
Hybrid semantics for PEPA

Luca Bortolussi∗, Vashti Galpin†, Jane Hillston†, Mirco Tribastone‡
∗Dipartimento Matematica ed Informatica, Università degli Studi di Trieste

luca@dmi.units.it
†Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh

{Vashti.Galpin,Jane.Hillston}@ed.ac.uk
‡Institut für Informatik, Ludwig-Maximilians-Universität München

tribastone@pst.ifi.lmu.de

Abstract—In order to circumvent the problem of state-
space explosion of large-scale Markovian models, the stochas-
tic process algebra PEPA has been given a fluid semantics
based on ordinary differential equations, treating all entities
as continuous. However, low numbers of instances and/or
relatively slow dynamics may make such approximation too
coarse for some parts of the system. To deal with such
situations, we propose an hybrid semantics lying between
these two extremes, treating parts of the system as discrete
and stochastic and others as continuous and deterministic.
The underlying mathematical object for the quantitative
evaluation is a stochastic hybrid automaton. A case study of
a client/server system with breakdowns and repairs is used
to discuss the accuracy and the cost of this hybrid analysis.

I. INTRODUCTION

Stochastic process algebra, such as PEPA [9], EMPA [1]
and IMC [8], are extensively used for modelling and
quantitative analysis of systems. Their semantics is given
in terms of Continuous Time Markov Chains (CTMCs).
However, all these tools suffer from the problem of state
space explosion, namely the combinatorial growth of the
size of state space, which hinders their practical use.
Furthermore, stochastic simulation can also be impractical
in many cases.

An alternative technique for analyzing PEPA is fluid-
flow approximation [10], which is based on the principle
of describing in a continuous fashion the discrete entities
in play. A set of Ordinary Differential Equations (ODEs) is
associated with a PEPA model, whose solutions are related
to the average behavior of the CTMCs. Furthermore, in
the limit of infinitely large populations, the trajectories of
CTMCs are indistinguishable from those of ODEs [17].

However, a wholly fluid approximation is not always
justifiable. This is the case for systems which have some
components present in few copies or subject to a slow
dynamics; describing them with continuous variables may
lead to poor results. Examples include client-server inter-
actions with one or few servers, and, in a different context,
description of genetic networks [4].

In these cases, an intermediate approach can be more
appealing: just a portion of the system is made continuous,
while the rest is kept discrete. This generates hybrid
models, with a dynamics combining continuous determin-
istic evolution with discrete stochastic jumps. This hybrid
scheme typically should behave better than ODEs and
be more efficient than stochastic simulation, which is the
only practicable approach for analyzing CTMCs with large

state spaces. Our aim is to obtain a hybrid approximation
for large systems that are not amenable to analysis using
CTMC semantics rather than to provide a new hybrid
formalism.

In this paper, we define a hybrid semantics for PEPA,
adapting to this context the ideas introduced in [3].
The starting point is the parametric Markovian seman-
tics of PEPA [17]. The target formalism, combining
ODEs and stochastic jumps, is that of Piecewise De-
terministic Markov Processes (PDMPs) [6]. However,
working with this formalism is difficult, and we find
it easier to manipulate a higher level description of
PDMPs, called Transition-Driven Stochastic Hybrid Au-
tomata (TDSHA) [3], describing the system as a collection
of discrete transitions (corresponding to instantaneous or
stochastic jumps) and continuous transitions (representing
flows acting on system variables). In particular, it is easier
to define a notion of product for TDSHA than for PDMPs,
which here is tailored to match the PEPA notion of multi-
way synchronization. Equipped with these notions, we can
define the hybrid semantics in a compositional way, first
associating a TDSHA with each PEPA component, and
then composing these TDSHA by product.

The first step in this process is the partition of PEPA
actions into those amenable to continuous approximation
and those to be kept discrete. This choice is crucial, as
it influences the accuracy of the hybrid approximation
and the efficiency of simulation. At this stage, it is left
to the modeler, although we discuss some heuristics that
can guide the choice.

In the paper we also discuss a case study modelling a
simple client/server interaction, analyzing experimentally
the quality and the performance of the hybrid semantics.

Structure of the paper: Section II introduces PEPA
and the parametric semantics of PEPA [17]. Section III
introduces TDSHA and the synchronization product, while
Section IV contains the definition of the hybrid semantics.
Finally, Section V discusses the case study, Section VI
covers related work and Section VII draws conclusions
and discusses future work.

II. PEPA

This section gives a brief overview of PEPA and its
fluid-flow approximation. The most relevant notions will
be informally introduced through a case study. The reader
is referred to [9], [17] for a formal account.

2010 Seventh International Conference on the Quantitative Evaluation of Systems

978-0-7695-4188-4/10 $26.00 © 2010 IEEE

DOI 10.1109/QEST.2010.31

181

Sw
def= (request , rrp).Sl + (break , rbr).Sb

Sl
def= (log , rlg).Sw

Sb
def= (fix , rfx).Sw

Ur
def= (request , rrq).Ut

Ut
def= (think , rth).Ur

System def= Sw BC
{request}

Ur [N]

Figure 1. A client-server system with breakdowns and repairs.

A. Overview of PEPA

The PEPA model in Figure 1 will be used throughout
this paper for illustrative purposes. The model describes
the interaction of clients with servers that may break down.
A server is modelled as a sequential component, i.e., a
component that may perform activities in sequence. An
activity is denoted by (α, r), where α is the action type
and r denotes the parameter of an exponential distribu-
tion associated with the duration the activity. Sequential
components evolve through a set of local states (or deriva-
tives). For instance, the local states of the server are Sw , Sl

and Sb . A choice, denoted by the symbol +, indicates that
a sequential component enables two or more activities. A
race condition determines which of these will be executed.
The choice in the local state Sw means that the server may
occasionally fail while serving a request. A client is also
modelled as a component evolving through the states Ur

and Ut . The former enables an activity with the same
action type as Sw .

Shared action types indicate synchronisation between
PEPA components. The synchronisation behaviour is de-
fined in the model component (i.e., System in the case
study). The expression Sw BC

{request}
Ur implies that the two

sequential components synchronise on all the activities
whose types are in the action set in the cooperation
operator. Synchronisation alters the rate of execution of the
activity, which will be the minimum of the two individual
rates (e.g., min(rrp , rrq) in the example). The process
array Ur [N] is a shorthand notation for a composition
of N components Ur over empty cooperation sets. This
captures that users can execute independently from one
another, but each user must synchronise with the server to
perform the request activity.

Another operator (not illustrated in the example) is
hiding. For a set of actions L, any actions will be replaced
with the silent action, τ . This permits actions viewed
as internal to a system to be hidden from observers. In
the example, we could choose to hide server logging by
specifying (Sw BC

{request}
Ur [N])/{log}.

