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Abstract

Circadian clocks are gene regulatory networks whose role is to help the organisms
to cope with variations in environmental conditions such as the day/night cycle. In
this work we explored the effects of molecular noise in single cells on the behaviour
of the circadian clock in the plant model species Arabidopsis thaliana. The computa-
tional modelling language Bio-PEPA enabled us to give a stochastic interpretation to
an existing deterministic model of the clock, and to easily compare results obtained via
stochastic simulation and via numerical solution of the deterministic model.

First, the introduction of stochasticity in the model allowed us to estimate the un-
known size of the system. Moreover, stochasticity improved the description of the avail-
able experimental data in several light conditions: noise-induced fluctuations yield a
faster entrainment of the plant clock under certain photoperiods and are able to explain
the experimentally observed dampening of the oscillations in plants under constant light
conditions. The model predicts that the desynchronisation between noisy oscillations in
single cells contributes to the observed damped oscillations at the level of the cell pop-
ulation. Analysis of the phase, period and amplitude distributions under various light
conditions demonstrated robust entrainment of the plant clock to light/dark cycles,
which closely matched available experimental data.

Keywords: circadian clock, Arabidopsis thaliana, discrete stochastic model, Bio-PEPA
process algebra, oscillatory systems

1 Introduction and motivations

Circadian clocks are gene regulatory networks present in most organisms that help them
to adapt to the 24-hour day/night cycle. They are composed of a small number of genes
involved in interlocking transcriptional feedback loops and enable eukaryotic organisms to
anticipate the daily changes in environmental conditions such as the duration of the light
period. Circadian clocks have two essential features: (i) in the absence of external stimuli
(e.g. constant light) the amounts of the involved mRNAs and proteins oscillate rhythmically
with a period of approximately 24 hours (circadian); (ii) in the presence of external stimuli
(e.g. light on/off) the oscillations entrain to the external stimuli, adjusting their rhythm to
it. Stochasticity is known to play a major role in the behaviour of circadian clocks due to the
small copy numbers in which most of the involved molecules are usually present, and a number
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of studies on the effect of stochasticity and noise-induced fluctuations on circadian clocks in
various organisms exist. For instance, a discrete stochastic model of the circadian clock in
mammals has been presented by Forger and Peskin [10], while Gonze et al. developed and
compared a deterministic and a discrete stochastic model of the Drosophila clock [16, 15, 17];
in [1] the effect of discreteness and stochasticity on the robustness of the clock in Neurospora
was studied, and [2] presents a discrete stochastic model of the clock in the Ostreococcus alga,
which is considered to be a naturally simplified version of the clock in higher plants such as
Arabidopsis. In all these studies, important differences between discrete stochastic models
and their continuous deterministic approximation were found, and in most cases stochasticity
was shown to have a positive effect on the robustness of the free running (i.e. not entrained)
clock.

Arabidopsis thaliana is the most studied model plant and it has been widely used for
studying the plant circadian clock. Several deterministic models of the circadian clock in
Arabidopsis thaliana have been developed previously [24, 23, 33, 26], and they are based on
multiple data in wild type and mutant plants.

Here we explore the impact that intrinsic molecular noise has on the plant clock behaviour,
by adding stochasticity to the behaviour of the recent deterministic model presented in [26].
The size of the system (i.e. the copy numbers of the molecules involved in the system) is
unknown, but it is supposed to be small by analogy to other species and, consequently, the
molecular noise is believed to have a significant impact on the behaviour of the system. This
makes a discrete stochastic interpretation of the model essential in order to capture the noise-
induced behaviour of the clock. We investigate the effect of the stochastic fluctuations in a
single cell on the clock behaviour, the differences between continuous deterministic and the
discrete stochastic interpretations of the model, and their relation to experimental data. We
also apply measures commonly used for time-series analysis in signal processing in order to
quantify the relevant features of the dynamic behaviour of the clock, such as the dampening
of oscillations and their distribution of phase, period and amplitude.

2 The clock model

The principal scheme of the Arabidopsis clock introduced in [26] is shown in Figure 1. The key
dawn genes LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSO-
CIATED 1 (CCA1) are described in the model by a single variable, LHY/CCA1. They acti-
vate the expression of their own inhibitors, PSEUDO-RESPONSE REGULATOR 9 (PRR9),
PRR7 and the night inhibitor NI (PRR5) inside the morning loop. LHY and CCA1 proteins
also inhibit the expression of the evening genes GIGANTEA (GI), TIMING OF CAB EX-
PRESSION 1 (TOC1) and its hypothetical activator gene Y in the morning, and thus provide
a delay in their expression. GI promotes the inhibition of TOC1 protein function by posi-
tively regulating the F-box protein ZEITLUPE (ZTL). Evening genes form an evening loop of
the clock, which feeds back to the morning loop by activating LHY/CCA1 expression at the
end of the night. The evening loop also inhibits PRR9 expression at night and thus reduces
night inhibition of LHY/CCA1, increasing the robustness of oscillations. The light activates
LHY/CCA1, PRR9, PRR7, NI, GI and Y at the transcriptional and/or post-transcriptional
levels, providing the day length sensing by both morning and evening loops.

