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A Experimental estimation of the system size

Our qPCR measurements showed that the clock components are expressed at similar relative
levels: peak mRNA concentrations of the clock genes are estimated to lie within a ten-fold
range (Supplementary Table 1), which demonstrates reasonably good correspondence with
the deterministic model (Supplementary Figure 1). The absolute level of expression can be
roughly estimated based on the only available data on mRNA level of the clock component
ZTL, which was reported to reach the level of 7000 molecules per ng of total RNA [2].
Using the value of 450 µg of total RNA per g of fresh weight, routinely achieved in our lab in
separations of Arabidopsis tissues, and the estimate of 25 millions of cells per g of fresh weight
(personal communication with Ronan Sulpice), the peak expression level of ZTL is around
126 molecules per cell. Since ZTL is closer to the lower limit of expression of the clock genes
(Supplementary Table 1), the average copy numbers of clock messengers can be estimated as
several hundreds of molecules per cell. Although the levels of the clock proteins in Arabidopsis

are largely unknown, our recent quantitative data on the clock proteins in Ostreococcus tauri

showed peak abundance in the range of 150–400 molecules per cell, which is comparable to
the above estimates for the Arabidopsis clock mRNA levels [16]. Our stochastic simulations
with Ω = 100 show good match to our qPCR data (Supplementary Figure 1).

B The Bio-PEPA language and its modelling and anal-

ysis tool

Bio-PEPA [7] is a stochastic process algebra, recently developed for the modelling and analysis
of biochemical systems. In a Bio-PEPAmodel of a biochemical system, each molecular species
(i.e. proteins, genes, mRNAs) is represented by a process, the state of the system at a given
time is given by the current amount of the molecular species, and the result of the occurrence
of a biochemical reaction is a change in the available amount of the involved molecules.
Processes interact by means of shared action names representing reactions and specifying their
role in the reaction (reactant, product, catalyser, inhibitor, etc.) and their stoichiometric
coefficient for that reaction; the effect of a reaction occurrence is to decrease the amount of
reactants and increase the amount of products. Species amounts in Bio-PEPA can either be
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LL LD
expression level phase (h) expression level phase (h)

CCA1 63.4 ± 4.27 2 417.1 ± 32.26 0
LHY 140 ± 25.87 2 670.2 ± 11.07 0
PRR9 25.9 ± 11.75 9 39.7 ± 5.83 4
PRR7 82.8 ± 21.81 9 54.2 ± 2.93 8
PRR5 144.9 ± 16.76 12 185.1 ± 32.43 10
GI 80 ± 9.63 12 106.6 ± 18.63 10
TOC1 20.2 ± 0.84 14 89.3 ± 22.08 10
LUX 40.9 ± 3.16 11 46.7 ± 4.57 10
ELF3 83.8 ± 20.09 12
ELF4 101.1 ± 35.67 14
ZTL 38.7 ± 21.19 0

Table 1: The expression level of the clock genes at their maximum normalised to the level
of actin. Gene expression was measured by real-time PCR from Col-4 13-day-old seedlings
grown in 1/2 MS without sucrose. The seedlings were entrained for 7 days at 22°C in white
light diurnal cycles LD 12:12. Then, the seedlings were transferred to experimental conditions
of 17°C in either continuous white light (LL) or LD 12:12. The samples of seedlings grown
in LL were collected every 2h during 3 days starting on third day of LL. The samples of
seedlings grown in LD were collected every 2h on the fifth day at 17°C. To compare between
gene concentrations we assigned the PCR instrument’s cycle number crossing point (Cp = 20)
to an arbitrary concentration of 1000 on a template linear regression curve (dilution curve)
for each gene-specific PCR primer pair. The phase indicates the time of the maximum RNA
level after dawn or predicted dawn. The standard deviation was calculated from 3 days in
LL and 3 biological replicates in LD.

Figure 1: Relative levels of clock gene RNAs in models and experiments. The relative levels
of the peaks in clock gene transcripts on the third day in constant light are shown for the
qPCR data of Supplementary Table 1 (blue), for simulations of the deterministic model (red)
and for the mean of 1000 runs of the stochastic model (green). Note that the qPCR data for
all genes fall within a ten-fold range, with relatively low levels of PRR9 and TOC1. PRR9
levels are also low in the models, but TOC1 levels are higher.
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concentrations (continuous semantics) or molecule counts (discrete semantics), hence allowing
both numerical methods based on differential equations and stochastic analysis.