PEPA has a two-level syntax with S a sequential com-
ponent and P a model component

S ::= (α, r).S | S + S | Cs P ::= P BC
L

P | P/L | C

where C names a model or sequential component, Cs

names a sequential component, α is an action from the

action set A, r a positive real and L ⊆ A. Structured
operational semantics give rise to the derivative set ds(P)
and the derivative graph D(P) for a PEPA model P . The
graph can be interpreted as a CTMC (continuous time
Markov chain) [9].

B. Population-based semantics

When interpreted with the standard Markovian seman-
tics [9], PEPA exhibits rapid state-space growth as a
function of the number of sequential components in the
model. The population-based semantics in this section
admits a differential-equation interpretation of a PEPA
model which reduces dramatically the cost of the analysis.

Reduced Context and Numerical Vector Form: We
consider the reduced context of the original model, i.e.,
a model component which disregards the multiplicities
of its sequential components. The reduced context of the
example, denoted by red(System), is

red(System) = Sw BC
{request}

Ur . (1)

The ODE of a PEPA model is obtained from a symbolic
representation of a CTMC whose state descriptor is in
the numerical vector form (NVF) The NVF is a vector,
denoted by ξ, of non-negative integers in which each
element gives the number of components (still discrete
at this stage) in the system that are in a particular local
state. The local states of interest are those of the sequential
components appearing in the reduced context. For exam-
ple, ξ = (1, 0, 0, N, 0) gives the initial state of the model if
one associates ξ1, ξ2, ξ3, ξ4, ξ5 with the population counts
of the local states Sw , Sl , Sb , Ur , and Ut , respectively.
In general, let d be the number of sequential components
in the reduced context (e.g., d = 2 in the example). Each
sequential component will be denoted by Ci, i = 1, . . . , d.
Each local derivative of Ci will be denoted by Ci,j ,
j = 1, . . . , |ds(Ci)|

Parametric Derivation Graph: According to the
semantics of PEPA, one can write the transition
Sw

(request,rrp)−−−−−−−−→ Sl , indicating that one component Sw

can perform an action request at rate rrp and subsequently
behaves as Sl . From this transition it is possible to infer
one that generalises as follows:

Sw
(request,rrpξ1)−−−−−−−−−→? Sl . (2)

This says that if there are ξ1 components in state Sw ,
one of these may perform a request at a rate which is
equal to the individual rate rrp multiplied by the number
of components in that state. The component Sl is said to
belong to the parametric derivation set of Sw , written Sl ∈
ds?(Sw). (For a sequential component ds?(S) = ds(S).)
The star symbol used here and in (2) highlights that
these relations are different from their counterparts in the
Markovian semantics of PEPA. Specifically, the rates are
now functions of the state descriptor in the NVF instead
of positive reals. An operational semantics—not shown
here due to space constraints—defines the behaviour of

182

the model compositionally [17]. For instance, the similar
transition for Ur

Ur
(request,rrqξ4)−−−−−−−−−→? Ut (3)

can be composed with (2) to collect the behaviour for the
reduced context (1):

Sw BC
{request}

Ur

(
request,min(rrpξ1,rrqξ4)

)
−−−−−−−−−−−−−−−−−→? Sl BC

{request}
Ut (4)

which gives the rate at which one of the ξ1 components
in state Sw and one of the ξ4 components in state Ur syn-
chronise and subsequently become Sl and Ut , respectively.
Again, one can write Sl BC

{request}
Ut ∈ ds?(Sw BC

{request}
Ur).

This transition follows from the following semantic rule:

E
(α,r1(ξ))−−−−−−→? E ′ F

(α,r2(ξ))−−−−−−→? F ′

E BC
L

F
(α,r(ξ))−−−−−→? E ′ BC

L
F ′

, α ∈ L,

r(ξ) =
r1(ξ)

r?
α (E , ξ)

r2(ξ)
r?
α (F , ξ)

min (r?
α (E , ξ) , r?

α (F , ξ))

where r?
α (E , ξ) denotes the parametric apparent rate of

α in component E , computed by summing the (symbolic)
rates at which the derivatives of E may perform α-
activities. Transitions of the kind (2–4) induce a para-
metric derivation graph whose nodes are PEPA compo-
nents and arcs give the action type and the parametric
rate at which an activity may be performed. The para-
metric derivation graph whose nodes are elements of
ds?(red(System)) gives the overall system’s behaviour
in terms of a symbolic CTMC.

Generating Functions and ODE model: With each
transition of this graph is associated a generating function
ϕα(ξ, l) where α is the action type and l is a jump
vector of integers which records the discrete changes in the
population levels of the components when the transition
is taken. The vector l is computed as the difference
between the two indicator vectors, denoted by ind(·), of
the components involved in the transition. An element of
the indicator vector is one if the corresponding local state
appears in the component. For instance, the generating
function of (4) is

ϕrequest(ξ, l) = min(rrpξ1, rrqξ4), (5)

where

l = ind(Sl BC
{request}

Ut)− ind(Sw BC
{request}

Ur)

= (0, 1, 0, 0, 1)− (1, 0, 0, 1, 0) = (−1, 1, 0,−1, 1)

The symbolic generating functions are sufficient to
define an ODE model. Let xi(t) be the continuous real-
valued function which approximates the time-course evo-
lution of ξi. The ODE defining xi(t) is constructed as

dxi(t)
dt

=
∑
l,α

liϕα(x(t), l)

For instance, Equation (5) contributes the summand
min

(
rrpx1(t), rrqx4(t)

)
to the expression for dx1(t)/dt

and dx4(t)/dt and its negation to dx2(t)/dt and
dx5(t)/dt. Let x(t) be the vector with elements xi(t),
the ODE model will be compactly written as dx(t)/dt =∑

l,α lϕα(x(t), l).

We have now seen the two extremes of PEPA semantics,
one leading to a CTMC interpretation and the other to
an ODE interpretation. Both are suitable under some sets
of circumstances and unsuitable in others. However, the
circumstances can have disadvantages for both approaches
with respect to different aspects of the system. By moving
to a hybrid approach, we can mitigate these disadvantages
by choosing part of the system to be continuous and
deterministic and other parts to be stochastic and discrete.

In the next section, we introduce the underlying se-
mantic model that we will use to express the hybrid
semantics. Transition-driven stochastic hybrid automata
(TDSHA) embody both continuous and discrete stochastic
behaviour (as well as instantaneous) and hence are suitable
for the task.

III. TRANSITION-DRIVEN STOCHASTIC HYBRID
AUTOMATA

Transition-Driven Stochastic Hybrid Automata (TD-
SHA) are a formalism introduced in [3] and they define
a subclass of Piecewise Deterministic Markov Processes,
(PDMPs) [6], [5], a well-studied class of Stochastic Hybrid
Automata combining differential equations and Markovian
jumps, developed for financial modelling. TDSHA empha-
size transitions, which can be either discrete or continuous.

