particularly evident for systems in
which there are many influences that can affect the dynamics of a specific variable, each of them having two
or more possible forms. Consider again the orbiter example of Section 2 (see also Figure 1), and focus on
the continuous dynamics of the temperature K. This variable is affected by four different flow sources: the
heat of the sun, the heater, the effect of the shade and the thermodynamic cooling. The first three sources
can be in two different states (i.e. present or absent), and their effect on the temperature depends on their
state. Indeed, this gives rise to eight different differential equations for the temperature K. In languages
that require the explicit provision of the ODEs for each variable, and that do not have a compositional
mechanisms at the level of the continuous dynamics, like hybrid automata [Hen96] and ACPsrt

hs [BM05], the
modeller is forced to write these eight ODEs explicitly. We can see this in Figure 13, where an ACPsrt

hs model
for the orbiter is presented. This monolithic representation of the ODEs would be similar in any of the other
existing hybrid process algebras. Notice that the number of possible ODEs grows exponentially with the
number of flow sources that have more than one state (think of a tank with many inflow and outflow pipes).
In HYPE, instead, we model the continuous dynamics of the orbiter temperature by associating an influence
with each source, and changing the form of the influence in response to discrete events (i.e. activation and
inactivation of the flow sources). This allows a much more compact description of the continuous dynamics:
the complexity of the description grows linearly with the number of flow sources.

The use of additive flows also has the advantage that HYPE has more expressive power in relation
to compositionality, as demonstrated by Theorem 7.1 and Corollary 7.1. In these results, it is shown that
hybrid automata product is restricted to the case where there are no shared variables between the two
hybrid automata (or flows are zero for all variables), whereas the product of HYPE models allows for shared
variables. This means that it is possible to add new influences to an existing model that affect one or more
of that model’s variables. To achieve a similar effect in a hybrid automaton, the flow at some modes must be
changed directly since it cannot be achieved using a product construction. In HYPE, addition of new levels
can either be done at the model level using product, or as we demonstrate in the next section, by adding
new subcomponents with new influences.

HYPE is also characterised by modularity in its specification style. Subcomponents are defined separately
from controllers and the two have events on which they synchronise. Additionally, event conditions are
specified separately from events, influence names from variables, and influence strength from influence type.
In general, this means that a modeller can consider different concerns separately and we now highlight two
examples of this modularity, and show the practical benefits it can bring. The reader can observe how the
different states of the influences for the orbiter (see Figure 1) differ only in their influence strength, and not
in their influence type. We found this to be a common pattern, and this motivated our separation of the
influence strength from the influence type, i.e. the description of the functional form of the flow from its
intensity. Moreover, as discussed below, we chose to combine influences into ODEs in an additive way.

Another modular feature of HYPE, is the strong separation that exists between the description of the
continuous dynamics and the description of the discrete control. In particular, in HYPE one models the
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TdFD
def
= (K̇ = −K ∧ K ≥ t2 ∧ K ≤ t3) ∩H σ∗rel