The syntax of a Bio-PEPA model is similar to that of a system of ODEs. Essentially, for
each biochemical species, the modeller specifies the set of reactions in which the species is
involved and the role of the species in each reaction; moreover, each reaction is associated
with a kinetic law which specifies the rate of occurrence of that reaction. For a detailed
presentation of Bio-PEPA syntax and semantics the reader is referred to [7]; here we illustrate
the basic concepts using the following simple example.

A reaction S
E
−→ P which converts a substrate molecule S into a product molecule P

catalysed by an enzyme E is modelled in Bio-PEPA as

S
def

= r1 ↓

P
def
= r1 ↑

E
def

= r1 ⊕

where r1 is a name associated with the reaction, its kinetic law is defined by the Michaelis-
Menten kinetics

r1 =
kcat · E · S

kM + S

and kcat and kM are the reaction kinetic constants.
This notation represents the fact that S, P and E are all involved in the occurrence of

reaction r1, and that the result of the occurrence of r1 is to decrease the total amount of S
molecules (↓) and increase the total amount of P molecules (↑); the role of the enzyme E is
to speed up the reaction, but its amount is unaffected (⊕).

A software framework for model development and analysis for Bio-PEPA, called the Bio-
PEPA Eclipse Plug-in, is available from [3] and as part of the Systems Biology Software
Infrastructure, available from [15]. It automatically performs a number of checks to identify
syntactic errors and enables modellers to apply further static analysis — such as the identi-
fication of invariants, sources and sinks — with the purpose of detecting possible modelling
errors, and dynamic time-series analysis, using stochastic simulation and the solution of dif-
ferential equations. More information on the Bio-PEPA language and on the features of the
tool and its import/export formats can be found in [3, 6, 8].

C The Bio-PEPA model of the clock

The main difference between the ODE model in [13] and our Bio-PEPA model concerns the
rescaling which was done in order to translate the molecular concentrations used in the origi-
nal continuous deterministic model into molecular counts, which is needed in order to obtain
a realistic discrete stochastic model. In the original ODE model the initial concentrations
are given in arbitrary relative units, since their absolute values are not known, and conse-
quently the scaling factor is also unknown and we estimated it experimentally as described
in Appendix A of the Electronic Supplementary Material, and computationally as described
in Section 3.1 of the main text.

We report here the definition of the species and kinetic laws of the Bio-PEPA model.
Appendix F of the Electronic Supplementary Material contains the full Bio-PEPA model
with kinetic parameters and initial state, and Appendix G is an equivalent representation of
the Bio-PEPA model as saved in SBML format by the Bio-PEPA Eclipse Plug-in.
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LHY mRNA
def

= cL m trscr ↑ + cL m degr ↓

LHY prot
def
= cL trsl ↑ + cL modif ↓ + cL degr ↓

LHY prot modif
def

= cL modif ↑ + cLm degr ↓

TOC1 mRNA
def

= cT m trscr ↑ + cT m degr ↓

TOC1 prot
def

= cT trsl ↑ + cT modif ⊕ +cTm degr1 ↓ + cTm degr2 ↓

TOC1 prot modif
def
= cT modif ↑ + cTm degr ↓

Y mRNA
def

= cY m trscr ↑ + cY m degr ↓

Y prot
def

= cY trsl ↑ + cY degr ↓

P
def

= cP trsl ↑ + cP degr ↓

PRR9 mRNA
def

= cP9 m trscr ↑ + cP9 m degr ↓

PRR9 prot
def
= cP9 trsl ↑ + cP9 degr ↓

PRR7 mRNA
def

= cP7 m trscr ↑ + cP7 m degr ↓

PRR7 prot
def

= cP7 trsl ↑ + cP7 degr ↓

PRR5 NI mRNA
def

= cNI m trscr ↑ + cNI m degr ↓

PRR5 NI prot
def
= cNI trsl ↑ + cNI degr ↓

GI mRNA
def

= cG m trscr ↑ + cG m degr ↓

GI prot
def

= cG trsl ↑ + cG degr ↓ +
cG cZTL assoc f ↓ + cG cZTL assoc b ↑

ZTL
def
= cZTL trsl ↑ + cZTL degr ↓ +

cG cZTL assoc f ↓ + cG cZTL assoc b ↑

GI:ZTL
def

= cG cZTL assoc f ↑ + cG cZTL assoc b ↓ + cZG degr ↓
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cL m trscr = Ω · (g1·Ω)a