We will define the hybrid semantics of PEPA in terms of
TDSHA, as they are more manageable than PDMPs. For
this task, TDSHA will be enhanced with a synchronisation
product, based on standard PEPA semantics [9], and a
notion of hiding.

Definition III.1. A Transition-Driven Stochastic
Hybrid Automaton (TDSHA) is a tuple
T = (Q,X, TC , TS , init , E), where:

• Q is a finite set of control modes and X =
{X1, . . . , Xn} is a set of real valued system vari-
ables.1 Q × Rn is the hybrid state space.

• E is a finite set of event or action names, labelling
transitions.

• TC is the multiset of continuous transitions or flows,
whose elements η are 4-tuples η = (q, s, f, e), where
q ∈ Q, s is a vector in Rn of size |X|, f : Rn → R
is a locally Lipschitz continuous function, and e ∈ E.
The elements of a tuple η are also written qη, sη, fη,
eη, respectively.

• TS is the multiset of stochastic transitions, whose
elements are tuples of the form η = (q1, q2, g, r, f, e),
where q1 is the exit-mode, q2 is the entry-mode and
e ∈ E. Moreover, g is a first-order formula with free
variables from X, and r is the reset, a conjunction of
formulae of the form X ′ = ρ(X) for some variables
in X, with ρ : Rn → R. Variables not appearing in

1The value of Xj after a change of mode is denoted by X′
j .

183

r are unmodified and the formula true corresponds
to the identity reset. Finally, f : Rn → R≥0 is the
locally Lipschitz continuous rate function giving the
instantaneous probability of taking transition η. The
elements of a tuple η are indicated by qη

1 , qη
2 , gη, rη,

fη, eη, respectively.
• init is a point (q0,x0) ∈ Q×Rn, the initial state of

the system.

The version of TDSHA introduced above differs from
the one presented in [3] because the class of instantaneous
discrete transitions is omitted. Such transitions, in fact, are
not used in the definition of the hybrid semantics of PEPA,
and we wanted to avoid the introduction of additional
technical details that may distract the reader. Furthermore,
in [3] a different product of TDSHA was used.

A. Dynamics of TDSHA

A TDSHA has two types of transitions. Continuous
transitions represent flows. For each η ∈ TC , sη and
fη describe the flow: its effect on variable Xi is given
by sη,i · fη(X). Stochastic transitions, instead, happen
at a specific rate describing an exponential distribution,
and can change system variables according to their reset
function, depending on the point at which the jump oc-
curred. The dynamics of TDSHA can be defined similarly
to PDMPs [6] in the following way.

Continuous transition: Within each mode q ∈ Q, the
system follows the solution of a set of ODEs, constructed
by combining the effects of the continuous transitions
acting on q. More precisely, setting TC(q) = {η ∈
TC | qη = q}, we define the ODEs in mode q ∈ Q as

dX
dt

=
∑

η∈TC(q)

sηfη(X), (6)

whose solution, starting from point x0 at time t0, is
denoted by φq(t, t0,x0). Existence and uniqueness of the
solution is guaranteed by Lipschitz continuity of fη.

Stochastic transitions: These are fired according to
their rate. When this happens, the state of the system
is reset according to the specified policy. Choice among
several active transitions is performed probabilistically. Let
TS (q,x) = {η ∈ TS | qη

1 = q, gη(x) = true} be the set
of stochastic transitions active in (q,x). We define the
global rate in (q,x) as λ(q,x) =

∑
η∈TS (q,x) fη(x). The

reset measure R associates a distribution on the hybrid
state space with each point (q,x). R(q,x, ·) is a finite
measure: from (q,x) we reach point (qη

2 , rη(x)) with
probability fη(x)/λ(q,x), for each η ∈ TS (q,x).

Traces: We can now define traces starting from the
initial point (q0,x0). We will use two sequences U1

i , U2
j

of independent random variables, uniformly distributed in
(0, 1). From (q0,x0), the TDSHA follows the solution
of the ODEs φq0(t, 0,x0) until the first stochastic jump.
Its firing time T1 has survival function P(T1 > t) =
e−Λ(q0,t), where the cumulative rate up to time t is
Λ(q0, t) =

∫ t

0
λ(q0, φq0(t, 0,x0)) (the integral is defined

due to Lipschitz continuity of all fη). The firing time T1

is defined by solving the equation e−Λ(q0,T1) = U1
1 [6].

The execution of a stochastic transition can change the
current mode or the value of system variables, and the
variable U2

1 is used to select the target point (q1,x1)
from the (finite) distribution R(q0, φq0(T1, 0,x0), ·). Then,
the system restarts from such a point, following the flow
φq1(t, T1,x1) until the next stochastic jump. This process
can be repeated to to provide a single trace.

Simulation: The definition of a trace gives a method
to simulate an execution of a TDSHA and Λ(q, t) can be
computed by coupling dΛ(q, t)/dt = λ(q,X(t)) to the
system (6).

B. Composition of TDSHA
Since our mapping will be compositional, we need to

compose two TDSHA. There are a number of ways to
do this but here we reflect PEPA semantics, specifically
rate calculation. We start by defining the apparent rate of
action α in a mode q. Given a particular set of values for
the variables, we consider all transitions from the mode
and the (functional) rates at which they can happen.

Definition III.2. Let T = (Q,X, TC , TS , init , E) be a
TDSHA. The apparent rate of α ∈ E at point (q,x) ∈
Q × Rn is defined as

rα(q,x) =
∑

{fη(x) | η ∈ TC(q), eη = α}

+
∑

{fη(x) | η ∈ TS (q,x), eη = α}

Next, we define the synchronisation of two TDSHA
with respect to a set L of actions. We assume disjointness
of variables to simplify the overall treatment and this
property will be satisfied by the definition of the hybrid
semantics for PEPA. Also, we assume that the set E is
partitioned into continuous and stochastic actions so that it
is there are no synchronisations across types of transitions.

The actions in L are those which are synchronised on
and need to be treated differently from the other actions.
Given two continuous transitions η1 = (q1, s1, f1, α) and
η2 = (q2, s2, f2, α) for TDSHA T1 and T2 with disjoint
variables, the rate of their synchronisation, in the style of
PEPA parametric semantics, is rs(η1, η2) =

f1(X1)
rα(q1,X1)

f2(X2)
rα(q2,X2)

min{rα(q1,X1), rα(q2,X2)}.

The transition corresponding to their synchronisation is
then ((q1, q2), s1 ⊕ s2, rs(η1, η2), α), where s1 ⊕ s2 is the
direct sum of the two vectors s1 and s2 (which can be
thought here simply as concatenation of vectors).

Stochastic transitions are treated similarly. Guards and
resets for synchronised actions are the conjunction of
guards and resets of the two transitions.