((
(K• = •K) uH ˜̃

light · TlFD

)
+(

(K ≤ t2) :→
(
(K• = •K) uH ˜̃on · TdND

))
+
(
(K ≥ t3) :→

(
(K• = •K) uH ˜̃up · TdNU

)))
TlFD

def
= (K̇ = rs −K ∧ K ≥ t2 ∧ K ≤ t3) ∩H σ∗rel

((
(K• = •K) uH ˜̃

dark · TdFD

)
+(

(K ≤ t2) :→
(
(K• = •K) uH ˜̃on · TdND

))
+
(
(K ≥ t3) :→

(
(K• = •K) uH ˜̃up · TdNU

)))
TdND

def
= (K̇ = rh −K ∧ K ≤ t1 ∧ K ≤ t3) ∩H σ∗rel

((
(K• = •K) uH ˜̃

light · TlND

)
+(

(K ≥ t1) :→
(
(K• = •K) uH ˜̃

off · TdFD

))
+
(
(K ≥ t3) :→

(
(K• = •K) uH ˜̃up · TdNU

)))
TlND

def
= (K̇ = rs + rh −K ∧ K ≤ t1 ∧ K ≤ t3) ∩H σ∗rel

((
(K• = •K) uH ˜̃

dark · TdND

)
+(

(K ≥ t1) :→
(
(K• = •K) uH ˜̃

off · TlFD

))
+
(
(K ≥ t3) :→

(
(K• = •K) uH ˜̃up · TlNU

)))
TdFU

def
= (K̇ = −rd −K ∧ K ≥ t2 ∧ K ≥ t4) ∩H σ∗rel

((
(K• = •K) uH ˜̃

light · TlFU

)
+(

(K ≤ t2) :→
(
(K• = •K) uH ˜̃on · TdNU

))
+
(
(K ≤ t4) :→

(
(K• = •K) uH ˜̃

down · TdND

)))
TlFU

def
= (K̇ = rs − rd −K ∧ K ≥ t2 ∧ K ≥ t4) ∩H σ∗rel

((
(K• = •K) uH ˜̃

dark · TdFU

)
+(

(K ≤ t2) :→
(
(K• = •K) uH ˜̃on · TdNU

))
+
(
(K ≤ t4) :→

(
(K• = •K) uH ˜̃

down · TdND

)))
TdNU

def
= (K̇ = rh − rd −K ∧ K ≤ t1 ∧ K ≥ t4) ∩H σ∗rel

((
(K• = •K) uH ˜̃

light · TlNU

)
+(

(K ≥ t1) :→
(
(K• = •K) uH ˜̃

off · TdFU

))
+
(
(K ≤ t4) :→

(
(K• = •K) uH ˜̃

down · TdND

)))
TlNU

def
= (K̇ = rs + rh − rd −K ∧ K ≤ t1 ∧ K ≥ t4) ∩H σ∗rel

((
(K• = •K) uH ˜̃

dark · TdNU

)
+(

(K ≥ t1) :→
(
(K• = •K) uH ˜̃

off · TlFU

))
+
(
(K ≤ t4) :→

(
(K• = •K) uH ˜̃

down · TlND

)))
Fig. 13. The heater component expressed in ACPsrt

hs where the first element of the subscript indicates light or dark, the second
ofF or oN, and the third Down or Up.

uncontrolled system and the controller, as distinct processes. The uncontrolled system is basically a flat
description of all possible states of all flow sources, while the controller is used to impose an ordering on
discrete events. The dependence of discrete events on continuous variables, via activation conditions and
resets, is described separately from the controller. This allows the modeller to experiment with different
combinations of discrete controllers, by either changing causality dependencies between events or by changing
their dependencies on the continuous part of the system. Moreover, the choice of describing event conditions
separately from the controlled system allows us to separate modelling concerns. In particular, we separate
the description of the architecture of the model, i.e. the logical structure defining the possible interactions,
from the description of the quantitative features of dynamics. This allows the modeller to experiment with
different dynamical regimes without the necessity of modifying the structure of the model. We stress the fact
that by combining the controller with activation conditions and resets, one can describe arbitrarily complex
discrete dynamics.

Our choice to combine influences in an additive way when forming the ODEs, stems from the identification
of influences with flow sources, which tend to be additive in nature (think of the inflows and outflows of
a tank, or of the combined effect of different chemical reactions in a chemical system). We wish to stress,
however, that this additive style is not a limitation. In fact, we can obtain any set of ODEs, with nonlinear
terms as complex as desired. Indeed, this can be achieved by appropriate definition of the influence types.
In the extreme case, one can model an ODE V̇ = f(V) for a variable V by a single influence with strength
1 and influence type I(V) = f(V). However, whilst this is within the definition of the language, it is not
inkeeping with the modelling spirit of HYPE, which emphasises modularity. It remains to remark that, in
all the examples we have considered so far, additivity of flows has not been a limitation but we remain open
to the possibility of studying different mechanisms to combine flows in the future.

In Section 4, we showed how to associate a hybrid automaton with each HYPE model. It is interesting
to further consider the relationship between the class of models that can be described in HYPE and the
class of models that can be described by hybrid automata (at least the class of hybrid automata that we
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consider in in Definition 4.1). It is also possible to construct a HYPE model that is equivalent to any given
hybrid automaton7. The only element of hybrid automata that is not straightforwardly described in HYPE
is the non-urgent discrete transition (with non-trivial activation conditions). However, these transitions can
be modelled in HYPE by a sequence of events: an urgent event to fire as soon as the guard of the transition
becomes active, followed by a non-deterministic event that is disallowed when the guard is false. We do not
provide formal details of the construction of a HYPE model from a hybrid automata here. An example of it
is given by the train-gate controller model of Section 10.

A modelling approach that is closely related to HYPE in the way of dealing with continuous dynamics is
the (hybrid) bond graph approach [CBM08]. However, bond graphs are tailored to model physical systems,
while HYPE has a more abstract approach, that supports the modelling of a large number of classes of
systems showing hybrid dynamics (e.g. biochemical systems, ecological systems, financial markets, social
networks, computer networks, and so on), even if it can be less efficient in specific domains than languages
designed for these domains.

We close this section commenting on the notion of state in HYPE and in other hybrid languages. Usually,
in hybrid languages a state describes the current mode and the current evaluation of continuous variables.
In HYPE, instead, a state (operational state) is just a collection of active influences, hence it models the
shape of the continuous dynamics, rather than a specific configuration of the system. This difference reflects
on the notions of bisimulation. While in hybrid languages like ACPsrt

hs or hybrid automata, bisimulations
predicate properties of the systems dynamics, in HYPE bisimulation compares two models in terms of
their structure. In this sense, it is a stronger notion of bisimulation, as models with non-bisimilar structure
can still exhibit a bisimilar dynamical behaviour. HYPE bisimulation, in particular, can be used to reason
about the complexity of the description of a model and about the causal relationships between events, while
bisimulation on the dynamics can be used to carry out analysis at that level, for instance reachability analysis.
Further illustrating HYPE’s more abstract style of modelling, as demonstrated in Section 8, is the fact that
for HYPE, stateless bisimilarity is the same as initially stateless bisimilarity. This difference reflects also on
the intrinsic computational complexity of these two notions: while bisimulation for finite HYPE models is
(efficiently) computable, as it can be reduced to a bisimulation for labelled graphs [DPP04], bisimulations
at the dynamical level are usually undecidable [HKPV95].