Our model is based on the deterministic model introduced in [26], which formalises the
scheme described above.

In order to model the light and the experimental settings, we applied a two-stage light
function to describe an initial entrainment stage followed by an observation stage. Indeed,
in laboratory experiments, plants are usually kept in alternating light/dark cycles for a few
days, and then transferred to the desired experimental condition (e.g. constant light, dark,
or different photoperiods). The light on/off switch can be modelled either as a discrete
step function which switches instantly from 0 to 1 at dawn and from 1 to 0 at dusk, or as a
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Figure 1: The scheme of the Arabidopsis circadian clock introduced in [26]. Morning and
evening loops of the clock are shown in yellow and grey, respectively. Light inputs to gene
transcription are shown by flashes.

smooth function in which the switch is rapid but not instantaneous. Though the discrete step
function matches more closely the experimental conditions, the smooth function is closer to
real life conditions and, moreover, has the advantage of being integrable. In our experiments
we have not noticed significant differences in the model response to these two light functions.
The results shown in the following have been obtained using the smooth function introduced
in [27]. The formal definition of the light function is given, together with the full model, in
the Electronic Supplementary Material (Appendix C).

We coded the clock model in a computational language called Bio-PEPA [5], which is a
stochastic process algebra developed for modelling biochemical systems. Process algebras are
formal languages commonly used in computer science areas such as performance modelling
and concurrency theory. In addition to simulation, formal languages enable modellers to
verify systems: for example, formal properties of models can be verified to uncover causal
relations between events, reachability of specific states, or equivalences between different
systems. Formal methods and process algebras have been used to model and analyse bio-
chemical systems in several studies in recent years (see, for instance, [4, 18] for reviews on the
approach). The Bio-PEPA language has been developed to represent biochemical systems
in a formal and compositional way. It is equipped with both a discrete stochastic semantics
defined in terms of a continuous-time Markov chain (CTMC), and a continuous deterministic
semantics defined in terms of ordinary differential equations (ODEs). This allows us to anal-
yse our model of the clock both by running stochastic simulations (using standard methods
such as Gillespie’s [14] and Gibson-Bruck [13] algorithms) and by solving its (equivalent)
underlying set of ODEs. The fact that the discrete stochastic and continuous deterministic
models are formally derived from the same Bio-PEPA description ensures consistency be-
tween them, thus allowing us to compare the stochastic and the deterministic behaviour of
the clock. A short introduction to Bio-PEPA is given in the Electronic Supplementary Ma-
terial (Appendix B); for a more detailed presentation of the language, the reader is referred
to [5].

In order to have a correct stochastic interpretation of the model, its variables must rep-
resent discrete molecule counts rather than continuous concentrations. Hence, the model
variables and kinetic laws described in [26] are rescaled by a parameter Ω which represents
the size of the system (see Section 3.1 for a discussion of Ω). Consequently, the set of ODEs
underlying the Bio-PEPA model is the same set of ODEs of the model presented in [26]
except for the scaling factor Ω. In our model the species amounts represent molecule counts,
where species that reached peak values close to 1 in the relative units of [26] now peak
close to Ω. The stochastic semantics of our Bio-PEPA model follows the standard stochastic
chemical kinetics approach, where reaction rates represent propensity functions which define
the probability of occurrence of each reaction from a given state, governed by the chemical
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master equation (CME), and where stochastic simulation methods (such as the Gillespie’s
method [14]) are commonly adopted for model analysis. It is worth pointing out that our
model is not a continuous stochastic model described by stochastic differential equations
(in which a Gaussian noise term is added to ordinary differential equations to represent
stochasticity), but rather a discrete stochastic model in which stochasticity emerges by the
randomness of the behaviour defined by the reaction propensity functions.

For model analysis, we used a tool called the Bio-PEPA Eclipse Plug-in [3]. Among the
various simulators and solvers available within this tool, we used the Gibson-Bruck stochastic
simulator [13] and a Dormand-Prince adaptive step-size deterministic solver [6].

The Bio-PEPA model of the clock is described in the Electronic Supplementary Material
(Appendix C), and the full model is available as a Bio-PEPA file (Appendix F) and as
an equivalent SBML model exported from Bio-PEPA (Appendix G). The SBML model is
also available from the Biomodels database [21] and the Plant Systems-biology Modelling
database [30].