Unsynchronised transitions from a mode (q1, q2) are
simply all transitions of q1 and of q2.

Definition III.3. Let Ti = (Qi,Xi, TCi, TSi, init i, Ei)
for i = 1, 2 be two TDSHA. Their L-synchronised
product2 with respect to the set of actions L ⊆ E,
T1 BC

L
T2 = (Q,X, TC , TS , init , E), is defined by

2We overload the cooperation operator for notational convenience.

184

• Q = Q1 ×Q2;
• X = X1 ∪X2;
• TC = TCs ∪ TCu, where

TCs =
{
((q1, q2), s1 ⊕ s2, rs(η1, η2), α) | α ∈ L,
ηi = (qi, si, fi, α) ∈ TCi, i = 1, 2

}
,

TCu =
{
((q1, q2), s1 ⊕ 0, f1, α) | α 6∈ L,
(q1, s1, f1, α) ∈ TC1, q2 ∈ Q2}

∪
{
((q1, q2),0⊕ s2, f2, α) | α 6∈ L,
(q2, s2, f2, α) ∈ TC2, q1 ∈ Q1},

• TS = TSs ∪ TSu, where

TSs =
{
((q1, q2), (q′1, q

′
2), g1 ∧ g2, r1 ∧ r2,

rs(η1, η2), α) | α ∈ L,
ηi = (qi, q

′
i, fi, gi, ri, α) ∈ TSi, i = 1, 2

}
,

TSu =
{
((q1, q2), (q′1, q2), g1, r1, f1, α) | α 6∈L,
(q1, q

′
1, g1, r1, f1, α)∈TS1, q2∈Q2}

∪
{
((q1, q2), (q1, q

′
2), g2, r2, f2, α) | α 6∈L,

(q2, q
′
2, g2, r2, f2, α)∈TS2, q1∈Q1}

• init = ((q1, q2),x1
0 ⊕ x2

0) for init1 = (q1,x1
0) and

init2 = (q2,x2
0).

The use of this definition will be illustrated with an
example when we consider the mapping of PEPA.

We now define hiding applied to a TDSHA. In PEPA,
hiding by a set of actions results in the actions in the
set effectively being replaced by a special, distinct action,
namely the silent action τ . We assume that synchronisation
on τ cannot occur, so it can be used in both continuous
and stochastic transitions.

Definition III.4. Let T = (Q,X, TC , TS , init , E) be a
TDSHA and L ⊆ E. The hiding of L in T, denoted by
T/L, is obtained by replacing all occurrences of actions
in L in the transitions of T by the silent action τ .

IV. MAPPING PEPA TO TDSHA

We now have the definitions for a semantics of PEPA
in terms of TDSHA. The semantic construction proceeds
in two steps, in line with [4], [3]. First, each PEPA
sequential component is translated into a TDSHA then
these automata are combined together. We prove some
properties of the hybrid semantics and consider various
choices made in the mapping as well modelling decisions.

Clearly, some parts of the PEPA model should remain
discrete and some should be continuous. To this end, some
sequential derivatives will be counted in a discrete fashion
(as in the integral NVF for the Markovian semantics) and
the remainder will be treated as continuous (as in the fluid-
flow semantics).

From a modelling point of view, we expect to have
criteria to decide how to partition the sequential com-
ponents and their derivatives, and we discuss this after
the mapping. Technically, we identify some actions as
continuous and some as discrete. Actions are the basic
behavioral units in PEPA models, and we decide if their
effect on the model is fluid or discrete. An action (apart
from τ) is treated uniformly in the model, in the sense that
it is always discrete or always continuous in the hybrid

semantics. This assumption simplifies the overall presen-
tation, as we do not need to specify the synchronisation
of a fluid action with a discrete one.

Therefore we assume a partition of the set of actions A
into discrete actions Ad and continuous actions Ac

Example IV.1. Returning to the example presented in
Section II, Consider

System
def= Sw [2] BC

{request}
Ur [100]

where there are two servers and 100 clients. The servers
can perform the actions {request , log , break ,fix} and the
clients {request , think}. Due to the nature of the inter-
action between servers and clients, and the large number
of clients, we will make the actions {request , log , think}
continuous and the rest will be discrete. We will use Sys
to denote red(System), hence Sys = Sw BC

{request}
Ur .

Considering the whole system, we can then partition
the derivative set in two sets. To do this formally, a few
definitions are required.

Definition IV.1. Given a reduced PEPA component P , let
the set of sequential local states of P be defined as

seq(P) = {D | D ∈ ds(C), C is a sequential
component in P , P reduced}.

Definition IV.2. For a sequential PEPA component C, let
χ(C) = pre(C) ∪ post(C) for

pre(C) = {α | C ′ (α,r(ξ))−−−−−→? C and C ′ 6= C}

post(C) = {α | C (α,r(ξ))−−−−−→? C ′ and C ′ 6= C}

Discrete local states are those for which both entry
and exit actions are discrete. They can also be involved
in continuous actions, as far as these actions do not
change the local state. For instance, a component like
C = (α, r).C + (β, s).C1, with α ∈ Ac and β ∈ Ad, can
be treated as discrete, because α does not change C. All
other local states are treated as continuous. Hence seq(P)
is partitioned into continuous local states Pc and discrete
local states Pd as given in the following definition.

Definition IV.3. Given a reduced PEPA model P then

Pc = {C | C ∈ seq(P),χ(C) ∩ Ac 6= ∅}
Pd = {C | C ∈ seq(P),χ(C) ⊆ Ad}

Example IV.2. For the example, Sysc = {Sw ,Sl ,Ur ,Ut}
and Sysd = {Sb} illustrating that the derivatives of a
component can be treated differently.

We next move on considering the mapping of a sequen-
tial component to a TDSHA.

A. Mapping of a sequential component

First, we will motivate the mapping and then define
it formally. Given a sequential PEPA component, let its
derivative set be {D1, . . . , Dp, C1, . . . , Cm} where the Di

are the discrete local states and the Cj are the continuous
local states. The TDSHA will have a set of variables

185

XC = {XC
1 , . . . , XC

m} which track the values for the
continuous local states, namely (XC

1 , . . . , XC
m) ∈ Rm

≥0.
The counts of the discrete local states can also be

expressed as a vector of the form (d1, . . . , dp) ∈ Np but
this vector will determine the modes in the TDSHA, and
hence variables for these local states are not necessary.

PEPA is conservative in the sense that fresh components
cannot be created, hence a single copy of a sequential
component can only be in one of its local states at a point
in time. With n copies of the components, we expect

p∑
i=1

di +
m∑

j=1

XC
j = n.

Defining s =
∑m

j=1 XC
j , it is clear s must be in N. The

modes can then be defined as

Qn
C = {(d1, . . . , dp, s) ∈ Np+1 |

p∑
i=1

di + s = n}.