10. Example: train gate controller

We now consider the train gate system as described in [AHH96, BM05, Kha08]. We consider a section of
railway track with a crossing gate. The track starts 1500m or more before the gate and ends 100m afterwards.
There is a sensor at 1000m before the gate that sends a signal to the controller that a train is approaching,
and a sensor at 100m after the gate that sends an exit signal to the controller. The train travels at between
48m/s and 52m/s and after the first sensor is passed, between 40m/s and 52m/s. The gate, on receipt of a
lower signal, changes its angle to the ground from 90◦ to 0◦ at a rate of -20◦/s until it is closed. Likewise,
on the receipt of a raise signal, changes its angle to the ground from 0◦ to 90◦ at a rate of 20◦/s until it is
open. It must always respond to lower and raise signals. The controller on the receipt of an approach signal,
sends a lower signal to the gate within 5 seconds, and on the receipt of an exit signal, sends a raise signal to
the gate within 5 seconds, assuming it does not receive an approach signal within that time. It must always
be available to receive an approach or exit signal. Once a train clears the section of track (passes the sensor
after the gate), a subsequent train may arrive at the start of the section of track.

Initially, the train is at 1400m before the gate, and the gate is open. The safety property of the system
in which we are interested, is whether the gate is down when the train is within a certain distance of the
gate, say 100m. We will also consider a modification of the model, where the train is able to travel faster,
with a reduction of speed closer to the gate, and consider whether the safety property still holds.

The HYPE model is given in Figure 14. Since HYPE does not directly support ranges of resets or ranges
of influences, we will make decisions to simplify our modelling task. We will assume that subsequent trains
appear at 1500m before the gate, that trains travel at their maximum speed of 52m/s and that the controller

7 The notion of equivalence we have in mind here is the following: given a hybrid automaton, we associate with it a HYPE
model. Then, we construct a new hybrid automaton associated with this HYPE model according to the construction of Section 4,
and prove that it is bisimilar to the original one.
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Gate def
= lower : (g,−rgt , c).Gate + closed : (g, 0, c).Gate +

raise : (g,−rgt , c).Gate + open : (g, 0, c).Gate +
init : (g, 0, c).Gate

Train def
= init : (d, rtr , c).Train

TimerL
def
= appr : (tL, 1, const).TimerL + lower : (tL, 0, const).TimerL + init : (tL, 0, const).TimerL

TimerR
def
= exit : (tR, 1, const).TimerR + raise : (tR, 0, const).TimerR + init : (tR, 0, const).TimerR

Cona
def
= appr.Con l + exit.Cona Con l

def
= appr.Con l + exit.Con l + lower.Cone

Cone
def
= appr.Cone + exit.Conra Conra

def
= appr.Con l + exit.Conra + raise.Cona

GC o
def
= raise.GC o + lower.GC l GC l

def
= raise.GC r + lower.GC l + closed.GC c

GC c
def
= raise.GC r + lower.GC c GC r

def
= raise.GC r + lower.GC l + open.GC o

Seqa
def
= appr.Seqp Seqp

def
= pass.Seqe Seqe

def
= exit.Seqa

L = {lower, raise, appr,pass, exit, init}
System def

= (Gate BC
{init}

Train BC
{init}

TimerL BC
{init}

TimerR) BC
L

init.((Cona BC
{appr,exit}

Seqa) BC
{raise,lower}

GC o)

iv(g) = G iv(d) = D iv(tL) = TL iv(tR) = TR JcK = 1

ec(init) = (true, G′ = 90 ∧D′ = −1400 ∧ T ′L = 0 ∧ T ′R = 0)

ec(lower) = (TL = 5, T ′L = 0) ec(closed) = (G = 0, true)
ec(raise) = (TR = 5, T ′R = 0) ec(open) = (G = 90, true)

ec(appr) = (D = −1000, T ′L = 0) rgt = 20
ec(pass) = (D = 0, true) rtr = 52
ec(exit) = (D = 100, T ′R = 0 ∧D′ = −1500)

Fig. 14. HYPE model of train gate controller

will take the full 5 seconds to signal the gate, since these values represent the most negative conditions for
the system. After our model description, we will demonstrate how to modify it to allow more flexibility.

In the model, there are 4 continuous components to represent the train, the gate, and two timers. There
are also 3 distinct controlling or sequencing elements. Seqa captures the fact that the train does not ever go
backwards. Cona is the controller of the system, and GC o represents the discrete aspects of the gate itself.
The gate is required to accept all raise and lower signals but it is reasonable to expect that the gate has a
notion of internal state to determine what to do if a signal is received, and is aware when it is closed or open
so that it can stop its own motors. All of these aspects given here are also present in the hybrid automata
model given in [AHH96] but in our model continuous and discrete aspects are separated.