3 Results

We discuss here some of the simulation results we have obtained, comparing them with
experimental results reported elsewhere (for example in [24, 23, 19, 28, 26]). In the following
we will use the notations LL and DD for constant light and constant dark, respectively, and
LD hl:hd for alternating cycles of hl hours of light and hd hours of dark. The initial conditions
are the same for all the simulation results reported below, both for the deterministic and the
stochastic simulations: namely the initial values are taken from the limit cycle reached by the
deterministic model in LD 12:12, as in [26] (rescaled to obtain molecule counts, as described
in detail in the following section), and dawn is assumed to be at t = 0.

We will use the classic notions of phase, period and amplitude to characterise the oscilla-
tory behaviour of the system; their most commonly adopted definitions are the following.

• Peak: highest value obtained by the variable in one oscillation.

• Trough: lowest value obtained by the variable in one oscillation.

• Phase: time of the day at which peak occurs, relative to dawn.

• Period: peak-to-peak time difference between two cycles.

• Amplitude: difference between peak and trough values.

Further details on these notions and on the method we used to compute them for time-
series data obtained from stochastic simulation are in the Electronic Supplementary Material
(Appendix D).

3.1 The system size and its effect on molecular noise

The continuous approximation underlying ODE models of biochemical systems is valid when
the copy numbers of the involved molecules are large. As for many genetic networks, this
assumption is generally not valid for circadian clocks: their system size (i.e. the average
copy numbers of the involved molecular components) is believed to be small and, therefore,
stochastic noise generally has a major effect on the system’s behaviour (see, for instance,
[15, 1, 2]).

The system size of the clock network in Arabidopsis is unknown. The variables of the
original deterministic model are given in relative units and are normalised to peak at 1.
In order to correctly quantify stochastic fluctuations the species amounts must represent
numbers of molecules per cell. Hence, we introduced the characteristic size of the system
as an additional parameter Ω which is used to scale the species amounts and kinetic laws
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accordingly (see Appendix C in the Electronic Supplementary Material). Note that Ω is not
the maximum number of molecules of any or all species. Rather, Ω scales the variables of
the ODEs such that a concentration of 1 in the ODEs becomes a molecule count close to Ω.

To compare the individual variations in the copy numbers of the clock components, we
analysed the data underlying relative qPCR measurements, which demonstrated similar
peak expression levels of the clock genes, with at most a ten-fold range among the tran-
scripts: this justifies our use of a single scaling factor (shown in Supplementary Table 1
(Appendix A)). The average copy number of the clock components at the peaks was esti-
mated to be around several hundreds of molecules per cell (see the Electronic Supplementary
Material (Appendix A) and Supplementary Figure 1 for details).

Quantifying the fluctuations due to stochastic variations provides another method to
estimate the unknown system size. Therefore, we used stochastic simulation to verify the
above estimations: by observing the effect of the parameter Ω on the behaviour of the system
(such as the ability of protein and mRNA amounts to entrain to the light stimulus) we could
identify the value of Ω for which the behaviour is closest to the experimental data. Figure 2
reports a comparison of the behaviour of the clock for Ω = 10 and Ω = 100 (which represent
10 and 100 molecules, respectively). These results show that, in the entrained clock (LD
12:12, Figure 2(a–d)), whilst for Ω = 10 the protein and mRNA amounts exhibit poor
entrainment in a single simulation (i.e. representing a single cell, Figure 2(a)), for Ω = 100,
instead, the entrainment is good (Figure 2(c)); moreover, the mean behaviour for Ω = 100
(Figure 2(d)) is closer to the experimental data (Figure 2(e)) compared to the one for Ω = 10
(Figure 2(b)): in particular, the asymmetry in the peak visible for Ω = 10 is not observed
in the experimental data, and the standard deviation for Ω = 10 is very high. It is worth
noting that experimental techniques introduce additional extrinsic noise into the data, which
is not considered in our stochastic simulations. In particular, qPCR measurements provide
more precise information about the shape of profiles compared to luciferase bioluminescence
traces, because the qPCR measures native RNA directly, whereas LUC luminescence is an
indirect measure of transcription [9]. However, individual qPCR assays are more variable
than LUC image analysis (Figure 2(e,f)). Our simulations in the free running clock (LL,
Figure 2(g–j)) also show that a very small system size (Ω = 10, results in low amplitude,
fast-damping oscillations (Figure 2(h)), due to the high noise, while Ω = 100 (Figure 2(j))
gives a better match with the experimental data (Figure 2(k)). Similar results (not shown)
have been obtained for all the other considered photoperiods. Intermediate values for Ω
such as 50 (results not shown) also resulted in worse agreement to the experimental results
compared to Ω = 100. On the other hand, higher values for Ω such as 1000 (results not
shown) lead to a further decrease in noise compared to Ω = 100 that makes the stochastic
effects become almost insignificant and results in worse agreement to the experimental data
in constant light compared to Ω = 100. The conclusion we can draw from these results is
that the size of the real system must be in the order of a few hundreds of molecules per
cell. Further confidence in the correctness of these model estimations of the system size is
provided by the fact that they are in the same order of magnitude of the estimations, based
on the experimental data, which are discussed above and in the Electronic Supplementary
Material (Appendix A). All the results reported in the rest of the paper are obtained using
the estimated value Ω = 100 as the system size.