Example IV.3. The derivative set of the sequential com-
ponent Sw is {Sw , Sl , Sb} with Sw and Sl continuous
and Sb discrete. Since n = 2 the modes are Q2

Sw
=

{(2, 0), (1, 1), (0, 2)} representing when both servers are
broken, one is broken and none are broken, respectively.
The variables are XSw

= {XSw , XSl} which capture the
proportion of servers able to react to requests and the
proportion of servers logging, respectively.

In order to define continuous transitions TCC , namely
those for which α ∈ Ac, we have to consider two subcases.
First, we deal with those actions modifying continuous
local states: they are defined in the same way in every
mode (although they have no effect in some modes).

T1 = {(q,1C
j − 1C

i , rXC
i , α) | Ci

(α,rXC
i)−−−−−→? Cj , q∈Qn

C}

We include a tuple for every distinct derivation
tree of the parametric transition to take into ac-
count the valid PEPA sequential components such as
C

def= (α, r).C1 + (α, r).C1, hence T1 is a multiset. The
function in the transition is rXC

i and this is in line with the
discussion of rates given after Equation 2. The indicator
vector of local state Cj , 1C

j , is defined as a vector of
length |ds(C)| equal to one in the position corresponding
to variable XC

j , and zero elsewhere.
The second case deals with continuous transitions loop-

ing on the same local state, and it depends explicitly on
discrete modes.

T2 = {((. . . , di, . . . , s),0, rdi, α) | Ci
(α,rdi)−−−−→ Ci}

Example IV.4. The continuous transitions are as follows.

T1 = {(q, (−1, 1), rrpXSw , request) | q ∈ Q2
Sw
}

∪ {(q, (1,−1), rlgXSl , log) | q ∈ Q2
Sw
}

We have the following flows in all modes.

dXSw /dt = −rrpXSw + rlgX
Sl

dXSl /dt = rrpXSw − rlgX
Sl

Note that in mode (2, 0), both servers are broken, hence
XSw + XSl = 0 and neither transition can have an effect.
Also note that T2 = ∅.

When α ∈ Ad, the transitions are stochastic. There
are four cases to consider to obtain TSC distinguishing
whether the source and target local states are discrete or
continuous. In each case, as in the continuous case, we
ensure there is a tuple for each distinct derivation tree of
a parametric transition, again giving a multiset. In the case
where both local states in a transition are discrete, we have

TDD = {((. . . , di, . . . , dj , . . . , s),
(. . . , di − 1, . . . , dj + 1, . . . , s),

true, true, rdi, α) | Di
(α,rdi)−−−−→? Dj}.

This is the simplest case and simply involves decreasing
the count of one discrete local state and increasing the
count of another. The function in the transition is defined
with respect to the mode definition.

Next if the source is discrete and the target is continu-
ous, the following transitions are obtained.

TDC = {((. . . , di, . . . , s), (. . . , di − 1, . . . , s + 1),

true, (XC
j)′ = XC

j + 1, rdi, α) | Di
(α,rdi)−−−−→? Cj}

In this case, the count of the discrete local state is
decreased, s is increased and the continuous variable
associated with the continuous local state is increased.

Example IV.5. In the example, TDD = ∅ and TDC is

{((2, 0), (1, 1), true, (XSw)′ = XSw +1, 2rfx ,fix),
((1, 1), (0, 2), true, (XSw)′ = XSw +1, rfx ,fix)}

The last two cases involve removing amounts from the
continuous variables. It is not correct to simply remove an
amount of one from the source local state variable X , as it
can have a value of less than one and it would be assigned
a negative value. The problem is that continuous flows
distribute the mass among many variables that depend on
the variable X , either directly or indirectly. In order to
ensure non-negativity, we will reduce proportionally all
such variables.

We first define the following relation on X.

Definition IV.4. Let R be the reflexive, symmetric and
transitive closure of {(XC

i , XC
j) | Ci

(α,rXC
i)−−−−−→? Cj}.

This relation pairs variables whose associated local
states are connected by a path of continuous transitions,
forwards or backwards.

Definition IV.5. Given the derivative set {C1, . . . , Cm}
of a sequential PEPA component C, the set of variables
(continuously) dependent on XC

i is

γ(XC
i) = {XC

j | (XC
i , XC

j) ∈ R}

The total sum of variables in γ(XC
i) is denoted by

Γ(XC
i) =

∑
Y ∈γ(XC

i)

Y.

186

XSystem = {XSw , XSl , XUr , XUt} initSystem = {q0, (2, 0, 100, 0)} ESystem = A
QSystem = {q0, q1, q2} with q0 = (0, 2, 100), q1 = (1, 1, 100), q2 = (2, 0, 100)
TCSystem = {(q0, (−1, 1,−1, 1), f, request), (q0, (1,−1, 0, 0), rlgXSl , log), (q0, (0, 0, 1,−1), rthXUt , think),

(q1, (1,−1, 1,−1), f, request), (q1, (1,−1, 0, 0), rlgXSl , log), (q1, (0, 0, 1,−1), rthXUt , think)}
where f(XSystem) = min{rrpXSw , rrqX

Ur }
TSSystem = {(q2, q1, true, T, 2rfx ,fix), (q1, q0, true, T, rfx ,fix), (q1, q2, true, R, rbrX

Sw , break),
(q0, q1, true, R, rbrX

Sw , break)} where R is defined as before and T = (XSw)′ = XSw + 1

Figure 2. Example of TDSHA synchronisation

Notice that Y −Y/Γ(XC
i) ≥ 0 for all Y ∈ γ(XC

i) if
Γ(XC

i) ≥ 1, and ∑
Y ∈γ(XC

i)

Y/Γ(XC
i) = 1.

The remaining transition definitions are now given.

TCD = {((. . . , dj , . . . , s), (. . . , dj + 1, . . . , s− 1),

true, Ri, rX
C
i , α) | Ci

(α,rXC
i)−−−−−→? Dj}

where the reset is defined by

Ri =
∧
{X ′ = X −X/Γ(XC

i) | X ∈ Γ(XC
i)}.

In this case, mass is proportionally reduced from the con-
tinuous variables associated with the local states reachable
by continuous transitions from the source transition, and
the appropriate discrete local state is increased by one.

It is possible to have both continuous transitions and
stochastic transitions between continuous local states, so

TCC = {((d1, . . . , dp, s), (d1, . . . , dp, s),

true, R′
i ∧R′′

i,j , rX
C
i , α) | Ci

(α,rXC
i)−−−−−→? Cj}

where

R′
i =

∧
{X ′=X−X/Γ(XC

i) | X∈γ(XC
i) ∧X 6= XC

i }

R′′
i,j =

{
(XC

j)′=XC
j + 1 Xj

C 6∈ γ(XC
i)

(XC
j)′=XC

j −XC
j /Γ(XC

i)+1 Xj
C ∈ γ(XC

i).