The model is well-defined and we wish to check that it is also well-behaved. Since the events of GC o which
do not appear in Cona BC∗ Seqa do not activate any of those in in Cona BC∗ Seqa and vice versa, we can apply
Proposition 6.4. It is necessary to consider Cona BC∗ Seqa as a single system since Cona does allow infinite
instantaneous behaviour. The event appr does not inhibit itself, and there are loops involving this event in
the definition of Cona. In the I-graph of Cona, we obtain the loop (Con l, appr, 10001)→ (Con l, appr, 10001)
where the vector order is appr, pass, exit, lower, raise.

The I-graph of GC o consists of four directed acyclic graphs (when only considering those nodes that
are reachable from nodes with vectors consisting of all ones), and the I-graph of Cona BC∗ Seqa consists of
12 directed acyclic graphs, 6 of which are single nodes and 6 are two node graphs. Since these are both
acyclic, we know that the overall controller is well-behaved by Proposition 6.4. There are 22 configurations
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Fig. 15. Trace for the train gate system where rtr = 52.

(excluding the initial configuration) in the labelled transition system of the model, hence giving a hybrid
automaton with that number of modes.

When comparing our model to that of the hybrid automaton in [AHH96], our controller has an additional
state reflecting a slightly more complex controller. If we construct the three-state controller, say Con ′ and
put each controller in parallel with Seqa, then we can show that Con ′ BC∗ Seqa and Cona BC∗ Seqa are system
bisimilar. From this we know by congruence, that (Con ′ BC∗ Seqa) BC∗ GC o) and (Cona BC∗ Seqa) BC∗ GC o)
are system bisimilar. Finally by Corollary 8.1, the two controlled systems are system bisimilar.

In terms of the safety property, we can run a single trace of the model (as given in Figure 15) since it
is determinstic, and determine that the gate closes when the train is at 505.9m before the crossing agreeing
with previous calculations [Kha08]. Another approach to considering the safety property is to construct a
HYPE model with the same continuous components and a different controller that exactly describes how we
want the system to behave with an additional event for failure. We address this below after we consider how
to change the model.

To show the compositionality of our approach, we consider the scenario where the train is now able to
travel at a much faster speed but the crossing gate is unchanged. To ensure that the gate is closed by the
time the train is 100m from the crossing, it is necessary to slow the train as it approaches the crossing. We
assume the train is required to slow at 1000m before the crossing.

Since we already have an event at D = −1000, we do not need to introduce another event. We can simply
add a new train component,

TrainRS def
= appr : (ds,−rsl, c).TrainRS + exit : (ds, 0, c).TrainRS + init : (ds, 0, c).TrainRS

and let iv(ds) = D. By adding this component, the train speed will be slowed at 1000m to rtr − rsl. In
the model with the added component, we still have the same number of states in the labelled transition
system because no new events have been added. The underlying hybrid automaton will be very similar to
the previous one, except in certain states, the ODE for distance will differ slightly. In Figure 16, the graph
for rgt = 140 and rsl = 20 is given on the left. We can see from the graph that the gate is not closed when
the train passes the crossing and hence it cannot be closed 100m before the crossing. We wish to add to our
model to capture the fact that this behaviour is not desirable.

We do this by adding an event called fail with event conditions ec(fail) = (−100 ≤ D ∧ G 6= 0, true).
Since this event can happen at anytime, we add the controller, FC def

= fail.0. In the labelled transition system,
this adds an additional configuration for each existing configuration (excluding the initial configuration). For
each configuration

〈
Σ BC∗ D,σ

〉
, there is a new configuration

〈
Σ BC∗ 0, σ

〉
with a new transition fail from

the existing configuration to the new one. Thus the new hybrid automaton has 44 modes. This doubling
of configurations and modes can be avoided by adding a fail event to each subcomponent and setting each
influence to zero on the occurrence of the event. This means that there will be only one new state and there
will be fail transitions from all existing states to the new state. The right graph in Figure 16 shows a trace
of the gate system under the new speeds with the fail event being triggered.

By experimentation, we find that rsl=50 leads to an execution without failure as shown in the left graph
in Figure 17, however, this means that the gate is continually closed making the crossing unusable. By
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Fig. 16. Traces for the train gate system where rtr = 140 and rsl = 20. The model in the left trace does not deal explicitly
with failure whereas the model in the right trace has an explicit failure event
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Fig. 17. Trace for the train gate system where rtr = 140 and rsl = 50 (left). Trace for the train gate system where rtr = 140
and rsl = 50, and originating distance is increased to 2000m

changing the gap between trains by increasing the originating distance to -2000m, we obtain a scenario
where the behaviour of the gate is correct and the gate is opening between trains, as shown in the right
graph in Figure 17.

Another approach to assessing the correctness of the model is to retain the continuous components of
the system and use a controller that only allows the correct behaviour together with a failure component as
before. We give the model in Figure 18. Using the underlying hybrid automaton which is smaller with only
10 modes, we obtain the same graphs as the last three using the same parameters.