3.2 Individual versus mean behaviour

Each individual stochastic simulation run is one possible evolution of the model and hence,
given that the model represents the behaviour of a cell, it can be seen as the behaviour of
one single cell. The experimental data suggest that individual oscillators in the plant cells
are essentially independent over timescales of several days [29]. One report quantifies the
coupling across the surface of detached leaves, and finds that it is very weak, with most
potential significance over long timescales [11]. The weak coupling between cells allows us
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(a) LD, Ω=10, 1 run
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(b) LD, Ω=10, mean
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(c) LD, Ω=100, 1 run
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(d) LD, Ω=100, mean
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(e) LD, qPCR data
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(f) LD, luciferase data

0 12 24 36 48 60 72 84 96
0

5

10

15

Time (h)

LH
Y

 m
R

N
A

 (
m

ol
ec

ul
e 

co
un

t)

(g) LL, Ω=10, 1 run
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(h) LL, Ω=10, mean
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(i) LL, Ω=100, 1 run
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(j) LL, Ω=100, mean
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Figure 2: Effect of the system size on behaviour in LD 12:12 (a–f) and LL (g–k). Panels (a–
d) and (g–j) report the amount of LHY mRNA obtained from stochastic simulation. We
compare two hypothesised system sizes of around 10 and 100 peak molecule copy numbers,
represented by Ω = 10 and Ω = 100, respectively. We report the amount obtained in random
individual runs, and also the average value µ (thick line) and the standard deviation ω (thin
lines, µ±ω) obtained from 1000 runs. Time t = 0 in panels (a–d) is the time of dawn of day 30
after entrainment to light cycles, while in panels (g–j) is the time of transition into constant
light. The experimental qPCR measurement of LHY expression is shown in panel (e) for
LD [19] and in panel (k) for LL [8]; panel (f) reports the non-normalised bioluminescence of
CCA1:LUC measured as described in [7] for two individual seedlings in LD. As the units in
our simulations are molecule counts, the vertical scales are different for different values of Ω.
For comparison, the qPCR data must be scaled by the same factor. As discussed in the main
text, the scale of the luminescence data cannot be directly compared with the one of qPCR
data and simulations, as they are an indirect measure of mRNA.

6



to consider the mean behaviour of a stochastic model (obtained by averaging over multiple
simulation runs) and the deterministic behaviour (which also, implicitly, is a mean behaviour)
as representative of the mean behaviour of a uniform population of independent cells, at least
over several days. This is the typical timescale for the data available in plants, and the main
focus of our work: the suggested intercellular coupling is too weak to have much effect on this
timescale. We also simulate longer-term behaviour under the same simplifying assumption.
If the results of [11] are representative of cells in the intact plant, then intercellular coupling
cannot prevent desynchronisation but may limit its extent.

Generally, experimental data represent a mean behaviour of a population of cells (standard
currently available experimental tools report average measures over 10 thousands of cells
taken from whole seedlings or even multiple plants). However, learning how single cells
behave is essential in order to understand how a whole organism behaves and, therefore,
simulation can be a powerful tool, enabling us to hypothesise the behaviour of a single cell
which would be impossible to observe experimentally. On the other hand, experimental data
can be used for model validation by comparing them to the mean simulated behaviour.

In the following we consider constant light and light/dark conditions, and compare the
deterministic behaviour with the stochastic one. The qualitative behaviour observed in the
deterministic model for both the entrained (LD 12:12) and free running clocks (LL and DD)
is a perfectly periodic permanent oscillation (see [26]). The differences in these three settings
lie in the period, phase and amplitude of oscillations; for instance, the period is 24 hours in
LD 12:12, around 24.5 hours in LL, and around 27 hours in DD.

The behaviour observed in a single evolution of the stochastic model in LD 12:12 is
similar to the regular oscillatory behaviour of the deterministic model [26], with the addition
of noise-induced stochastic fluctuations (e.g. Figure 2(c)): the noise causes the oscillations
to be less regular in terms of amplitude, but the light entrainment forces the oscillations to
synchronise with the light and, consequently, only allows for a very small variation in period.
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(a) Experimental measurement
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Figure 3: Stochastic behaviour and experimental data in LL. Panel (a) reports the experi-
mentally measured amount of TOC1 mRNA (TOC1:LUC); bioluminescence was normalised
to the mean level and averaged over 20 7-days-old plants as described in [23]. Panel (b)
illustrates the most likely explanation for the experimentally observed damping of oscilla-
tions: the persistent oscillations of single stochastic simulation runs are lost when observing
the system at the population level because of their asynchrony. Time t = 0 is the time of
transition into constant light. See also Figure 6 and Supplementary Figure 2 (Appendix E).