(g1·Ω)a+(PRR9 prot+PRR7 prot+PRR5 NI prot)a
·

(

n0 · light+
q1

Ω
· light · P+ n1 ·

TOC1 prot modifb

TOC1 prot modifb+(g2·Ω)b

)

cL m degr = LHY mRNA · (m1 · light+m2 · dark)
cL trsl = (p1 · light+ p2 · dark) · LHY mRNA

cL degr = m3 · LHY prot

cL modif = p3 ·
LHY protc

LHY protc+(g3·Ω)c
· Ω

cLm degr = m4 · LHY prot modif

cT m trscr = Ω ·
(

n2 ·
Y protd

Y protd+(g4·Ω)d
+ n3

)

· (g5·Ω)e

(g5·Ω)e+LHY prote

cT m degr = TOC1 mRNA ·m5

cT trsl = p4 · TOC1 mRNA

cT degr1 = (m6 · light+m7 · dark) · TOC1 prot · (p5 · ZTL+GI:ZTL) /Ω
cT degr2 = m8 · TOC1 prot

cT modif = p15 ·
TOC1 protf

TOC1 protf+(g6·Ω)f
· Ω

cTm degr = (m25 · light+m26 · dark) · TOC1 prot modif

cY m trscr = Ω ·
(

q2

Ω
· light · P + (g7·Ω)s

(g7·Ω)s+TOC1 prots
· (g16·Ω)g

(g16·Ω)g+LHY protg

)

·

(n5 · light+ n6 · dark)
cY m degr = Y mRNA ·m9

cY trsl = Y mRNA · p6
cY degr = m10 ·Y prot

cP trsl = p7 · dark · (Ω− P)
cP degr = m11 · P · light

cP9 m trscr = Ω ·
(

q3

Ω
· light · P+ (g8·Ω)h

(g8·Ω)h+TOC1 proth
·
(

n4 + n7 ·
LHY proti

LHY proti+(g9·Ω)i

))

cP9 m degr = m12 · PRR9 mRNA

cP9 trsl = p8 · PRR9 mRNA

cP9 degr = (m13 · light+m22 · dark) · PRR9 prot

cP7 m trscr = Ω ·
(

n8 ·
(LHY prot+LHY prot modif)j

(g10·Ω)j+(LHY prot+LHY prot modif)j
+ n9 ·

PRR9 protk

(g11·Ω)k+PRR9 protk

)

cP7 m degr = m14 · PRR7 mRNA

cP7 trsl = p9 · PRR7 mRNA

cP7 degr = PRR7 prot · (m15 · light+m23 · dark)

cNI m trscr = Ω ·
(

n10 ·
LHY prot modifl

(g12·Ω)l+LHY prot modifl
+ n11 ·

PRR7 protm

(g13·Ω)m+PRR7 protm

)

cNI m degr = m16 · PRR5 NI mRNA

cNI trsl = p10 · PRR5 NI mRNA

cNI degr = (m17 · light+m24 · dark) · PRR5 NI prot

cG m trscr = Ω ·
(

q4

Ω
· light · P+ (g14·Ω)n

(g14·Ω)n+TOC1 protn
· (g15·Ω)o

(g15·Ω)o+LHY proto
· n12 · light

)

cG m degr = GI mRNA ·m18

cG trsl = p11 ·GI mRNA

cG degr = m19 ·GI prot

cZTL trsl = Ω · p14
cZTL degr = m20 · ZTL
cG cZTL assoc f = (p12 · light · ZTL ·GI prot) /Ω
cG cZTL assoc b = p13 ·GI:ZTL · dark
cZG degr = m21 ·GI:ZTL

The function light which is used in the kinetic laws for light-dependent reaction rates is
defined by the following time-dependant function, which returns the value 1 in day-time and
0 during night-time. The function dark is defined as dark = 1− light .

light = light entrainment ·H(entr time − t)
+ light entrainment skeleton ·H(entr time − t)
+ light observation · (1−H(entr time − t))
+ light observation skeleton · (1−H(entr time − t))

whereH(x) is the Heaviside step function that returns 1 for x > 0 and 0 otherwise, the param-
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eter entr time specifies the number of hours of entrainment, the variable t is the simulation
time and the functions light entrainment, light entrainment skeleton, light observation
and light observation skeleton are defined as follows.

light entrainment = LD entr · 0.5 ·

((

1 + tanh

(

t− 24 · ⌊t/24⌋

0.5

))

−

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dusk entr

0.5

))

+

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − 24

0.5

)))

light entrainment skeleton = LD entr skel · 0.5 ·

((

1 + tanh

(

t− 24 · ⌊t/24⌋

0.5

))