We now consider aspects of the original scenario which we were not able to capture in HYPE. First, with

C1
def
= appr.C2 C6

def
= appr.C7 + raise.C8

C2
def
= lower.C3 C7

def
= lower.C4

C3
def
= close.C4 C8

def
= open.C1 + appr.C9

C4
def
= pass.C5 C9

def
= open.C2 + lower.C3

C5
def
= exit.C6

L = {lower, raise, appr,pass, exit, init}
System def

= (Gate BC
{init}

Train BC
{init}

TimerL BC
{init}

TimerR) BC
L

init.(C1 ‖ FC )

Fig. 18. HYPE model of train gate controller with fail mode
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respect to the originating distance being at least 1500m, we can use the ⊥ activation condition in the event
condition for exit. This simulates a train starting from further away. We can take a similar approach for the
5 second limit for the signal to arrive from controller to gate. We can have one event lower1 which has an
activation condition of ⊥, and a second lower2 which has an activation condition of TL = 5, which allows
a lower event to happen at any point in time up to 5 seconds. Finally, we consider the speed range/non-
determinism. There are a few ways to allow a choice from a discrete number of speeds from the range but
none of them are ideal. This type of range can be also approached through experimentation on the model
by varying parameters. Where non-determinism is used to reason about worst-case scenarios in the context
of insufficient knowledge, the goal is to show that the system does not exhibit an unwanted behaviour, no
matter what the parameters are (within their prescribed boundaries). In many cases, one can then identify
extremal values for quantities of interest to use in the modelling process. For the train gate controller, we
can do this by taking the fastest speed as the worst-case analysis, without loss of information and leading
to a simpler model.

Thus this section has demonstrated how we can model a standard hybrid systems example in HYPE,
as well as illustrating its compositionality both for adding additional components to the model, and adding
failure events that depend on variables affected by different subcomponents.

11. Related Work

As mentioned in the introduction, HYPE takes a finer grained, less monolithic approach than the other
process algebras for hybrid systems [BM05, vBMR+06, RS03, CR05] because it enables the modelling of
individual flows. In [Kha06] the comparison of these other process algebras is based on the train gate
controller example and in each case, the train, gate and controller components have to be fully, sequentially
described and then composed in parallel. This would also be necessary for the modelling of our orbiter
example. For each of these process algebras, somewhere in the syntactic description of the system, a term
such as K̇ = rs−rd−K, as well as terms for each of the other seven ODEs for the variable K, would need to
appear to describe the continuous behaviour that can occur. By comparison, a modeller using HYPE would
only need to model the individual flows, and not construct the ODEs explicitly. This could allow non-experts
to model hybrid systems more easily.

A classical formalism for expressing hybrid systems is hybrid automata [Hen96]. As presented in Section 4
and Section 7, they are specified by defining explicitly both the control graph and the dynamical conditions
within each mode, in terms of differential equations or, more generally, differential inclusions. Two hybrid
automata are composed in parallel by synchronising transitions on shared events in the control graph [Hen96].
Flow conditions are combined by taking the logical conjunction of the predicates defining them. Where flows
are defined by differential equations, the equation for each variable X must be defined only in one component,
otherwise a logical inconsistency may arise. In Corollary 7.1, we showed the difference between the product
of two hybrid automata and synchronisation of two HYPE models.

The modelling style of HYPE is quite different. Activities are identified with atomic flows acting on system
variables. ODEs are then derived for an individual state by adding the different atomic flows acting on each
variable. Activities can change in response to the happening of discrete events, which are controlled not by
components but by an external controller and triggered by event conditions. This results in a separation of
the description of the response of the system to events from the discrete control structure imposing causality
on the happening of events. In contrast to hybrid automata, HYPE allows the separate description of flow
conditions, event conditions, and the control graph, making easier the task of modifying the controller or the
interactions with the environment. Furthermore, the fact that influence types are defined separately from
the structure of the model also separates modelling concerns. Together, these features give a modularity
of definition. In addition, compositionality of HYPE manifests on the set of activities (the state of the
system) rather than on ODEs, hence we can allow different components of the system to influence the same
continuous variable: the combined effect is obtained by superimposing flows, namely by addition on the right
hand side of ODEs. Since a HYPE model can be expressed as a hybrid automaton, when using HYPE to
model one gets the advantages of HYPE together with the formalism of hybrid automata. This is a distinct
advantage over languages such as Charon [AGLS06], Shift [DGV96], and HyCharts [GS02]. These are all
compositional formalisms describing hybrid systems which do not map so readily to hybrid automata. They
differ from HYPE in that they do not have the simple syntax and structured operational semantics of a
process algebra.
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Another formalism which has a mechanism to combine flows is hybrid action systems [RRS03]. This
language is based on Dijkstra’s guarded command language and has predicate transformer semantics. Dif-
ferential actions consist of guards before ODEs, and parallel composition of these actions is defined as a
linear combination of functions with the addition of functions over any shared domains. This differs from
our approach where we associate influence names with a specific variable and then sum over all influences
for a given variable to obtain the ODE.