Contrary to the entrained system, the effect of discreteness and stochasticity on the
behaviour of the clock is clearly visible in the free running clock: while the deterministic
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behaviour is a persistent oscillation, the mean stochastic behaviour is a damped oscillation,
matching well with the experimental population data (Figure 3 shows the LL system).

Our stochastic simulation results show that the damping of oscillations in constant light
conditions is most likely the result of averaging over multiple noisy oscillators in different
cells: despite the stable oscillations in the single run, the mean stochastic behaviour damps
fast (Figure 3(b)) because of the lack of synchronisation in the oscillations in different runs.

Additionally to asynchrony, there are other potential explanations for the experimentally
observed damping. First, the depletion of the luciferin substrate could contribute to the
damping by reducing the signal progressively over time. Indeed, the data suggest that a
decaying exponential with a time constant > 3 days might reflect this substrate depletion,
as recently observed in algal cultures [31]. The observed faster damping of the amplitude
of oscillations suggests the existence of another major mechanism of damping unrelated to
experimental variation (Supplementary Figure 2 (Appendix E)). The oscillations at the level
of the whole organism might also subside because of the damping of oscillations in each indi-
vidual cell. Though we cannot completely rule out this hypothesis, the recent deterministic
model of the plant clock, which was based on multiple experimental data, suggests that os-
cillations in single cells are stable [26]. The damping of the oscillations in a population of
persistent cellular clocks was also observed in fibroblast cultures and in peripheral explants
from mammalian tissues [25, 22]. Oscillation damping could also be reproduced by a pop-
ulation of deterministic oscillators with different periods [20]. However, because of the low
molecule numbers involved in this (and other) biological clocks, the presence of stochastic
effects is certain, with or without additional period variation. Thus we conclude that noise-
induced asynchrony among different cells is the most likely mechanism of the population-level
damping of oscillations in constant light conditions.

Additional insight on the model behaviour and on its variability is obtained by comput-
ing statistic measures such as distribution of phase, period and amplitude of oscillations.
We compute these distributions over individual time-series both for the deterministic and
the stochastic model; for the latter we also compute time-dependant distributions at a spe-
cific time over a number of different simulation runs. Details on the computation of these
distributions can be found in the Electronic Supplementary Material (Appendix D).

Figure 4(a) shows the distribution of period and amplitude of the LHY mRNA level
in a single 80-day-long stochastic simulation run of the LD 12:12 system: this confirms
that the period is distributed quite tightly around 24 hours, while the amplitude is more
variable. Comparing these distributions with the ones for the free running clock in LL
and DD (Figure 4(b) and Supplementary Figure 5 (Appendix E)), we can observe how the
light entrainment makes the period more stable (the distribution is less wide), whereas the
variation in amplitude is smaller in LL than in LD 12:12. This agrees with experimental
observation [24, 28]. The additional noise in the amplitude in LD 12:12 is probably related
to the noise brought by acute activation of LHY, PRR9 and GI expression by light.

The distributions of period and amplitude shown in Figure 4 illustrate the variability of
the system in an individual run, i.e. how regular is the behaviour over time. Figure 5 and
Supplementary Figure 6 (Appendix E), instead, illustrate the variability over multiple runs,
i.e. how similarly different runs behave: they report the time-dependent distribution of phase,
period and amplitude of the oscillations over 1000 independent simulation runs at specific
times (on the second and on the 80th day of observation phase) for each of the three light
conditions. Figure 5(a) confirms that in LD 12:12 the distribution of period is more narrow
than the one of amplitude, shows that the entrainment is quite quick (i.e. the difference
between the distributions at day 2 and those at day 80 are not significant), and that the
period of LHY mRNA oscillations is always very close to 24 hours and the phase is near
dawn. In the free running systems, instead, the variability of period length results over time
in desynchronisation of runs so that at day 80 the distribution of phase spans the entire cycle
(Figure 5(b) and Supplementary Figure 6 (Appendix E)). The fact that, in the free running
clock, the period and amplitude distributions are quite similar at early and later times while
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(a) LD 12:12
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Figure 4: Distribution of period and amplitude of LHY mRNA oscillations over 80 days in
a single stochastic run: (a) LD 12:12 and (b) LL. In order to get rid of transient effects,
the first 20 simulation days are discarded in both LD and LL, so the plots refer to values
obtained between day 20 and day 100.

the phase distributions are wider at later times confirms the visual observation that the
oscillations in each individual run are rather regular but they are not synchronised (i.e. the
peak occurs at different times of the day), thus causing the dampening of oscillations observed
under multiple runs and in experimental population data (Figure 3 and [26]). Supplementary
Figure 3 (Appendix E) shows the distribution of period and amplitude of the LHY mRNA
level over 80 days in the deterministic solution of the model: in the free running LL system
the period is slightly longer (24.5 hours instead of 24) and the amplitude is smaller.