The choice of removing mass proportionally from all
variables in γ(XC

i) is not the only possibility. Another
approach would be to take as much from a variables as
possible (until an amount of one is taken or it becomes
zero) and then take more from variables that depend on
XC

i through continuous transitions until an amount of one
is reached, starting first with those that directly depend
on XC

i and then those that are indirectly dependent.
Our approach, however, captures better the idea that the
continuous transitions immediately start to distribute mass
around the variables in γ(XC

i). This can be viewed as
nearly decomposability [13] where we assume that the fast
portions of the state space approach steady state between
slow transitions.

Example IV.6. For the server, TCC is empty, and

TCD = {((1, 1), (2, 0), true, R, rbrX
Sw , break),

((0, 2), (1, 1), true, R, rbrX
Sw , break)}

where γ(XSw) = {XSw , XSl} and

R = (XSw)′ = XSw −XSw /(XSw + XSl)
∧ (XSl)′ = XSl −XSl /(XSw + XSl)

For all stochastic transitions, the guard is true. A guard
is unnecessary because the only condition required is
that there is no transition if the local state is zero. This
condition is guaranteed because the rate will be zero if the
local state is zero. We can now define the mapping.

Definition IV.6. Let C[n] be a component in a PEPA
model P . T n

C = (Qn
C ,XC , TCC , TSC , initC , EC) is the

TDSHA associated with C[n], with respect to the parti-
tioning Ac,Ad of actions and is defined by

• Qn
C and XC as described above

• TCS = T1 ∪ T2

• TSC = TDD ∪ TDC ∪ TCD ∪ TCC

• EC = A
• initC is extracted from P .

Example IV.7. All the elements of the TDSHA for Sw

have been defined except for the initial state which is
((0, 2), XSw =2∧XSl =0) or ((0, 2), (2, 0)) meaning that
both servers start in the state Sw .

The TDSHA for Ur is much simpler. It has a single
mode q′ = (100), variables XUr , XUt , no stochastic
transitions, initial state (q′, (100, 0)), EUr

= A and

TCUr
= {(q′, (−1, 1), rrqXUr , request),

(q′, (1,−1), rthXUt , think)}

B. Mapping of a model

It is now straightforward to define the semantics of a
PEPA model P recursively.

Definition IV.7. Let P be a PEPA model. Then TP is the
TDSHA defined recursively by

• TP = T n
C for P = C[n],

• TP/L = TP /L,
• TP1BC

L
P2 = TP1

BC
L
TP2 .

Example IV.8. See Figure 2 for TSystem = T 2
Sw

BC
L
T 100
Ur

.

C. Properties of the hybrid semantics

Proposition IV.1. Let P be a PEPA model and let TP be
its associated TDSHA for a partition (Ac,Ad) of actions.
Assuming a non-negative integral initial vector, then for
each sequential component model C of P with multiplicity
NC , for all t ≥ 0 and state (q, x) at time t,

187

1) (
∑p

i=1 d C
i)+(

∑m
i=1 XC

i) = NC where d C
i are the

values for C in q,
2) for each d C

i in q, d C
i ∈ {0, 1 . . . , NC},

3) for each XC
i , Γ(XC

i) ∈ {0, 1, . . . , NC},
4) for each XC

i , XC
i ∈ [0, NC].

Proof sketch: 1) This is true in the initial state
and all stochastic transitions remove a mass of 1 from
one or more variables (since

∑
Y ∈γ(X) Y/Γ(X) = 1 in

the case of continuous local states) and increase another
variable by 1, preserving the total. Continuous transitions
leave

∑m
i=1 XC

i unchanged due to terms that cancel in the
ODEs. 2) If dC

i =Nc then dC
j =sC =0 for j 6= i by (1) and

no transition can increase it. If dC
i =0, the only transition

that can reduce it has rate rdC
i and cannot fire. Transitions

increment and decrement dC
i by one. 3) This is true

initially. Γ(XC
i) is conserved by continuous transitions

due to terms that cancel. Stochastic transitions increment
and decrement by one. 4) Similarly to (2), if XC

i = NC it
cannot be increased. If XC

i > 0 then Γ(XC
i) ≥ 1 by (3),

hence XC
i ≥ XC

i /Γ(XC
i) and (XC

i)′ ≥ 0. If XC
i = 0

then (XC
i)′ = 0.

Lemma IV.1. For a PEPA model P , r?
α(red(P),x) =

rα(qP ,x) where qP is the initial mode of TP .

Proof sketch: By induction on the structure of P .

Next, we consider the two extremes that are possible for
partitioning the action set: all continuous or all stochastic,
and show their equivalence with two PEPA semantics.

Theorem IV.1. Let P be a PEPA model and TP its
associated TDSHA for the fully continuous partition of
actions Ac = A. Then, TP is equivalent to the fluid-flow
approximation of P , in the sense that the ODEs of the
TDSHA coincides with the ODEs of the PEPA model.

Proof sketch: We define a multiset of tuples G?(P)
from the parametric transitions from P where the mul-
tiplicity is determined by the number of distinct deriva-
tions for a transitions as defined in [17]. The generating
functions and hence ODEs can be expressed in terms of
G?(P). We demonstrate a bijection between G?(P) and
TCP by structural induction taking into account that there
is effectively only one mode. The bijection leads to the
conclusion that the ODEs are the same.

Theorem IV.2. Let P be a PEPA model and TP its
associated TDSHA for the fully discrete partition of ac-
tions Ad = A. Then TP is a CTMC isomorphic to the
population-based CTMC of P .

Proof sketch: We show that the entries of the gener-
ator matrices for the two CTMCs are the same, and that
there is a bjiection between states. The proof proceeds by
induction on P .

D. Discussion

The partitioning of PEPA actions into discrete and
continuous is a crucial choice which influences the perfor-
mance and the quality of the hybrid approximation, and

which is currently left to the modeller. We provide now
some heuristics that can guide this choice.

Multiplicity: Components with small numbers fit
better with discrete stochastic modelling, and those with
large numbers, continuous deterministic modelling, hence
actions can be partitioned by this criterion.

Rates: Actions that are fast have small changes in
small periods of time hence they should be continuous.
The opposite applies to slow actions, and hence they are
suitable to be stochastic.

Efficiency of modelling: If an action being stochastic
leads to a state space that is too large or a simulation that
does not complete, it might be better treated as continuous.

Furthermore, note that the different choices for Ac

and Ad lead to a lattice of models, with A = Ac and
A = Ad as the extremal points of the lattice. This is a
formal framework in which we can investigate the effect
of specific partitioning on the model behavior. Intuitively,
moving in the lattice by increasing the level of discreteness
should result in models with an higher accuracy (relative
to the original CTMC semantics) but less efficiency. A
precise formalization of this idea is under investigation,
and requires a formal notion of error. One aim of this
analysis is to develop techniques to automatically suggest
a (set of) “good” partitions to the modeller, obtaining the
best trade-off between accuracy and efficiency. Another
possibility can be the definition of dynamic partitioning
policies, similarly to [3], although a formal treatment of
error in this case seems more difficult.