Physical systems can also be modelled by constitutive equations and bond graphs [Pay61]. This is a
modelling technique in which a system’s components are described by means of equations relating main
physical quantities of interest. Components are then glued together by imposing suitable conservation laws.
This results in a set of differential equations with algebraic constraints, which after an algebraic manipulation,
can be simplified by removing variables and constraints. There are also hybrid extensions of the bond graph
method which have been represented in a hybrid process algebra [CBM08], to deal with discontinuities in
physical systems (such as a bouncing ball).

In HYPE, instead, the modelling activity concentrates around the notion of flow or influence, which is
not explicitly connected with physical quantities or with conservation laws, and components are described
by specifying the way they react to external events through flows modifications. This may be less natural
for certain physical systems, as one has to identify the different influences acting on each variable of interest
(without relying on the implicit derivation mechanism provided by conservation laws). However, HYPE’s
modelling style is straightforwardly applicable to a wider class of systems, at different levels of abstraction.

12. Conclusions and Further Work

In this article, we have presented HYPE, a modelling formalism for hybrid systems, developed its theory
and illustrated its applicability. HYPE has novel features that include a fine-grained approach to modelling
flows and an explicit controller.

HYPE, in the usual process algebra style, has a syntax consisting of a small number of operators and an
operational semantics that describe the behaviour of a HYPE controlled system. This results in a labelled
transition system over configurations which are pairs of controlled system derivatives and states. States
contain information about the continuous flows that are in operation at a configuration in the labelled
transition system, and a transition represents a change to a configuration where different continuous flows
apply. This provides a straightforward mapping to a hybrid automaton, where information about the flows
in operation are used to construct the ODEs at a mode in the hybrid automaton.

We considered the general behaviour of HYPE models and identified syntactic restrictions called well-
definedness and operational restrictions called well-behavedness, to ensure HYPE models have sensible be-
haviour. We showed for both of these restrictions that they are semantically meaningful in the behaviour
they ensure. Moreover, particularly in the case of well-behavedness, the I-graph of the controller with event
conditions allows us to reason about the behaviour of a HYPE model without needing to explore it in full
detail.

Since hybrid automata are a classical formalism for hybrid systems and also because they provide the
hybrid semantics for HYPE models, we considered the expressive differences between products in the two
formalisms, showing that HYPE models, due to the use of influences, allow for more expressive and flexible
products since the same variable can appear in both models that form the product.

We investigated equivalence semantics and provided a definition of bisimulation over HYPE models
together with results about congruence and the ODEs obtained from bisimilar HYPE models. Finally, we
presented a classical case study and demonstrated how HYPE can successfully model the problem, as well
as an extension of the problem showing the value of compositionality.

In terms of further work, additional modelling using HYPE is important. To date, we have modelled a
dual-tank system (as described by [TCT01]), a bottling line (as described by [BM05]), the abstract view
of the repressilator [GHB08] (as described by [BP08]) and the circadian clock of a green alga [Gal10] (as
described by [AGLT10]).

Since the process algebraic approach uses a language to describe systems, we wish to further explore
how reasoning at the language level can provide results about the underlying model. A specific area of focus
is that of equivalences that allow us to capture notions of similar behaviour in different systems. Here we
could consider bisimulations for models with very different tuples with appropriate maps between variables,
events, activities, functions and sets. In the first case these maps would be bijections, but it may be possible
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to explore surjective maps. We also wish to investigate links between bisimulation and I-graphs and to obtain
results about the well-behavedness of a synchronisation of two HYPE models using the theory developed in
Section 6 through constructing an I-graph for the controller Con1 BC∗ Con2 and the new event conditions ec
defined from ec1 and ec2.

We have also extended HYPE models with stochastic durations for events [BGH10a] where the underlying
semantic model is Transition-Driven Hybrid Stochastic Automata [BP09], a subset of Piecewise Deterministic
Markov Processes [Dav93], and used this extension to model delay-tolerant networks [GHB10, BGH10b]. This
is also a direction for future research.
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[RRS03] M. Rönkkö, A.P. Ravn, and K. Sere. Hybrid action systems. Theoretical Computer Science, 290:937–973, 2003.
[RS03] W.C. Rounds and H. Song. The φ-calculus: A language for distributed control of reconfigurable embedded systems.

In O. Maler and A. Pnueli, editors, Proceedings of HSCC 2003, LNCS 2623, pages 435–449, 2003.
[TCT01] B. Tuffin, D.S. Chen, and K.S. Trivedi. Comparison of hybrid systems and fluid stochastic Petri nets. Discrete

Event Dynamic Systems: Theory and Applications, 11:77–95, 2001.
[TGH10] M. Tribastone, S. Gilmore, and J. Hillston. Scalable differential analysis of process algebra models. IEEE Trans-

actions on Software Engineering, 2010. to appear.
[vBMR+06] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers. Syntax and consistent equation

semantics of hybrid χ. Journal of Logic and Algebraic Programming, 68:129–210, 2006.
[vG90] R.J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In Proceedings of CONCUR

90, LNCS 458, pages 278–297. Springer, 1990.

A. Proof of Theorem 7.1

Theorem. Let P1 and P2 be well-defined HYPE systems (Pi, Vi, IN i, IT i, Ei, Ai, eci, iv i, EC i, ID i) for
i = 1, 2. If V1 ∩ V2 = ∅ then H(P1 ⊗ P2) = H(P1)×H(P2) when vertices unreachable from the initial vertex
are excluded.