Summing up the comparison between the distributions of phase, period and amplitude
in ODEs and stochastic simulations, (i) in the entrained system they agree (although the
stochastic simulation results show quite a lot of variation in amplitude) and the distributions
at early times are similar to the distributions at later times (i.e. there is little or no transient
effect); (ii) in the free running system they show substantial differences: the ODEs show
stable oscillations with a shift in phase caused by the period longer than 24 hours, the
single stochastic simulation also shows persistent (noisy) oscillations, but the mean stochastic
behaviour dampens quickly due to the variation in phase in different runs.

The lack of synchronisation between different cells is further illustrated in Figure 6(b).
The five random simulation runs plotted clearly show how the oscillations quickly become
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Figure 5: Time-dependent distribution of phase, period and amplitude of LHY mRNA os-
cillations in 1000 simulation runs: (a) LD 12:12 and (b) LL. In both LD and LL we assume
that at day 0 the model is in an entrained state. The uniform phase distribution after 80
days in LL reflects the assumed absence of coupling among cells.
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out of phase in LL; this makes the probability distribution of values so spread that the
average over multiple runs dampens fast. This demonstrates why we are unable to catch
the persistent oscillatory behaviour of the cellular system from the population data, neither
the experimental ones (Figure 3(a)) nor those obtained by averaging multiple stochastic
runs (Figures 3(b),6(b)). In contrast, the individual oscillations of the entrained clock are
synchronised, although with variable amplitude. The distribution of values is quite tight
around the mean (Figure 6(a)), so the population data (Figures 2(d),2(e),2(f)) resemble
the single cell data (Figure 2(c)). Figure 6(a) also shows that in LD the distribution of
LHY mRNA levels is broader during the rising phase than during the falling phase. Our
model suggests an explanation for this asymmetry. Because different runs are not perfectly
synchronised, the rising phase of LHY mRNA during the night can begin at slightly different
times in different runs, hence causing some variability of the levels at any specified time in
the rising phase. The faster light-dependent degradation of LHY mRNA, however, causes
LHY mRNA levels to quickly decrease at dawn in all runs. The regulated mRNA degradation
derives directly from experimental results [32, 7]. Consequently, we observe less variability in
mRNA levels at a particular time in the falling phase, and hence better synchronisation among
runs. A secondary effect is that the LHY mRNA peak is lower in runs in which the rising
phase started later. This explains both the asymmetry in the broadness of the distribution
of LHY mRNA level in LD and also the higher variability in peak height compared to LL,
in which the rising phase is not abruptly interrupted by dawn.
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Figure 6: Variation in LHY mRNA time-series observed in independent stochastic simula-
tions: (a) LD 12:12 and (b) LL. For each light condition five independent simulation runs (left)
and the probability distribution of LHY mRNA level from 1000 runs (right) are reported.
In the heatmaps representing the probability distributions, a darker colour corresponds to
a higher probability for LHY mRNA to be at that level, while blue lines show the average
value µ (thick line) and the standard deviation ω (dashed thin lines, µ±ω). Similar changes
in distribution with time were obtained for TOC1 protein.
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3.3 Moderate noise in a multicellular environment accelerates light

entrainment

The mean stochastic behaviour gives a good description of the experimental data and, par-
ticularly in certain experiments, exhibits a faster entrainment to the light when compared
to the deterministic behaviour of the system. Figure 7 shows, for instance, the behaviour
of the model after the transition from short days (9h light) to long days (15h light). In
the deterministic model (Figure 7(a)) the amplitude of LHY mRNA peak value exhibits a
transient doubling of period, that is an alternation of a higher and a lower peak, which is
still observed after 50 days (Figure 7(a) shows the first 20 days). The stochastic model does
not show this effect and instead predicts that LHY mRNA is quickly entrained to a regular
value. A similar behaviour is observed for other proteins and mRNAs (results not shown).
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(a) Deterministic behaviour

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480
0

20

40

60

80

100

120

Time (h)

LH
Y

, P
R

R
s 

m
R

N
A

 (
co

un
t)

 

 
LHY mRNA PRR9 mRNA PRR7 mRNA PRR5_NI mRNA

(b) Mean stochastic behaviour

Figure 7: Behaviour of the system immediately following the transition from short days (LD
9:15) into long days (LD 15:9). Comparison of deterministic and mean (over 1000 runs)
stochastic behaviour. The deterministic model shows a transient “doubling of period” for
LHY mRNA which is not observed experimentally. The simulations consisted in 40 days
of LD 9:15 followed by the transition into LD 15:9 (time t = 0 in the plots is the time of
transition into LD 15:9).