−

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dusk1 entr skel

0.5

))

+

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dawn2 entr skel

0.5

))

−

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dusk2 entr skel

0.5

))

+

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − 24

0.5

)))

light observation = DD obs · 0 ·H (t+ 1)

+ LL obs · 1 ·H (t+ 1)

+ LD obs · 0.5 ·

((

1 + tanh

(

t− 24 · ⌊t/24⌋

0.5

))

−

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dusk obs

0.5

))

+

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − 24

0.5

)))

light observation skeleton = LD obs skel · 0.5 ·

((

1 + tanh

(

t− 24 · ⌊t/24⌋

0.5

))

−

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dusk1 obs skel

0.5

))

+

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dawn2 obs skel

0.5

))

−

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − dusk2 obs skel

0.5

))

+

(

1 + tanh

(

t− 24 · ⌊t/24⌋ − 24

0.5

)))

The definition of the light function reported above enables us to carry out easily experi-
ments on various light conditions.

The variables LD entr , LD entr skel , DD obs , LL obs , LD obs and LD obs skel enable
to change between the different light conditions. For instance, setting LL obs = 1 and
DD obs = LD obs = LD obs skel = 0 indicates constant light, while setting LD obs = 1
and LL obs = DD obs = LD obs skel = 0 represents light/dark cycles.

The length of the photoperiod is set by the variables dusk obs and dusk entr , which define
the time of the day (in hours) at which dusk occurs during the observation and entrainment
phases, respectively; finally, the variables dusk1 obs skel , dawn2 obs skel and dusk2 obs skel

define the length of light and dark in the skeleton experiments (analogously for the entrain-
ment phase).
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Some of the reactions in the model are modelled via non-elementary reactions following
Hill kinetic laws, in order to abstract from unknown details. The use of stochastic simula-
tion algorithms for systems containing non-elementary reactions might be inappropriate in
some cases, thus requiring non-elementary reactions to be decomposed into elementary reac-
tions. This decomposition has been carried out, for instance, in [9]. The authors compared a
stochastic model which contained non-elementary reactions described via Michaelis-Menten
and Hill kinetics to a detailed version where all reactions had been decomposed into ele-
mentary steps and they show that the two models yielded similar results. Following these
results, and considering that the compact model is much easier to handle, the same authors
only consider the compact model with Michaelis-Menten and Hill kinetics in subsequent
work [10]. Similarly, here we focus on the compact representation of our clock model. The
validity of the stochastic approach for the analysis of this model is demonstrated by the good
agreement observed between the stochastic simulation results and the experimental results.
See [14, 4, 5, 11] for further discussion on the issue of the use of non-elementary reactions in
stochastic models.

D Peaks/troughs identification and the computation of
clock measures

In this section we shortly describe how we computed the distributions of phase, period and
amplitude reported in the paper.

Although the concepts of phase, period and amplitude are basic, it is worth pointing out
a couple of issues which often make their measurement tricky. First, experimental data are
generally very noisy, they only refer to a few days of observation, and the same experiment is
rarely repeated more than a couple of times due to the high costs. Moreover, noise in data can
be of various types: variations due to differences in the observed cells/organisms, random
variations due to system stochasticity, and experimental errors. Even when considering
data obtained from simulations, where the only type of noise considered is the one due to
stochasticity and despite the fact that simulations could be easily generated for extremely
long observation periods and repeated multiple times, the stochastic variations could be so
high that these measurements can still be problematic.

In the following, we illustrate the simple method we used in order to identify peaks and
troughs in noisy data and to use these in computing the distribution of phase, period and
amplitude in time-series data.

Especially when dealing with the noisy data coming from a single run, the first issue is to
define what peaks and troughs are and how to distinguish them from random fluctuations.
The method we have used here to find peaks is the following (analogously for troughs),
assuming we have equally spaced time-series data points x0 . . . x9600 for the time interval
[0, 960] hours.

1. Bin the time points into 1-hour-long slots and find the maximum in each hour
[max0 . . .max960]. This step smooths the data getting rid of the small fluctuations.

2. Find the local maxima in [max0 . . .max960]: local maxima are data points xi ∈

[max0 . . .max960] which are higher than a given number of their neighbours (the sim-
plest case is xi−1 < xi > xi+1); we have also defined a minimum threshold that local
maxima must pass in order to be considered peaks.