Proof. To show that H(P1 ⊗ P2) = H(P1)×H(P2) we need to show that each component in the two hybrid
automata are the same. For the functions that map from vertices and those that map from edges, it is
sufficient to show that they map to the same values.

First, consider P1 ⊗ P2 which is the tuple consisting of (P def
= (Σ1 BC∗ Σ2) BC∗ init.(Con1 BC∗ Con2), V1 ∪

V2, IN 1 ∪ IN 2, IT 1 ∪ IT 2, E1 ∪ E2, A1 ∪ A2, ec, iv1 ∪ iv2, EC 1 ∪ EC 2, ID1 ∪ ID2) with the conditions and
ec given by the definition. We can then construct the labelled transition for this product. Then the hybrid
automaton we obtain from the product of the two HYPE models is defined as H = (V,E,V1 ∪ V2, E1 ∪
E2,flow , init , inv , event , jump, reset , urgent) where

• V = ds((Σ1 BC∗ Σ2) BC∗ init.(Con1 BC∗ Con2))

• E contains (v, v′) if v = 〈P, σ〉 and v′ = 〈P ′, σ′〉 for some derivation 〈P, σ〉 a−→〈P ′, σ′〉
• for vj = 〈Pj , σj〉 then flow(vj)[X] =

∑
{rJI(W)K | iv(ι) = X and σj(ι) = (r, I(W))}

• init(v) =

{
res(init), if v = 〈P, σ〉
false, otherwise

with primes removed from variables

• inv(v) = true.

• Let e = (〈P, σ〉, 〈P ′, σ′〉) with 〈P, σ〉 a−→〈P ′, σ′〉. Then event(e) = a and reset(e) = res(a). Moreover, if
act(a) 6= ⊥, then jump(e) = act(a) and urgent(e) = true, otherwise jump(e) = true and urgent(e) = false.

Next consider the hybrid automata of P1 and P2. For i = 1, 2 we haveHi = (Vi, Ei, Vi, Ei, flow i, init i, event i,
jumpi, reset i, urgent i) where

• Vi = ds(Σi BC∗ init.Coni)

• Ei contains (v, v′) if v1 = 〈P, σ〉 and v′ = 〈P ′, σ′〉 for some derivation 〈P, σ〉 a−→〈P ′, σ′〉

flow i, init i, inv i, event i, reset i, jumpi and urgent i are defined in the expected manner. The synchronised
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product H(P1) × H(P2) is H ′ = (V1 × V2, E
′, V1 ∪ V2, E1 ∪ E2, flow ′, init ′, event ′, jump′, reset ′, urgent ′)

following the synchronised product definition.
Immediately, we can see that the events and the variables are the same in H and H ′. Next we consider

the vertices and edges of the graphs that make up the hybrid automata and define a function between these,
and show that the function is a bijection, hence we have a graph isomorphism which is sufficient to conclude
that the graphs are the same.

Let W ⊆ V1 × V2 be the subset of vertices we consider. These are the vertices which are reachable from
the initial configuration (〈Σ1 BC∗ Con1, τ1〉, 〈Σ2 BC∗ Con2, τ2〉) (τ1 and τ2 are the states immediately after
init).

We define f : W → V by

f
(
(〈Σ1 BC∗ D1, σ1〉, 〈Σ2 BC∗ D2, σ2〉)

)
= 〈(Σ1 BC∗ Σ2) BC∗ (D1 BC∗ D2), σ1 ∪ σ2〉

where Di ∈ ds(init.Coni). Furthermore, for an edge (w,w′), f(w,w′) = (f(w), f(w′)).
First, we show that if (w,w′) is an edge in E′ then f(w,w′) is an edge in E.

(w,w′) =
(
(v1, v

′
1), (v2, v

′
2)
)

=
(
(〈Σ1 BC∗ D1, σ1〉, 〈Σ2 BC∗ D2, σ2〉), (〈Σ1 BC∗ D′1, σ

′
1〉, 〈Σ2 BC∗ D′2, σ

′
2〉
)

f(w,w′) =
(
f(w), f(w′)

)
=
(
〈(Σ1 BC∗ Σ2) BC∗ (D1 BC∗ D2), σ1 ∪ σ2〉, 〈(Σ1 BC∗ Σ2) BC∗ (D′1 BC∗ D′2), σ′1 ∪ σ′2〉

)
There are three ways in which an edge can be obtained in a hybrid automata product, and we consider the
most complex case only. The other two cases are similar. We consider the case where event((w,w′)) ∈ E1∩E2.
We can infer that we have two edges (vi, v

′
i) ∈ E1, i = 1, 2 with the same event label as (w,w′). Hence,

we have transitions of the form 〈Σi BC∗ Di, σi〉 a−→〈Σi BC∗ D′i, σ
′
i〉. By manipulation of derivation trees and

well-definedness, 〈(Σ1 BC∗ Σ2) BC∗ (D1 BC∗ D2), σ1 ∪ σ2〉 a−→〈(Σ1 BC∗ Σ2) BC∗ (D′1 BC∗ D′2), σ′1 ∪ σ′2〉. Since IN 1

and IN 2 are disjoint, we can start with σ1 ∪ σ2 and as a result of the derivation, we will obtain σ′1 ∪ σ′2. We
can reverse this argument to show that if (f(w), f(w′)) is an edge in E then (w,w′) is an edge in E′.