The doubling of period in the current deterministic model is a consequence of superpo-
sition of the mutual regulation of LHY and PRRs genes and strong acute light induction of
PRR wave. This results in an alternation of higher and lower amplitudes of LHY: a higher
LHY amplitude results in high PRR7/5 expression, which in turn reduces the expression of
LHY the following morning, while strong acute light induction of PRRs cuts LHY amplitude
at a lower level immediately after dawn on the next day. Such a strong regulation greatly
improves the entrainment and robustness of the clock [26]. However it can cause some tran-
sient doubling of period in the deterministic model. The stochastic simulations explain why
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the doubling of period was never observed experimentally: the noise, together with the aver-
aging over multiple runs, reduces the effect of variations in amplitude which cause doubling
of period in the deterministic solution of the model, consequently improving the speed of
entrainment.

3.4 Stochasticity improves the entrainment to “skeleton” artificial

light patterns

To investigate the effects of the dawn and dusk light separately, some of the experiments
were carried out in special entrainment conditions where the 12 hours of light have been
interrupted by 6 hours of dark. This creates a second dawn in the evening and, since LHY
is responsive to light, it has the effect of introducing a secondary peak in addition to the
morning peak (Figure 8(d)).

The evening peak is not reproduced by the deterministic model (Figure 8(a)), but is
instead clearly present in the mean stochastic behaviour (Figure 8(b)). The better match to
the data obtained using the stochastic model is related to the low LHY peaks during the first
light pulse, which sometimes occur in single runs. The first (dawn) light pulse occasionally
results in a lower than normal LHY peak (see Figure 8(c) at 72 h). This causes lower PRR7/5
expression while TOC1 trough levels are elevated. This in turn increases the LHY response
to the second (dusk) light pulse (see Figure 8(c) at 81 h). Thus, the addition of noise-induced
behaviour improves the description of experimental data on the “skeleton” photoperiods too.

3.5 Autocorrelation of time-series data: a quantification of phase

distribution

Most of the above considerations have been drawn by visual comparison of time-series data
obtained from simulations with time-series data obtained from laboratory experiments. Using
this approach qualitative features such as “oscillations dampen” or “oscillations are persis-
tent” can be easily observed, but it is hard to provide a precise quantitative measure of
the stochastic effects. As discussed in the Electronic Supplementary Material (Appendix D),
when considering noisy data such as experimental data or those coming from stochastic simu-
lation, performing data analysis (e.g. measuring phase, period and amplitude of oscillations)
can be hard. Time-series analysis techniques originating in signal processing can be used
in order to compute summary measures of the quality of the circadian clock related to the
regularity of the oscillations, such as the distribution of phase.

The autocorrelation function of a time-series measures the similarity of the time-series
with a shifted version of itself, and is commonly used in signal processing to detect period-
icity in noisy signals. For perfectly periodic signals, the autocorrelation function oscillates
regularly between +1 and −1, with the same period as the signal, and with the highest value
at time t = 0. For noisy periodic signals, the autocorrelation function is also oscillating; if the
noise affects the phase of the oscillations of the signal, then the oscillations of the autocorre-
lation are dampened, the envelope of the function decreases exponentially, and the speed of
dampening can be used as a measure to quantify the effect of noise on signal periodicity. For
signals which are only random noise the autocorrelation function immediately reaches values
very close to 0.

Generally, a signal is considered to be statistically different from random noise if its
autocorrelation function is outside the 95% confidence band (which can be computed ap-

proximately as
[

−
2

√

N
,+ 2

√

N

]

, where N is the number of samples in the time-series). The

half-life of the autocorrelation, corresponding to its 50% decrease (i.e. the time at which
the envelope of the autocorrelation function is smaller than half its maximum), can be used
as a measure of the robustness of periodic signals with respect to noise. An application of
autocorrelation to biochemical oscillators can be found in [12].
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Figure 8: Comparison of the deterministic behaviour of LHY mRNA, its mean (over
1000 runs) and individual stochastic behaviour, and the experimentally measured amount
(CCA1:LUC) in the skeleton light pattern; the experimental data represent normalised bio-
luminescence, averaged over 9 6-days-old plants [26]. The rare occurrence of high LHY peaks
at dusk is visible in the individual stochastic run (c), and is the cause of the emergence of
the secondary evening peak in the mean behaviour (b) and in experimental data (d). The
simulations consisted in 40 days of LD 12:12 followed by the transition into the skeleton light
pattern (time t = 0 in the plots is the time of transition).
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Figure 9 shows the autocorrelation function for both the entrained and the free running
system computed over LHY mRNA time-series data obtained from stochastic simulation.
Supplementary Figure 4 (Appendix E) reports the autocorrelation of the deterministic be-
haviour. In the LD 12:12 system, the autocorrelation of the deterministic time-series is
periodic and regular, from +1 to −0.5 (Supplementary Figure 4(a)). The mean autocorrela-
tion of multiple stochastic runs is similar to the deterministic one: it is also regular but with
a smaller amplitude, due to the variation in the oscillations (Figure 9(a)). The autocorrela-
tion of a single stochastic run is also regular in periodicity, but not in amplitude since the
amplitude of the time-series is not regular (Figure 9(b)).