Finally, it is possible to define a hybrid semantics in
which there is only one mode, and both discrete and
continuous component counts are represented by contin-
uous variables. This semantics is equivalent to the one
defined here. However, we chose the latter as it is more
intuitive. The single mode semantics may give executional
advantages, as it describes discrete modes implicitly, thus
avoiding one source of combinatorial complexity.

V. NUMERICAL VALIDATION

We employ the case study presented in Section II to
study the accuracy of the TDSHA and the cost of the
analysis with respect to the fully stochastic simulation
(in the following, referred to as simply the stochastic
simulation) of the CTMC which underlies the PEPA
model.

A. Performance Metrics

The validation concerns the steady-state equilibrium
distribution of the number of servers that are broken,
denoted by X

Sb . Specifically, we are interested in the
following metrics: P(X

Sb = i), i = 0, 1. Notice that
for i = 0 this corresponds to evaluating the steady-state
probability that all servers are available. Although this
information may be valuable in practical applications, it
cannot be evaluated with differential analysis, which only
gives an estimate for the expectation of the aforementioned
distribution, i.e.,

∑
i i P(X

Sb = i).

188

Table I
VALIDATION: APPROXIMATION ERRORS AND RUNTIME COMPARISON.

Parameters Errors Runtimes (s)
(Nc, Ns, scale) X

Sb =0 X
Sb =1 H S S/H

(10, 2, 0.1) 1.82% 3.58% 267 3 1.2E-2
(100, 2, 0.1) 0.67% 1.35% 1099 38 3.5E-2
(300, 2, 0.1) 0.70% 3.42% 529 69 1.3E-1

(10, 6, 0.1) 6.44% 0.52% 352 3 7.0E-3
(100, 6, 0.1) 2.35% 0.89% 566 18 3.1E-2
(300, 6, 0.1) 2.82% 1.53% 317 25 8.0E-2
(10, 2, 10.0) 0.54% 0.96% 547 253 4.6E-1

(100, 2, 10.0) 0.08% 0.21% 827 2618 3.2E+0
(300, 2, 10.0) 0.80% 3.20% 252 5092 2.0E+1

(10, 6, 10.0) 2.49% 2.64% 485 154 3.1E-1
(100, 6, 10.0) 3.86% 1.39% 623 1298 2.1E+0
(300, 6, 10.0) 1.30% 1.14% 876 5112 5.8E+0
(10, 2, 100.0) 0.13% 0.35% 204 3186 1.6E+1

(100, 2, 100.0) 0.35% 1.24% 589 20344 3.4E+1
(300, 2, 100.0) 0.01% 0.06% 438 51682 1.2E+2

(10, 6, 100.0) 2.19% 0.96% 217 1100 5.1E+0
(100, 6, 100.0) 2.14% 1.81% 301 13207 4.4E+1
(300, 6, 100.0) 0.09% 3.98% 592 39956 6.7E+1

B. Set-up
We generated eighteen instances of the model by vary-

ing rate values and the population sizes of the clients and
the servers, respectively denoted by Nc and Ns. The rates
were of kind: rrp = scale × 1000, rrq = scale × 100,
rlg = scale × 2000, rth = scale × 10, rbr = 0.01,
rfx = 0.05, where the factor scale was varied across the
instances. The rates of the discrete actions were kept fixed
in order to study the behaviour of the hybrid simulation
with respect to varying intensities of the actions which are
modelled deterministically. In all cases the models where
chosen such that their CTMCs could be solved numerically
for the equilibrium distribution using the tools available
in the PEPA Eclipse Plug-in (a Java implementation of
a modelling environment for PEPA [16]). Therefore, the
accuracy of the TDSHA could be gauged by calculating
the relative percentage error of the average hybrid estimate
with respect to the numerical solution.

Instead, the runtime of the hybrid simulation was com-
pared against stochastic simulation. The cost of the numer-
ical solution of the CTMC was not considered because
we are interested in analysing large-scale models where
explicit enumeration of the state space is not feasible. All
simulations were conducted using the method of batch
means (e.g., [14]). To eliminate as many sources of bias as
possible, the hybrid simulator and the stochastic one used
the same configuration parameters. The simulations were
set up using the same batch length and were terminated
when the 95% confidence intervals of all performance
metrics were within 5% of their simulated averages.

The stochastic simulation of the CTMC was performed
using the PEPA Eclipse Plug-in. The hybrid simulator was
implemented in MATLAB [15]. This choice was motivated
by the presence of rates in the model that are separated by
some orders of magnitude. This lead to stiff ODE initial
value problems [12], for which convenient solvers are
not available in the PEPA Eclipse Plug-in. In this study,
MATLAB was considered to be a reasonable framework
for the development of our prototype. In particular, all the
results reported in this section were obtained using the
solver ode15s. Under these conditions, the differences in

the runtimes between the hybrid simulator and stochastic
one are also due to the different languages in which
the tools are implemented. Importantly, we found that
this set-up is rather conservative with regards to the
speed-up obtained by hybrid simulation. Our experience
with these tools—not entirely reported here due to space
constraints—showed that an implementation in MATLAB
of our stochastic simulator is about two orders of magni-
tude slower on average and that a similar speed-up in Java
can be observed when comparing the numerical integrators
for non-stiff solvers. Therefore, it is not unreasonable
to expect some noticeable improvement of the hybrid
simulation runtimes with a careful implementation of an
ODE solver for stiff problems on the Java platform.
C. Results

The numerical results for the accuracy and the runtimes
of the hybrid simulation are reported in Table I. The hybrid
estimates agree very well with the numerical solution of
the CTMC, with errors less than 7% in all cases and
an average of 2.70%. A tighter termination criterion (i.e.,
95% confidence intervals within 3% of the mean, which
increased runtimes by 30%) for the hybrid simulation
resulted in an average approximation error of 0.98%.

As for the comparison of the runtimes, this validation
data set highlighted two distinct cases. In all model
instances with scale = 0.1 stochastic simulation (column
labelled with S) is faster than hybrid simulation (label H),
in some cases by as many as three orders of magnitude. A
different behaviour is observed for larger values of scale .
For scale = 10, the model with parameters Nc = 10 and
Ns = 2 shows comparable runtimes, however for larger
population sizes of the clients hybrid simulation becomes
more and more convenient. As scale is further increased
to 100, the speed-up of hybrid simulation is consistently
better for any population size of the model’s components.