The preceding paragraph implicitly assumes that f is well-defined but it must be proved. For w ∈
W , we show that f(w) ∈ V . Since w is reachable from the initial vertex w0, there is a sequence of
vertices w0, w1, . . . , wn, w that describe the edges from w0 to w. Hence, there is a sequence of vertices
f(w0), f(w1), . . . , f(wn), f(w). We need to ensure that the initial vertices have the same states and this is
guaranteed for well-defined systems by Proposition 5.5.

Next, we need to show that f is a bijection. For v ∈ V , we can use Proposition 5.2 to show that there
exists w ∈ W such that f(w) = v. We have indicated above that given an edge (f(w), f(w′)) ∈ E there
exist (w,w′) ∈ E′. Hence f is surjective. If we have two vertices in W that only differ in one of their states,
then the resulting vertices in V will differ, and if they differ in terms of their controller components, then
the vertices in V will also differ. If we have two edges in E′, then their images will also differ. Hence f is
injective and we have a graph isomorphism.

We need to check the functions on vertices. Clearly, inv ′(w) = inv(f(w)) since both inv ′ and inv map
to true. init ′(w) = false for all w ∈ W except w′ = (〈Σ1 BC∗ Con1, τ1〉, 〈Σ2 BC∗ Con2, τ2〉) and f(w′) =
〈(Σ1 BC∗ Σ2) BC∗ (Con1 BC∗ Con2), τ〉. init((f(w)) = true and init(v) = false for all other vertices v ∈ V .

We also need to consider flow . For (v1, v2) ∈ W , flow ′((v, v)) = flow1(v1) ∧ flow2(v2). Since V1 ∩ V2 =
∅, each flow i(vi) contributes distinct ODEs on distinct variables to flow ′ and does not evaluate to false
for any variable. Consider flow′(w)[X] =

∑
{rJI(W)K | iv1(ι) = X and σ1(ι) = (r, I(W))} where X ∈ V1

and w = (〈Σ1 BC∗ D1, σ1〉, 〈Σ2 BC∗ D2, σ2〉). We know that f(w) = 〈(Σ1 BC∗ Σ2) BC∗ (D1 BC∗ D2), σ1 ∪ σ2〉
hence flow(f(w))[X] =

∑
{rJI(W)K | (iv1 ∪ iv2)(ι) = X and (σ1 ∪ σ2)(ι) = (r, I(W))}. Any ι that satisfies

(iv1 ∪ iv2)(ι) = X must be in IN 1 since X ∈ V1, therefore the ODE obtained is the same in both cases
because we only need consider σ1. An similar argument can be made for X ∈ V2.

Next, we need to check the functions on edges. Let e = (e1, e2) be an edge in E′. From above, event ′(e) =
event(f(e)) = a. For jump, we need to consider if event ′(e) = a is a shared event or not.

• If a ∈ E1\E2, then there are two cases.

– If act1(a) 6= ⊥ then jump′((e1, e2)) = jump1(e1) = act1(a) and urgent ′(e) = urgent1(e1) = true. For
H, jump(f(e)) = act(a) = act1(a) and urgent(f(e)) = true since act(a) 6= ⊥.
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– If act1(a) = ⊥ then jump′(e) = jump1(e1) = true and urgent ′(e) = urgent1(e1) = false. For H,
jump(f(e)) = true and urgent(f(e)) = false.

If a ∈ E2\E1, the argument is similar.

• If a ∈ E1 ∩ E2 then there are again two cases.

– If act1(a) ∧ act2(a) 6= ⊥, we have jump′((e1, e2)) = jump1(e1) ∧ jump2(e2) = act1(a) ∧ act2(a) and
urgent ′((e1, e2)) = true Likewise jump(f(e)) = act(a) = act1(a) ∧ act2(a) and urgent(f(e)) = true
since act1(a) ∧ act2(a) 6= ⊥.

– Otherwise, jump′((e1, e2)) = jump1(e1) ∧ jump2(e2) = true and urgent ′((e1, e2)) = urgent1(e1) ∨
urgent2(e2) = false, since act1(a) ∧ act2(a) = ⊥ implies urgent1(e1) = false and urgent2(e2) = false.
Likewise, jump(f(e)) = true and urgent ′(f(e)) = false.

In the case of reset and reset ′, we need to again consider if we have a shared event or not.

• If event(e) = a ∈ E1\E2 then reset ′(e) = reset1(e1) = res1(a) and reset(f(e)) = res(a) = res1(a).

• If event a ∈ E1 ∩ E2 then reset ′(e) = reset1(e1) ∧ reset2(e2) = res1(a) ∧ res2(a). On the other hand,
reset(f(e)) = res(a) = res1(a) ∧ res2(a).