In LL, the autocorrelation of the deterministic time-series is similar to the one in LD
12:12: it is periodic and regular, from +1 to −0.8 (Supplementary Figure 4(b)). The mean
autocorrelation of multiple stochastic runs instead quickly dampens (Figure 9(c)), and its
half-life is around 31 hours. The autocorrelation of a single stochastic run, despite being
noisy, persistently oscillates outside the 95% confidence band (Figure 9(d)), thus clearly
showing the presence of a regular circadian rhythm. In Figure 9(c) we can also observe that
the mean autocorrelation function remains outside the 95% confidence band for 8–10 days.
Hence, in addition to confirming the persistence of rhythmic oscillations in the individual cell
behaviour, the above analysis also suggests that phase synchrony is totally lost only after
8–10 days.

The results for DD are similar to those for LL (Supplementary Figure 7 (Appendix E)):
the autocorrelation of the deterministic time-series is periodic and regular, from +1 to −0.7,
the autocorrelation of the mean stochastic behaviour dampens, and the autocorrelation of an
individual stochastic run is noisy and constantly outside the 95% confidence band. Compared
to the LL system, in LL the autocorrelation half-life is longer, around 55 hours, and the
phase distribution is slower, with the mean autocorrelation function remaining outside the
95% confidence band for 18–20 days.

Being normalised, the autocorrelation amplitude and its half life are good measures to
compare the effect of noise on phase distribution and its relation with system size. The au-
tocorrelation for the stochastic model with Ω = 10 (Supplementary Figure 8 (Appendix E))
are qualitatively similar to the ones for Ω = 100 but show important quantitative differences,
and provide a further measure to quantify the noise-induced variations and their relation
with the system size. Specifically, in the LD system, we can observe that the autocorrelation
amplitude is considerably smaller for Ω = 10 because of the larger variation in amplitude.
In the LL system we notice that the mean autocorrelation of multiple stochastic runs imme-
diately drops to zero, with a half life shorter than a single cycle, around 20 hours, showing
that no synchrony is observed among the oscillations of individual cells; the autocorrelation
of a single stochastic run, in fact, does not exhibit oscillations with a constant period due to
the huge noise-induced fluctuations observed in the single cell behaviour.

4 Conclusions

The importance of molecular noise in the behaviour of genetic networks such as circadian
clocks has been shown previously in various systems (e.g. [15, 1, 2]). In this work we have
investigated the noise-induced behaviour in the circadian clock of the model organism Ara-
bidopsis thaliana. The model we have presented here is obtained by extending an existing
model of the clock [26] with the addition of stochasticity.

The simulation results obtained by analysing the discrete stochastic representation of
the system allowed us to estimate the unknown size of the system to around 100 copies of
proteins per cell. We also showed how moderate noise is able to accelerate the entrainment
of the plant clock under certain light conditions and that the stochastic interpretation of
the clock model showed better agreement with the available experimental data compared
to the deterministic solution. The analysis of individual simulation runs, representing the
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(b) LD 12:12, individual stochastic behaviour
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(d) LL, individual stochastic behaviour

Figure 9: LHY mRNA time-series data and its autocorrelation function: (a–b) LD 12:12
and (c–d) LL. Comparison of the autocorrelation of a single stochastic run and of a mean
behaviour obtained over 1000 stochastic simulation runs. The first 15 simulation days were
discarded when computing the autocorrelation function in order to get rid of transient effects.
In the autocorrelation plots, the green horizontal lines show the 95% confidence band, while
the black vertical line is the half-life of the mean autocorrelation function.
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behaviour of individual independent cells, helped us to explain the experimentally observed
dampening of oscillations in constant light, which was not captured by the deterministic
model: the oscillations in single cells, although persistent, are not synchronised in different
cells, thus causing phase diffusion. The distribution of phase, period and amplitude computed
over multiple simulation runs closely matched available experimental data, exhibiting robust
entrainment of the plant clock to light/dark cycles with some fluctuations of the amplitudes.
The half-life of the autocorrelation of simulation time-series data was used as a measure to
quantify the dampening of oscillations in the free running system.

The suitability of stochastic models for understanding single cell behaviour in the presence
of noise is well known. Interestingly, our stochastic model has also proven to give better ac-
count of population data compared to the deterministic model: the mean stochastic dynamics
captures the damping of oscillations experimentally observed in constant light (Section 3.2)
and shows a better entrainment to light in several light patterns, such as a faster entrainment
to changes in photoperiod (Section 3.3) and the occurrence of secondary evening peaks in
“skeleton” photoperiods (Section 3.4).
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trainment of coupled circadian oscillators. Interface Focus, 1:167–176, 2011.
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