These results may be interpreted as follows. Smaller
values of scale give rises to models in which the rates
of the (discrete) activities of breakdown and repair are
close to the other (continuous) activities in the system.
This leads to relatively more frequent stochastic jumps,
that is, to relatively shorter time periods during which the
system evolves continuously. This increased stochasticity
of the process is such that the stochastic simulation is
faster, given the simplicity of the algorithm with respect to
the ODE numerical integrator. Instead, when the discrete
activity rates are separated further from the continuous
ones, the system evolves continuously over a longer time
period, during which the integration becomes more con-
venient than stochastic simulation. This is also confirmed
by the fact that, for fixed scale and Ns, the speed-up of
hybrid simulation increases with Nc. This is because the
actual client population sizes have little impact on the cost
of the ODE integration. However the impact on the cost of
stochastic simulation is quite remarkable, because it affects
the effective rates of execution in the system—recall that
the transition rates of the CTMC are in the form r X, with
r ≥ 0, thus the larger |X| the faster the transition rate and
the higher the frequency of stochastic events.

189

VI. RELATED WORK

In [3], [4], the authors define a hybrid semantics for
stochastic Concurrent Constraint Programming (sCCP),
associating to sCCP programs (stochastic) hybrid automata
with a fixed [4] or a variable degree of discreteness [3].
Although the spirit of this work is similar, there are consid-
erable differences between PEPA and sCCP, introducing
non-trivial distinctions in the definition of the hybrid
semantics, mainly in the update mechanism of discrete
transitions. This was necessary to guarantee the preser-
vation of conservation properties of PEPA models (cf.
Proposition IV.1). A hybrid semantics has also previously
been provided for Fluid Stochastic Petri Nets [18], [7]. The
basic difference is that this formalism describes directly
a hybrid system, while our semantics is derived from a
PEPA model which has an original semantics in terms of
a CTMC. In this context, different partitions of actions
into discrete ones and continuous ones generate different
hybrid systems for the same PEPA model. Furthermore,
these hybrid systems can be seen as approximations of
the original CTMC. In this sense, our work is also related
to the field of hybrid simulation algorithms [11].

VII. CONCLUSIONS

We presented a semantics for PEPA in terms of stochas-
tic hybrid automata, in which some local states are ap-
proximated as continuous, while others are kept discrete.
Such partition policies can be obtained by choosing which
actions are to be considered continuous and deterministic
and which are to be treated as discrete and stochastic. By
inducing a partition on the set of actions, the modeller can
have access to models with varying degrees of stochastic-
ity. At the extremes of this lattice we recover the fully
stochastic semantics, when all actions are kept discrete,
and its deterministic differential approximation, when all
actions are made continuous. This approach does not
impose constraints on the structure of the PEPA models
amenable to this interpretation. Owing to this generality,
it is suitable for implementation as a software tool, which
is the focus of ongoing work.

From a practical standpoint, the main advantage of
hybrid analysis is that it may provide accurate estimates
of distributions in the original model (which cannot be
computed with the differential model) orders of magnitude
faster than full stochastic simulation. The case study
discussed in this paper provided hints as to where the
hybrid approach is particularly convenient.

We have not yet considered error bounds and this is
an item of future research, both theoretically and through
further case studies. It is clear that the choice of action
partition will affect these bounds.

Another direction for future work is related to conver-
gence properties. For the fluid approximation, it can be
proved that, increasing the multiplicity of initial popula-
tions proportionally with a size parameter n, the (normal-
ized) sequence of CTMCs converges to the solution of
the fluid ODE [11]. We would like to establish a similar
result for the hybrid context, along the lines of [2]. The

main difficulties lie in dealing consistently with the new
update mechanisms of discrete transitions. Additionally,
the relationship between the fluid and hybrid semantics in
terms of quality of approximation is under investigation.

Acknowledgements: This work has been partially sup-
ported by the EU-funded project SENSORIA, IST-2005-016004.
Jane Hillston is supported by the EPSRC ARF EP/C543696/01.
Vashti Galpin is supported by the EPSRC SIGNAL Project
EP/E031439/1. Luca Bortolussi is supported by GNCS and FIRB
LIBi. Part of this research was done while Mirco Tribastone was
in the School of Informatics at the University of Edinburgh. We
thank the reviewers for their helpful comments.

REFERENCES

[1] M. Bernardo and R. Gorrieri. A tutorial on EMPA: a theory
of concurrent processes with nondeterminism, priorities,
probabilities and time. Theoretical Computer Science,
202:1–54, 1998.

[2] L. Bortolussi. Limit behavior of the hybrid approximation
of stochastic process algebras. In Proceedings of ASMTA
2010, 2010.

[3] L. Bortolussi and A. Policriti. Hybrid semantics of stochas-
tic programs with dynamic reconfiguration. In Proceedings
of CompMod 2009, 2009.

[4] L. Bortolussi and A. Policriti. Hybrid dynamics of stochas-
tic programs. Theoretical Computer Science, 411:2052–
2077, 2010.

[5] C.G. Cassandras and J. Lygeros, editors. Stochastic Hybrid
Systems. CRC Press, 2007.

[6] M.H.A. Davis. Markov Models and Optimization. Chapman
& Hall, 1993.

[7] M. Gribaudo and M. Telek. Fluid models in performance
analysis. In M. Bernardo and J. Hillston, editors, Formal
Methods for Performance Evaluation (SFM 2007), LNCS
4486, pages 271–317. Springer, 2007.

[8] H. Hermanns. Interactive Markov Chains. Springer-Verlag,
2002.

[9] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[10] J. Hillston. Fluid flow approximation of PEPA models. In
Proceedings of the Second International Conference on the
Quantitative Evaluation of Systems (QEST 05), 2005.

[11] J. Pahle. Biochemical simulations: stochastic, approximate
stochastic and hybrid approaches. Briefings in Bioinformat-
ics, 10(1):53–64, 2009.

[12] L.F. Shampine and M.W. Reichelt. The Matlab ODE suite.
SIAM Journal on Scientific Computing, 18(1):1–22, 1997.

[13] H.A. Simon and A. Ando. Aggregation of variables in
dynamic systems. Econometrica, 29:111–138, 1961.

[14] W.J. Stewart. Probability, Markov Chains, Queues, and
Simulation. Princeton University Press, 2009.

[15] The Mathworks. Matlab 7.6.0, 2008.
[16] M. Tribastone, A. Duguid, and S. Gilmore. The PEPA

Eclipse Plug-in. Performance Evaluation Review, 36(4):28–
33, March 2009.

[17] M. Tribastone, S. Gilmore, and J. Hillston. Scalable
differential analysis of a process algebra model. To appear
in IEEE Transactions on Software Engineering.

[18] B. Tuffin, D.S. Chen, and K.S. Trivedi. Comparison of
hybrid systems and fluid stochastic petri nets. Discrete
Event Dynamic Systems: Theory and Applications, 11:77–
95, 2001.

190