Based on the observation made in [1] that the normalised variation (i.e. the coefficient of
variation) is minimal around peak time, we chose the peak time (rather than trough time) as
the marker for phase. The period was then computed as the difference between consecutive
peaks, and the amplitude was computed as difference between a peak and the following
trough. on
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E Additional results

In order to analyse the possible mechanisms of the damping experimentally observed in
constant light (Figure 3(a) in the main text), we took two typical bioluminescence traces,
measured in the same experiment for two different plants in [12]. The traces were slightly
different in phase (Supplementary Figure 2(a)) and they differed also in the rate of signal
decay, which could be related with differences in the levels of luciferin substrate that was
sprayed onto plants. To reduce the difference, we subtracted the exponential decay of the
mean (Supplementary Figures 2(b–c)). Interestingly, the resulting corrected traces had a
similar high rate of damping in their rhythmic amplitude with a time constant of 1.4 days
(Supplementary Figure 2(d)). This was substantially faster than the decay of the mean
signal, which had time constants of 3.6 and 5.3 days and probably were related with the
depletion of luciferin. This suggests that the fast damping of oscillations is related with
another, luciferin-unrelated mechanism. Our model suggests that this mechanism is based
on the desynchronisation of oscillations in various cells as described in the main text.

Supplementary Figures 3 and 4 report the phase, period and amplitude distributions and
the autocorrelation function for the deterministic system. These results are discussed and
compared with the results for the stochastic model in Section 3.2 and Section 3.5 of the main
text, respectively.

Supplementary Figures 5, 6 and 7 report the results obtained in constant dark conditions
(DD), analogous to ones discussed in Section 3.2 and Section 3.5 of the main text for LD and
LL.

Finally, Supplementary Figure 8 reports the autocorrelation function for the system with
Ω = 10. These results are discussed and compared with the results shown for Ω = 100 in
Figure 9 in the main text.
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Figure 2: The decay of the luminescence and rhythmic damping have different time scales. (a)
The bioluminescence of the clock marker CCR2:LUC for two individual plants was measured
in the same experiment after release of the plants, entrained under LD 12:12 into constant
light on day 1. (b) The same data on logarithmic scale with the straight lines showing
exponential decay of the mean fluorescence. The time constants of the decay were different
for the two plants (3.6 and 5.3 days). (c) The data after subtraction of the exponential
decay shows quick damping of the circadian rhythm. (d) The data multiplied with a growing
exponential (time constant 1.4 days) to determine the rate of damping.
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Figure 3: Distribution of period and amplitude of LHY mRNA oscillations over 80 days in
the deterministic solution of the model: (a) LD 12:12 and (b) LL. In order to get rid of
transient effects, the first 20 simulation days are discarded in both LD and LL, so the plots
refer to values obtained between day 20 and day 100.
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Figure 4: LHY mRNA time-series data of the deterministic behaviour and its autocorrelation
function: (a) LD 12:12 and (b) LL. In the autocorrelation plots, the green horizontal lines
show the 95% confidence band, while the black vertical line is the half-life of the mean
autocorrelation function.
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Figure 5: Distribution of period and amplitude of LHY mRNA oscillations over 80 days in a
single stochastic run in DD.
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Figure 6: Time-dependent distribution of phase, period and amplitude of LHY mRNA oscil-
lations in 1000 simulation runs in DD.
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(a) Mean stochastic behaviour
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(b) Individual stochastic behaviour
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(c) Deterministic behaviour

Figure 7: LHY mRNA time-series data and its autocorrelation function in DD. Comparison
of the autocorrelation of a single stochastic run, the mean autocorrelation of 1000 simulation
runs, and of the deterministic behaviour. The first 15 simulation days were discarded when
computing the autocorrelation function in order to get rid of transient effects. In the auto-
correlation plots, the green horizontal lines show the 95% confidence band, while the black
vertical line is the half-life of the mean autocorrelation function.
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(a) LD 12:12, mean stochastic behaviour
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(b) LD 12:12, individual stochastic behaviour
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(c) LL, mean stochastic behaviour
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(d) LL, individual stochastic behaviour

Figure 8: LHY mRNA time-series data and its autocorrelation function for Ω = 10: (a–b)
LD 12:12 and (c–d) LL. Comparison of the autocorrelation of a single stochastic run and the
mean autocorrelation of 1000 stochastic simulation runs. The first 15 simulation days were
discarded when computing the autocorrelation function in order to get rid of transient effects.
In the autocorrelation plots, the green horizontal lines show the 95% confidence band, while
the black vertical line is the half-life of the autocorrelation function.
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